
Chapter 5

Spin Relaxation

5.1 Introduction

5.2 Spin Relaxation Mechanisms

5.2.1 The Elliot-Y afet Mechanism (EY)

5.2.2 The Bir-Aranov-Pikus Mechanism (BAP)

5.2.3 D’yakonov-Perel Mechanism

5.3 Results and Discussion

5.4 Summary

114



5.1 Introduction Chapter 5

5.1 Introduction

Spintronics [1,2] (or "spin-based electronics"), also known as magnetoelectronics, 

is an emergent technology which exploits the quantum spin states of electrons as well as 

making use of their charge state. It is a nontrivial extension of conventional electronics, 

augments functionality by utilizing the carrier spin degree of freedom. Spin can 

potentially be used as a much more capacious quantum information storage cell, be 

involved in the transfer of information, for elaborate schemes of information processing, 

both quantum mechanical and classical, and be integrated with electric charge 

counterparts in combined designes. The electron spin itself is manifested as a two state 

magnetic energy system. The discovery of Giant Magnetoresistance in 1988 by Albert 

Fert et al. [3] is considered as the birth of spintronics for which Nobel prize has been 

awarded in 2007.

In addition to their mass and electric charge, electrons have an intrinsic quantity 

of angular momentum called spin, almost as if they were tiny spinning balls. Associated

with the spin is a magnetic field like that of a tiny bar 

magnet lined up with the spin axis. For a sphere spinning 

"west to east" the spin vector points "up" as shown in 

Figure 5.1. It points "down" for the opposite spin. In a 

magnetic field, electrons with "spin up" and "spin down" 

have different energies. In an ordinary electric circuit the 

spins are oriented at random and have no effect on current 

flow. Spintronic devices create spin-polarized currents

- Charge

I
Fig. 5.1 Spinning Sphere of 
electron consisting spin and 
charge.
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and use the spin to control current flow. Spintronic devices are used in the field of mass- 

storage devices and recently IBM scientists are successful in compressing the massive 

amounts of data into a small area, at approximately one trillion bits per square inch (1.5 

Gbit/mm2) or roughly 1 TB on a single sided 3.5" diameter disc. The ultimate goal in the 

rapidly burgeoning field of spintronics is to realize semiconductor based devices that 

utilize the spin degree of freedom of electrons instead of or in addition to charge degree 

of freedom [4]. Scientists are exploring the field of spintronics, in which the spin degree 

of freedom of the electron can be utilized to sense, store, process and transfer information. 

Taking advantage of the spin one can not only improve the performance of and add new 

functionality to existing devices but also could revolutionize electronics, leading to a new 

generation of multifunctional spintronic devices. There exist myriad spintronic device 

proposals, all of which rely on coherent spin transport in quantum confined 

semiconductor structures [5, 6], An extremely popular representative of this huge class of 

(proposed) spintronic devices is the so-called "spin field effect transistor" or spin - FET 

[7]. In this device, electrons are injected into a semiconductor channel from a 

ferromagnetic (or half metallic) source contact with a definite spin polarization. The spin 

is then controllably precessed in the channel with a gate potential using the Rashba spin- 

orbit coupling effect [8]. Finally, when the electron arrives at the ferromagnetic/half 

metallic drain contact, it is transmitted with a probability that depends on the orientation 

of the electron spin with the fixed magnetization direction of the drain. By changing the 

probability with the gate potential that precesses the electron spin in the channel, one can 

modulate the channel current and realize transistor. However, there exist many major 

roadblocks for realizing a spin - FET or any other spintronic device. Particularly, electron
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spins, once injected into the semiconducting channel, experience in their own frame of 

reference a magnetic field which is generally referred as spin-orbit coupling [9-16], This 

effect tends to orient the spins of different electrons in different directions and the spin 

coherence of the ensemble is lost. This phenomenon is commonly referred as "spin 

relaxation" (SR) and is detrimental to spintronic devices. Thus it is essential to have a 

proper understanding of spin-orbit mechanism-mediated spin relaxation processes that are 

operative in semiconductor nanostructures.

