List of Tables

Table No.	Table titles	Page No.
Table 1.1	Antifungal spectrum of antibiotics produced by pseudomonads	20
Table 2.1	Identification of isolates by biochemical tests	56
Table 2.2	Antifungal activity of fluorescent bacterial isolates	57
Table 2.3	Enumeration of isolates based on antifungal activity	58
Table 2.4	Phosphate solubilization ability of putative fluorescent pseudomonad strains.	60
Table 2.5	Enumeration of fluorescent isolates based on phosphate solubilization ability	60
Table 2.6	Enumeration of fluorescent isolates based on siderophore production ability.	61
Table 2.7	Biochemical and molecular identification of fluorescent <i>Pseudomonas</i> isolates.	64
Table 2.8	IAA production by fluorescent <i>Pseudomonas</i> isolates.	65
Table 2.9	Production of lytic enzymes by fluorescent <i>Pseudomonas</i> strains.	68
Table 2.10	Antifungal and antibacterial activity of isolates against <i>R. bataticola</i> and S. <i>aureus</i> .	69
Table 2.11	Growth of PGPR strains on the medium containing ACC or NH ₄ Cl as a sole nitrogen source.	70
Table 2.12	Growth of fluorescent <i>Pseudomonas</i> isolates on medium containing ACC /L-Methionine.	71

Table 2.13	HCN production by fluorescent <i>Pseudomonas</i> isolates	73
Table 2.14	Summary of PGPR traits for the fluorescent pseudomonas strains	82
Table 3.1	Bacterial strains used in the study	103
Table 3.2	Primers used for the detection of antibiotic biosynthesis genes in fluorescent pseudomonads	104
Table 3.3	PCR protocol used for the detection of PhlD, hcnBC, pltC, and Prn BC.	104
Table 3.4	Combination of nutritional factors obtained by fractional factorial design by DE 8.	109
Table 3.5	Summary of amplification of antibiotic synthesis genes in fluorescent <i>Pseudomonas</i> strains.	116
Table 3.6	Quantification of 2,4- DAPG and its bioassay	120
Table 3.7	Pyrrolnitrin production by fluorescent <i>Pseudomonas</i> strains.	125
Table 3.8	Characterization of isolates for phenazine production based on pigment production and antifungal activity	127
Table 3.9	MnO ₂ reduction by fluorescent <i>Pseudomonas</i> strains on R5 plates.	128
Table 3.10	Effect of phenazine extracts on MnO ₂ precipitates.	130
Table 3.11	Redox potential values for fluorescent <i>Pseudomonas</i> isolates grown in PPM.	131
Table 3.12	Iinhibition of R.bataticola strains on MVB1 plates.	133
Table 3.13	Fungal inhibition by PCN extracts of G44 grown on different N sources.	135
Table 3.14	Fungal inhibition by PCN extracts of G44 grown on different C	136

	sources.	
Table 3.15	Effect of different nutrient combinations on growth and antifungal	142
	activity by PfCHA0.	
Table 3.16	Biosynthesis of PRN, 2,4- DAPG and PLT under different nutrient	148
	combinations.	
Table 3.17	Effect of nutritional factors and their combinations on the growth	152
	antifungal activity and antifungal metabolite production.	
Table 3.18	Percentage inhibition by 5th day extracts of isolates G20 grown in	156
	media 6	
Table 4.1	Rhizobial strains and their host plants.	178
Table 4.2	Bactericidal effect of antibiotics produced by fluorescent	181
	pseudomonads	
Table 4.3	Genetically modified PGP strains of fluorescent pseudomonads and	181
	their impact on microbial community.	
Table 4.4	Bacterial strains used in the study.	183
Table 4.5	Rhizobial inhibition by fluorescent <i>Pseudomonas</i> strains.	188
Table 4.6	Categorization of fluorescent pseudomonads based on their	190
1 able 4.0	compatibility with rhizobial strains.	190
Table 4.7	Interaction of biocontrol strains of fluorescent pseudomonads and	196
1 able 4.7	standard rhizobial strains in presence of <i>R.bataticola</i>	190
Table 5.1	Effect of coinoculation of rhizobia and PGPR strains on host plants	205
	•	
Table 5.2	Effect of coinoculation of PGPR strains with rhizobia on nodulation.	206
Table 5.3	Rhizobial strains, fluorescent pseudomonad strains and leguminous	207

	plant used in the present study.	
Table 5.4	Experimental set up of pot inoculation study for single, double and triple combinations of PGPR strains.	209
Table 5.5	Effect of coinoculation of fluorescent pseudomonads and other PGPR strains.	214
Table 5.6	Antibiotic sensitivity of IC 3123, IC 3109, ST1, PfCHA0 and PSI3.	215