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2.1 Introduction Chapter 2

2.1 Introduction

As carrier traverse a device, their motion is frequently interrupted by collisions 

with impurity atoms, phonons, crystal defects, or with other carriers. The importance of 

phonons and their interactions in bulk materials is well known for solid state physics [1]. 

The electrical response of any electrical device depends upon the electronic configuration 

as well as on the interaction of carrier with vibrations of lattice with corresponding 

temperature. Carrier mobilities and dynamical processes in polar semiconductors, such as 

gallium arsenide, are in many cases determined by the interaction of longitudinal optical 

(LO) phonons with charge carriers [2, 3], An electron in a polar semiconductor will be 

accelerated in the presence of the external electric field until the electron’s energy is large 

enough for the electron to emit an LO phonon. When the electron’s energy reaches the 

threshold for LO phonon emission, there is a significant probability that it will emit an 

LO phonon as a result of its interaction with LO phonon [4]. Of course, in the process, 

the electron will continue to gain energy from the electric field. In the steady state, the 

processes of the electron energy loss by LO phonon emission and electron energy gain 

from the electric field will come into the balance and the electron will propagate through 

the semiconductor with a velocity known as the saturation velocity. The experimental 

values for this saturated drift velocity generally fall in the range 107 cm/s to 10s cm/s [5],

For polar semiconductors, the process of the LO phonon emission plays a major 

role in determining the value of saturation velocity [6, 7]. In non-polar materials such as 

Si, the deformation potential interaction results in electron energy loss through the 

emission of phonons. In all such cases, the electron mobility will be influenced strongly 

by the interaction of electrons with phonons. The saturation velocity of carriers in a
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semiconductor provides a measure of operating speed of a microelectronic or 

nanoelectronic device. The minimum time for the carriers to travel through the active 

region of the device is given approximately by the length of the device divided by the 

saturation velocity. The practical switching time of such a microelectronic device will be 

limited by the saturation velocity and thus it is clear that phonons play a major role in the 

fundamental and practical limits of such microelectronic devices [8],

The importance of carrier-phonon interactions in modem semiconductor devices 

is also recognized by the dynamics of carrier capture in the active quantum well region of 

a polar semiconductor quantum-well LASER [9, 10]. For the LASER to operate, an 

electron must loose enough energy to be ‘captured’ by the quasi bound state. This energy 

is of the order of 100 meV or more for many quantum well semiconductor LASERS. The 

energy loss rate of the carrier (thermalization rate) in polar semiconductor quantum well 

is determined by both, the rate at which the carrier’s energy is lost by optical phonon 

emission and the rate at which the carrier gains energy from optical phonon absorption. 

The rate at which the carriers gain energy from optical phonon absorption can be 

significant in quantum wells due to the accumulation of emitted phonons by energetic 

carriers. Since the phonon density in many dimensionally confined semiconductor 

devices are typically well above those of the equilibrium phonon population, there is a 

probability that these non-equilibrium or ‘hot’-phonons will be reabsorbed [11]. Clearly 

the net energy loss by an electron in such a situation depends on the rates of both phonon 

absorption and phonon emission.

In the present theoretical analysis, we have studied the interaction between 

electrons and phonons by means of scattering via deformation potential coupling
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mechanism [12, 13] for two dimensional nanostructures which will be applied to dilute 

nitrides in the further chapters. For the sake of completeness, we briefly describe 

scattering by other means (for example electron-alloy, electron-electron etc.) and factors 

affecting these scattering mechanisms.

2.2 Confinement Effects on Phonon Interactions

Phonon interactions are altered unavoidably by the effects of dimensional 

confinement on the phonon modes in nanostructures [14, 15]. These effects exhibit some 

similarities to those for an electron confined in a quantum well. The dimensional 

confinement of phonons restricts the phase space of the phonons; therefore, it is certain 

that the carrier- phonon interactions in nanostructures will be modified by phonon 

confinement [16]. These confined phonons and its interaction with carriers play a critical 

role in determining the properties of electronic, optical and superconducting devices 

containing nanostructures as essential elements. Examples of such phonon effects in 

nanoscale devices include: phonon effects in intersubband LASERs; the contribution of 

confined phonons on the gain of intersubband LASERs; the contribution of confined 