There are several mechanisms that can cause spin relaxation of conduction electrons:

(i) The D'yakonov-Perel' mechanism [17, 18] arises because spin-orbit interaction 

results in a wavevector dependent magnetic field B(k) about which the electron

(ii) spin precesses. It regards the spin splitting of the conduction band in zinc-blende 

semiconductors at finite wave vectors as equivalent to the presence of an effective 

magnetic field that causes electron spin to precess. For an electron experiencing 

random multiple scattering events, the orientation of this effective field is random, 

thus leading to spin relaxation.

(iii) On the other hand, Elliott-Yafet (E-Y) [19] mechanism occurs because in 

presence of spin-orbit interaction spin states are momentum dependent. Any spin- 

independent momentum scattering event has a finite probability to flip spin 

causing spin relaxation.

(iv) Bir-Aranov-Pikus Mechanism (BAP) [20] is the exchange interaction between 

electrons and holes which leads to spin relaxation in p-doped semiconductors. In 

this type of mechanism, simultaneous flip of electron and hole spins occur due to 

electron - hole exchange coupling.
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(v) Rashba mechanism [21] is similar to the D-P mechanism in which an asymmetry 

is induced by due to the external electric field which causes the carriers to lose 

their spin orientation.

Spin relaxation can also take place as a result of hyperfine interaction of electron 

spins with magnetic momenta of lattice nuclei, the hyperfine magnetic field being 

randomly changed migration of electrons in the crystal. The thorough discussion of these 

mechanisms is in the following section.

5.2 Spin Relaxation Mechanisms

It was observed around 1967 by A. Kastler [22] and his followers that the 

application of the optical orientation method to semiconductors creates the unique 

opportunity to measure very short spin relaxation times of electrons and holes, down to 

10'12 s, inaccessible to the traditional ESR techniques. This method allows studying spin 

relaxation of both free and bound carriers in crystals with different doping levels and in a 

wide temperature range. Consequently, very interesting new experimental data were 

available at that time which can’t be explained in the frame work of spin relaxation 

mechanisms known at that time. This situation stimulated further theoretical studies 

which have brought above mentioned mechanisms.

The lake of an inversion centre in some semiconductor compounds leads to spin 

splitting of the conduction band. D’yakonov and Perel’ [23] have proposed a relaxation 

mechanism due to this splitting. They have analysed this relaxation mechanism in terms 

of motional narrowing. In optical orientation experiments one studies SR of non

equilibrium carriers, usually photoelectrons in p-type crystals. In the case of high hole
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concentration another relaxation mechanism, due to exchange interaction between 

electrons and holes, can be very efficient which is known as Bir-Aranov-Pikus 

Mechanism (BAP); detailed description of which has been given by Bir et al. [24]. In 

some cases the Elliot- Yafet spin relaxation mechanism (Elliot 1954, Yafet 1963) can 

also be important in optical orientation experiments. In this mechanism spin relaxation of 

carriers is connected with momentum relaxation through spin - orbit coupling. The 

Rashba effect [25], named after one of its discoverers, is an energy splitting, of what 

would otherwise be degenerate quantum states, caused by a spin-orbit interaction in 

conjunction with a structural-inversion asymmetry in the presence of interfacial electric 

fields in a semiconductor heterostructure. Under certain conditions in semiconductors an 

appreciable reabsorption of recombination radiation with simultaneous creation of new 

electron-hole pairs can take place. This reabsorption process causes a decrease of 

photoelectron spin orientation and can be treated also as a spin relaxation process.

In the following we shall present the theory of above mentioned spin relaxation 

mechanisms. Special attention will be given to spin relaxation under uniaxial 

compressive stress and in a longitudinal magnetic field with the restriction to one group 

of crystals.

5.2.1 The Elliott-Yafet Mechanism (EY Mechanism)

As was pointed out by Elliott (1954) and later by Yafet (1963), spin-orbit 

interaction in crystals causes the mixing of electron wave functions with opposite spin 

vector orientations. As a result, in the process of momentum scattering the disorientation 

of electron spin also becomes possible. Afterwards, the spin relaxation rate for this 

mechanism has been calculated in detail by number of authors (Pavlov and Firsov 1965,
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Pavlov 1966, Abakumov and Yassicvich 1971, Chazalviel 1975). In these calculations 

different momentum relaxation processes have been taken in account. In the following 

subsections we shall, in short, present calculations of the spin relaxation rate for the cases 

of electron scattering by acoustic and optical phonons and by impurities.

5.2.1 (a) Long - Range Interaction

Considering the mixing of wave functions of the IY band with wave functions of 

the Fg and Tg bands, we can note the spin flip matrix element for functions between m

and m states in the conduction band as follows:

14^ Ijiat 44^

pj _ nm'k',s'k’ns'k\sknsk,mk (5 1)
m'k\mk SiJ. [Es-Em){Es,-Em]

Here, Hk = Uk’ are the terms linear in k. and are responsible for the mixing of wave 
sm ms

functions, and Hint are the matrix elements of the operator which determines the
s\s

electron interaction with phonons or impurities. The indices m and 5 refer to states in

conduction and valance bands, respectively. The Polar long-range interaction with optical

phonons is described by Frohlich Hamiltonian

Dop, =iC^IS (5-2)

k\k q2 qjc-k'

where I is the unit matrix, C = eu x
LO

e* 1 = e 1 -e1 where e0 and e* are
oo 0

the static and high frequency dielectric constants respectively, po is the crystal density, 

colo and q are the frequency and wave vector of the longitudinal phonon, k and k' are the 

electron wave vectors for initial and final states respectively. The choice of the constant C
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in above equation corresponds to the following definition of U:

(5.3)
2 JMXM2

U= V 1 z{Ul-U2)
-f-

where Ui and U2 are the displacements of the sublattices formed by atoms with masses 

Mi and M2 respectively. Long range electron-phonon piezoelectric interaction in crystals 

with Tc| symmetry is described by Hamiltonian

(5.4)

where Po is the piezoelectric modulus.

Interaction with ionized impurities is described by Hamiltonian

■ 47IV =—------------ :-------- IS
k\k e0 q2+£~2 q,k—k'

where Ld is the Debye screening length.

According to eqs. (5.2)- (5.5) for long range interaction,

Hint =Hint 
s \k' k \k s,s'

Now, the

(5.5)

(5.6)

H
k\k

jjint
k\k

ift2(a[k’k})ri 1
—n2 ,

3 m„E„ c s

For elastic scattering, when k' = k,

\2
2 =4£^ sin2 0

me J

(5.7)
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a,,2where, E =* is the electron kinetic energy, 0 is the scattering angle. The

transition probability should be averaged over all directions of k as the spin relaxation 

rate of electrons isotropically distributed in k space. The spin relaxation rate is given by

t/Of
. = 2 —- r k j2 

ft 4tt k'
wm'k'.wk (5.8)

The simplification of above eq. (5.8) leads to the following equation of the spin 

relaxation rate,

iiJL
27 ~

Ek
2

„2
1“ V 

2
V

i --n
\ o / 3

$ (5.9)

where,

-i

Here /i = cosf? and o(p) is the scattering cross section. For scattering by polar optical 

phonons, if the electron kinetic energy Ek is much higher than the LO phonon energy 

htt>Lo, we can obtain c(p)=(l-p) and 0=1. For scattering by ionized

2 2
impuritieso(/j) ^[(l-/z)+2//jp , where and

2(2 + /3)ln(l + ^)-2/3/(2 + /3)

0 fo{l + 0)-0/{l + 0)

After averaging over the Maxwell distribution of the electrons the general expression for 

the spin relaxation rate due to EY mechanism can be written as
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(5.10)

where,

where, the angle brackets denote the averaging over the Maxwell distribution. Hereafter it

er /
is considered that xp , which determines the electron mobility ne- y , is given by

In the case of polar optical phonon scattering, r equals 2.0 and for the ionized impurity

evaluation of 1jrs and \jr p is rather difficult due to anisotropy of Df(?k in eq. (5.4).