phonons to valley current in double barrier quantum well structures; phonon-enhanced 

population inversion in asymmetric double barrier quantum well LASERs; and confined 

phonon effects in thin film superconductors [17, 18]. Because electrons confined within a 

small potential well experience a rapidly varying potential, the carrier’s wave nature 

becomes important. For the quantum well illustrated in above Fig.2.1 (a), electrons are 

confined in the z- direction but are free to move in x-y plane. For the quantum wire 

illustrated in Fig. 2.1(b), electrons are confined in x-y plane but are free to move in z- 

direction. Such structures are produced with the semiconductor heterojunctions.
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Fig.2.1 Electrons confined in a (a) quantum well and (b) quantum wire.

2.3 Density of States (DOS)

The density of states (DOS) is defined as the number of electronic states present 

in a unit energy range. The DOS is an important for the calculation of various optical 

properties such as the rate of absorption or emission [19-21]. The DOS also reflects their 

distribution of electrons and holes within a solid. Semiconductor heterostructures allows 

one to change the band energies in a controlled way and confine charge carriers to Two 

(well), One (wire) or Zero (dot) spatial dimensions. Due to the confinement of carriers, 

the dispersion relation along the confinement direction is changed. The change in 

dispersion relation results in a change in the density of states. For bulk, the density of 

states in terms of energy is expressed as

g(E) dE — —-
3D J-

2mE 2mE
-2*2 
it n U2

-dE-- 1 2m E'zdE (2.1)
ft* 2it

This gives the density of states per unit volume per unit energy at a wave vector-k [For 

details see Appendix I], Below, we describe briefly the density of states for the confined 

systems.
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2.3.1 Density of States in 2D Structures (Quantum well)

In two dimensional structures such as the quantum well, the procedure is much 

the same but one of the k-space components is fixed instead of finding the number of k- 

states enclosed within a sphere. The problem is to calculate the number of k-states lying 

in an annulus of radius k to k+dk, k-space would be completely filled if each state 

occupied an area of

The 'volume' of the annulus is given by

V fi/k = 27rlft|dk (2.3)
s2D

In terms of energy per unit volume at an energy E, the density of states for 2D structures 

can be expressed as

(2.2)

(2.4)

Dividing the 'volume' of the k-state by the area of the annulus and multiply by 2 to

account for the electron spin states, the density of states can be expressed as

k:

Fig. 2.2 k-space in 2D. The density of states at an Energy E
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g(k) dk = 2x 
2D

\k\dkl?

7T

It is significant that the 2D density of states does not depend on energy. Immediately, as 

the top of the energy-gap is reached, there is a significant number of available states. 

Taking into account the other energy levels in the quantum well, the density of states 

takes on a staircase like function given by:

g(E) dE^A-T. h(e-EXlE (2.5)
2D \ t)

where, H (E-E,) is the Heaviside function. It takes the value of zero when E is less than 

E ; and 1, when E is equal to or greater than Ei. E; is the z'-th energy level within the 

quantum well.

2.3.2 Density of States in ID Structures (Quantum Wire)

In one dimension two of the k-components are fixed, therefore the area of k-space

, becomes a length and the area of the annulus becomes a line.

V — 2dk V =•sID ID /L

Therefore the density of states per unit length in 1-d and multiplying by 2 for spin 

degeneracy,

*(k) =
ID

rs\D ■ 2x—dk
T D

(2.6)

For one dimension, the density of states per unit volume at energy E is given by

2 dk 2g(E) dE =-----= —
ID -Tr 7T

2 mE

Pd
m 1
'JdE = ~ 
tr ir U

-dE (2.7)

Using more than the first energy level, the density of states function becomes
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g(E) dE = — 
ID n tr

dE (2.8)

Where once again, H (E-E,) is the Heaviside function and n\ is the degeneracy factor. For 

quantum structures with dimensions lower than 2, it is possible for the same energy level 

to occur for more than one arrangement of confined states. To account for this, a second 

factor n , ( E ) is introduced.

Type Delocalized
Dimension

Confined
Dimension

Quantum dot 0 3
Quantum wire l 2
Quantum well 2 l
Bulk 3 0
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2.3.3 Density of States in OD (Quantum Dot)

In a 0-D structure, the values of k are quantized in all directions. All the available 

states exist only at discrete energies described and can be represented by a delta function. 