5.2.1 (b) Short - Range Interaction

In the case of short range interaction for scattering rate by optical phonons it is 

sufficient to consider the admixture of wave functions of the Fg and P6 bands to only one 

of the wave functions of the r7 band, since for this interaction scattering of electrons is 

possible from the Tg or F6 band to f7 band. Therefore, for the interband scattering the 

matrix element between m',k' and m, k states are given as [26]

('rp£k)/(£kh2{rPEk)/3kBT

scattering ;-=3.0<I>(/3j) where =4kiqTLDme/k2 ■ For piezoelectric scattering, the accurate

H
m'k\mk

(5.11)
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Correspondingly, for the operator H^k, which gives the probability of spin- flip scattering, 

as given as,

H
k\k

rjhd,^, x{k +k')]

2m E 
e s

1/2
1----7)

3

(5.12)

In contrast to the case of long range interaction, scattering due to the short range potential 

occurs not only on longitudinal but also on transverse phonons. For the scattering on 

polar optical phonons, neglecting the difference in energies of longitudinal and transverse 

phonons, the following relation between V- and U- are given as [27]
/ Ts / T p

1 _ 16 1 rp

Ts 27 Tp EgEQ 1—-tf

where 0 /4d2me

(5.13)

In fact, above eq. (5.13) differs from eq. (5.9) only by the replacement of £2 by E En. So

the contribution of short range interaction exceeds that of long rage interaction when Eo >

Eg . The estimates shows that, for example, for GaAs this inequality holds if d2ao>40eV,

ao being the lattice constant. Thus, short range interaction with optical phonons does not

alter the temperature dependence of rs. A similar situation takes place fro the interband

deformation potential scattering by acoustic phonons when the main contribution to

Y- is given by piezoelectric interaction. However, if the value of V- is determined 
/TP /TP

also by the deformation potential interaction and interband contribution still prevails. The

inverse spin relaxation time is given as [28]
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Hence, 1 1 — = 0.088—
Co

1

2 kBT

E l-i-r,
g

3

(5.14)

when the intraband contribution is dominating, calculation according to eq. (5.15) leads 

to following expression for

2—tj 
3

ae{a\k'kfj—bY.<*j[k ’A]
Si-E crfJkk'

•*J
(5.15)

where a, b and d are the deformation potential constants for the valance band. Calculation 

according to eq. (5.8) with the substitution of eq.(5.15) for Hn,’k%mk leads to a relation for 

V- similar to eq. (5.13), with
/TS

2 a
3 c}

—2where, a =cr+-
(2 -rif

-b2+-d2--Sbd
(5 2 5.

+- 2 a
5(2-7,)

(2 b+Sd)

(5.16)

— 2In this case, j/- is given by eq. (5.2) with r=2{ajC] j

The constant C2 can be determined from the measurement of spin relaxation times in 

uniaxially deformed crystals. For GaAs it is approximately 3 eV. The smallness of C2 in 

comparison with a is explained by the fact that the only reason for a non zero value of C2 

is the absence of inversion symmetry in the crystal.

5.2.2 The Bir-Aranov-Pikus Mechanism (BAP)

Electron scattering on holes can lead to spin-flip transition due to exchange and 

annihilation interaction. For electron-hole scattering, Bir, Aranov and Pikus in 1975,
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showed that the EY mechanism is less efficient than the BAP mechanism caused by the 

exchange interaction. Exchange interaction may also dominate in the case of electron 

scattering on paramagnetic impurities. In the following we shall briefly discuss the rate of 

electron spin relaxation due to BAP mechanism. However, there are many ways of 

scattering of electrons from holes such as free, bound etc., but in the present case, we 

discuss only one i.e. the scattering of electrons by free holes and this is the most 

important as well as mostly used for the calculation of spin relaxation rates [29]. The 

Hamiltonian for electron- hole exchange interaction is given by

Hex=zira^DS(r)6k,k' (5-17)

where r=re-rh is the position of the electron relative to the hole, hk and hk‘ are the total 

quasi momenta of the interacting electron and hole in the initial and final states,

respectively. The factor,7ra3 where as is the exciton Bohr radius, is expressed in eq. (5.10)

to express the operator D in energy units. In accordance with eq. (5.10), the electron spin 

relaxation time due to scattering on holes in the Bohr approximation is defined by

-— = 4tt3o3 E |#(0)14 
Baa'

Dm'a'jm*ip+q’p) fp \X-fP+q jx T* +£p ~~Ek—q -£p+q)

pq

(/»';*/«) (5.18)

Here, m and m’ are the spin indices of an electron and a,o'are those of a hole in the 

initial and final states respectively, p and ep are the hole wave vector and energy / (e )

is the hole distribution function, hq is the momentum transferred in the course of
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scattering. W(r) is the wave function of electron hole relative motion, r-re-n, is the 

position of the electron relative to the hole.

Let us now consider the most characteristic cases:

5.2.2 (A) Holes are non-degenerate

In this case at me « mi, the transferred energy is smaller than LV Then,

considering T.fp=Np Np being the hole concentration, eq. (5.11) for the spin relaxation 
P

rate can be reduced to the form,

1 11

r0 VB

N a3 
P B

where,

1 - Ds Mof,

To 2tl eb

-2 dQo o , ,Ds=J—^D2{p) Z)2(p)=- E
47T

&2

2 qq'

2meaB
and

"euB

a -US
'B.. 2

(5.19)

(5.20)

5.2.2 (B) Holes are Degenerate with Fermi energy

In the case when holes are degenerate with Fermi energy sF»Ek,kBT the spin relaxation

rate can be given as [30] 

3
i 3 i r

Ts 2r0 mcvB
P B g J hujdhuj

2ir -oo l-exp J?w/%T,
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jq f 2 2/1xf~~-~^^-t)qvFcos0+n q/2mj 6{tiul~Ek+Ek+q) (5.21)

The main contribution to V is determined by scattering on heavily holes, since their/Ts

concentration considerably exceeds that of light holes. Therefore, in the following we 

shall understand by mi, the mass of heavy holes and vF their Fermi velocity. In this case

"3 ^ \[2mhvF)il2/
Nr ..Pp,

'3n2h3

For Ek > me/mt„ the electron energy Ee being smaller than r,F. This inequality is satisfied 

at hole concentrations just above the critical concentration range can be called “The range 

of fast electrons”, since under this condition the electron velocity exceeds that of holes at

the Fermi surface. In this range huj=kqvF=tikvF^ k yv «Ek as at Ek>kBT the

2 2
transferred momentum hq does not exceed 2 hk. At the same time ----- =—<<1. For

2m£ Tiuj p

thermalised and not very hot electrons, with Ek«[mhlm^{kBTyf feF .

Tia>=Ek BFEk m„
m.