In real quantum dots, however, the size distribution leads to a broadening of this line 

function. Table 1 shows Delocalized and confined dimensions of nanostructures. In the 

quantum well, the ratio of the /th energy level to the ground state level Eq is proportional 

to k2 and in each case since there is only one way in which k can be arranged to obtain 

this energy, the degeneracy is of each energy level is just 1. The quantum wire has two 

values of k to control its energy and therefore the energy is proportional to the sum of the 

squares of each k value. (For example: 5=l2+22) and where the values of k are different 

there are two ways of obtaining the same ratio of energy. Therefore in this case the 

degeneracy is two. The quantum box is confined in all three k-directions and its energy is 

proportional to the sum of the squares of each k values. As one might expect, the scope 

for degenerate energy levels is also greater. Where the k values are all different, there are 

6 ways in which the k values can be arranged to produce the same value of energy.

2.4 Relaxation Times

In the present section, we describe the most fundamental quantity of carrier 

scattering mechanism and evaluate the transition rate, S(po,p), which is the probability 

per unit time that a carrier with crystal momentum p scatters to a state with crystal 

momentum p'. The approach is based on well known Fermi’s golden rule. The entire 

description is under the parabolic band approximation. The interaction between electron 

and lattice vibrations is mainly considered via scattering which is considered by 

introducing the concept of relaxation time t; the time which is closely related to the mean
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time of flight between collisions of electron with lattice vibrations. The scattering rate for 

the carriers is, the rate at which carriers with specific momentum p0 scatter to any other 

state and is expressed by,

~~7~ r ~ E s(p0>P')[1—/(Pi] (2.9).
r(p0) P’.T

Here, S(p0,p’) is the transition rate and defined as

%(£(p')-£(p)-A£) (2.10)

Here, AE is the change in energy caused by the scattering event. H is the matrix
P0.P

S(p,p') 2?r H,
P,P

element defined as

H =1' J e-iP'*/* U (r) JP'-r!hd\ (2.11)
P-P' O-oo 5

Here, U (r) is the perturbing potential. Alternatively x(p0) is the average time between

collisions (also known as life time of the state, p0). The vertical arrow below the sum is to 

indicate that the sum over final state includes only those whose spin is parallel to that of 

the incident carrier (the scattering mechanisms we consider do not flip the carrier’s spin). 

The factor of [l-f(p')],where f(p') is the probability that the state at p' is occupied, gives 

the probability of finding an empty final state. For a non-degenerate semiconductor, there 

is a high probability that the state at p' is empty, and in this case Eqn. (2.9) is written as

-“t= E s(p0,p') (2.12)
r(p0) P'»T
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To evaluate the rate at which the z-directed momentum is relaxed, we need to weight 

each collision by the fractional change in the z-directed momentum. Therefore, the 

momentum relaxation time is expressed as [21]

»M P’>t
£ sM 1 J>zj

PzO
• E/(p».P') 
P»t

py 
l/PoJ (2.13)

where a is the polar angle between the incident and scattered momenta. The energy

relaxation rater (p ), is expressed as
E 0

1

TeM

2.5 Carrier Scattering Mechanisms

(2.14)

To understand the carrier scattering mechanism, it is first essential to know the 

perturbing potential responsible for scattering and the distribution of carriers so that the 

matrix element can be evaluated. In this section, we briefly discuss the perturbing 

potential for the common scattering mechanisms, and obtain the scattering rates.

2.5.1 The Distribution Function

In equilibrium, the distribution function /(k), which represents the distribution of 

carriers in momentum states is expressed as

/o(k) _________ 1________
1 + exp [(Ek-EF)/kBT (2.15)

where £* is the energy of the state, £> is the Fermi energy (or, strictly speaking, the 

chemical potential), kB is Boltzmann’s constant and T is the absolute temperature. In a 

spherical energy band, Eq.(2.15) is symmetric in wavevactor and we would ordinarily 

write this as a function of energy. Suppose now that the distribution function is displaced
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by dk in k space due to the application of an electric field. For a vanishingly small field, 

we can expand /(k) to first order as

/(k) - /0(k-Sk) * /0(k)~ V„/0(kHk (2.16)

2.5 Carrier Scattering Mechanisms Chapter 2

(Here, the notation Vt just means the gradient with respect to wavevactor coordinates). 