« kgT

Here, — exp(-^w/A:7’)) sa kBT . After integration over q by integration

overk' ~ k - q, neglecting fro)in the argument of the last 8-function, the “fast” electron 

spin relaxation rate is given as

fa T
(5.22)

1 3 v, kBT xr 3

r.t n vb eF
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For hot electrons, with Ek»\{mh!me){kBTf k-.p , the transferred energy satisfies the

relation ftu=EkvF/vk»kBT and the hot electron spin relaxation rate is given as [30]

5.2.3 D’yakonov-Perel Mechanism

It seems to be well established that, among the several mechanisms leading to 

spin relaxation in GaAs quantum wells associated to the spin-orbit coupling in the 

electron dynamics, the dominant is the one known as the D’yakonov-Perel (D-P) 

mechanism. This mechanism appears in semiconductor lacking an inversion centre, as in 

the case of GaAs, where the splitting of the spin-polarized band is proportional to the 

cubic power of the quasi- momentum.

In the case of a quantum well the spin relaxation time (SRT), r„ given by the D-P 

mechanism is proportional to the inverse of the momentum relaxation time (MRT), zp.

At low temperature this relation results in the fact that the cleaner the sample, the 

stronger the spin relaxation. The expression for the inverse of the SRT is:

Where a is the coefficient for the spin splitting of the conduction band, m is the electron 

effective mass, Eg is the energy gap, kB is Boltzmann constant, T is temperature and 

<q2> is the thermodynamic average of the square of the momentum in the confinement 

direction.

(5.23)

1 _a2h(q2)2kBTr 

t 2m2Eg
(5.24)
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It has been observed experimentally [31] that the SRT in GaAs quantum wells is 

practically independent of the temperature in case of strong confinement (thin quantum 

wells). As we can see from eq. (5.24), besides the linear explicit dependence, the 

temperature appears implicitly in the MRT, as well as in the average of the kinetic energy 

in the direction of the confinement. We can take the MRT due to the scattering by 

impurities to be temperature independent (in case of non- magnetic impurities, at least). 

In consequence, the resulting behaviour with temperature coming out exclusively from 

that scattering mechanism is due to the linear dependence modulating the thermodynamic 

average of the perpendicular energy.

The work is motivated by the fact that, in general, the quasi-two- dimensional 

electron gas (2DEG) in GaAs quantum wells has its origin in remote doping. The 

electrons are, therefore, spatially separated from the ionized impurities generating them, 

in such a way that, in the temperature regime where the scattering by acoustic phonons is 

important, this mechanism dominates largely the scattering by impurities in the MRT. It 

is clear here that we are assuming the inverse of the observed MRT to be the sum of the 

inverses of the MRT due to every scattering source, the so- called Mathiessen’s rule.

The MRT due to the scattering of the 2DEG by acoustic phonons via deformation 

potential can be easily obtained from the well known bulk results. In the quantum limit, 

where only the first subband is occupied at 7-0, we have:

— (5,25)
Tp tr'cjL
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In the above equation, L is the Quantum well width, eac is the deformation potential, and 

ci is the longitudinal elastic constant. This is similar to eq. (3.27) of momentum relaxation 

rate with Da as acoustical deformation potential and W is well width.

We see that, if we neglect every other source of momentum relaxation, the linear 

modulation of the temperature cancels out the linear dependence of tp due to the 

scattering by phonons. The temperature dependence is totally content in the 

thermodynamic average of the perpendicular energy. The inverse of the SRT becomes:

Where the average perpendicular energy given by < Ez>= „ E„< N„ >, where, <Nn > 

representing the average number of electrons occupying the subband n, and En is the 

energy of the bottom of this subband. Assuming the confinement to be due to a very high

(5.26)

barrier, E„= Etn2 , where, n- 1, 2,3..... , and £) — ti2Tx2l}/2m . The average occupation

number is given by

oo
(5.27)

With the subband density of states:

(5.28)

And the Fermi-Dirac distribution:
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/(«.**) 1_________ _

exp[(e-M(?’))/^r] + 1

Using the constraint

(5.29)

ns=J2fd£D»(£)f(£>T)> (5-3°)

” E„

Where ns is the areal density of the 2DEG, the chemical potential p (T) can be easily 

obtained by numerically solving the equation:

In jQ (l + exp [((m {T) - E„)/kBT)]) (5.31)

5.3 Results and Discussion

Our system consists of a GaAs quantum well confined by infinite barriers. In that 

case, a=0.028, sac= 1.01*10'18 J, and cf= 6.94* 1010 N/m2. We have considered, in our 

calculations, an electron gas with w.v=5* 101 'em'2, and widths 1=60,100,150,200 and 300 

A. The temperature from 50 to 300 K. Fig. 5.2 shows the renormalized inverse of the 

SRT as a function of the temperature. The renormalization is obtained by dividing the 

results of eq. (5.3) by the value obtained for L-100 A at 7M00K. The experimental 

results are plotted in the same graph, dividing energy value by the inverse of the SRT 

obtained in the sample of L = 10 nm at the temperature T= 87K. Our choice is made on 

the basis that these data seems to be more consistent with an SRT independent of 

temperature. Probably, the larger dispersion observed in the data corresponding to the 

sample with L— 6nm are due to reasons related to the preparation, which masks our 

conclusions. Of course, since we have neglected residual resistivity, the absolute value of 

SRT is probably meaningless, except for the fact that the residual resistivity does not
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change with temperature. On the other hand, the renormalized SRT reflects the real role 

of the temperature. Notice that the SRT is temperature independent for the width 

parameters L= 60 and 100A, and changes for higher temperature for L= 150,200 and 

especially 300 A.

It is worthwhile to know, for different temperature regimes, how the SRT changes 

with the quantum well width. This is shown in Fig. 5.3. The calculations are made for 

7M00K (solid line), 200K (dashed line), and r=300K (dotted line). The dependence with 

the quantum well width is very similar for this temperature. Then we plotted in the same 

graph the experimental values obtained in the four samples at T= 92 -100K (square), 200 

K (circle) and 300 K (triangle). We observe a good agreement above 150 A. For those 

samples corresponding to thinner quantum wells, the proximity of defects at the interface 

makes the scattering by these sources important enough not to negligible. The inverse of 

the MRT due to disorder becomes comparable to the acoustic phonons contribution. 

Since the total MRT is smaller than the one we calculate, discrepancies with our model 

are expected in very thin quantum wells. The inverse of the SRT we calculate must be 

higher than the one really observed. This is exactly what appears in Fig. 2. It must be said, 

however, that the scattering due to disorder dose not introduces temperature dependence 

on the SRT. To conclude, we have shown with a simple calculation that scattering by 

acoustic phonons via deformation potential leads to the experimentally observed 

behaviour of the SRT for electrons in quantum wells , in which reasonable thin widths 

result in temperature independent measurements , while for thicker wells an untypical 

temperature dependence shows up, as a transition to a three -dimensional behavior.
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n
50 100 150 200 250 300

Width {A)

Fig. 5.3 The SRT changes with the quantum well width for 
different temperature regimes.

50 100 150 200 250 300

temperature (K )
Fig. 5.2 The renormalized inverse of the SRT as a function of the 
temperature.
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5.4 Summary

In this chapter, we have calculated the spin relaxation rate and by doing this we 

put one step ahead to understand the procedure of spin flip and hence improve the 

technology toward the mechanism of more little and fast memory storing devices. The 

chapter describes the different mechanisms of the spin relaxation. In the present 

formulation we use D’yakonov-Perel (DP) mechanism arising due to the spin-orbit 

interaction and are best suitable for the centre symmetry semiconductors lacking an 

inversion centre. We have shown that the scattering by acoustic phonons via deformation 

potential leads to the experimentally observed behavior of the Spin Relaxation Time for 

electrons in quantum wells, in which reasonable thin widths result in temperature 

independent measurements , while for thicker wells an untypical temperature dependence 

shows up , as a transition to a three - dimensional behavior. It is also observed here that 

the scattering due to disorder dose not introduces temperature dependence on the Spin 

Relaxation Time.
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