Since the electron group velocity v (k) is

F(k) = VjW = (l/S)Vt£{ (2.17)

By using the chain rule and writing /o(k) as a function of E (dropping the k subscript), we 

have

m=uE)~% ■6k (2.18)

For the time being, we shall assume that there is no magnetic field. Using the definition 

of average k displacement, = —eFrjfi, the distribution function can be written

(2.19)

This is now in the form/jk) =f(JE) - ME) +f(E) where, by assumption, f(E) «fo(E). 

Note that although f(E) looks positive in Eqn.(2.19), since dfiJdE < 1, in fact it has the 

opposite sign to F. This is as we would expect, since we are considering the displacement 

of negatively charged electrons.

2.5.2 Deformation Potential Scattering

Within the spirit of Bom-Oppenheimer approximation let us assume that the 

electrons can respond instantaneously to the ionic motion so that the electron - phonon 

interaction Hamiltonian can be expressed as a Taylor series expansion of the electronic 

Hamiltonian He (rj, Rj):
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H (r,&?) = E
e—ion i j ;

<)H„

dR
J

70

•SR + 
j

(2.20)

Usually the electronic Hamiltonian, He(ri,i?j) is not known, and therefore approximations 

are required to calculate the electron-phonon interaction.

Let us assume that the electronic energies E„k (where n is the band index and k is 

the wave vector) are known so that <9# /dR can be approximated. If we assume that
e/ J

band n is non-degenerate, the constant [dEnkjdRj J represents simply the shift of the

electronic band energy caused by a static displacement of the atoms. In the case of long- 

wavelength acoustic phonons, the atomic displacements can correspond to a deformation 

of the crystal (Deformation Potential Theorem). Such deformation will change the 

electronic energies at different points in the Brillouin zone; the parameters which 

describe these changes in the electronic energies induced by static distortions of the 

lattice are known as deformation potentials. Thus the coefficient (dE„k/0Rj) is related to 

deformation potentials of the crystal [22- 25].

Within the limit of zero wave vector or infinite wavelength, an acoustic phonon 

becomes a uniform translation of the crystal. Obviously such translations will not alter 

the electronic band structure; hence, if all SRj>s are identical, the change in E„k is zero. 

Thus we have to assume that an acoustic phonon has a non zero but small wave vector in 

order to couple to electrons and consider the gradient of the atomic displacements as

dij = 5(8Rj)/ SRj (2.21)

where dy is a second rank tensor which can be decomposed in to the sum of symmetric 

tensor ey and an antisymmetric one fjj*.
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We envisage an energy band structure with valance band maxima and conduction 

band minima as shown in the Fig.[2.3] wherein the left figure is for normal atomic 

volume and the right figure is for dilation A resulting from the transitional change in 

volume. The shifts in the energy of the band extrema will in general in general be linear 

in the dilatation A. The proportionality constant is called the deformation potential 

constant [23].

SV =D A; SV =D A (2.22)
C c v v

Thus an electron at the conduction-band minimum will have its energy shifted by 

an amount proportional to the dilatation A. It is then assumed that if the dilatation varies 

with position there is an effective potential seen by the electron which also varies with 

position.

8V(r) = DA(r) ; SV (r) = D A(r) (2.23)
C C V V

The effective potentials would of course be slightly different for electrons away from the 

band extrema. However, these constants are evaluated at the band minimum and used for 

all electrons near the minimum.
E £

Fig. 2.3 Effect of change in lattice spacing due to change in the atomic volume on the 
band structure of a semiconductor.
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2.5.2 (a) Acoustical Deformation Potential (ADP) Scattering

Because a semiconductor band structure is determined by the crystal potential, it 

is influenced by changes in lattice spacing. For a small change in lattice constant, there is 

a change in conduction and valance band energy levels which is expressed as,

8E = D {8a!a) (2.24)
c c

and

2.5 Carrier Scattering Mechanisms Chapter 2

8E = D (8a/a) (2.25)

where Dc and D„ are deformation potentials. Let us consider an elastic wave, 

u(x,t)—A ' +A fie ’ (2.26)

This wave is propagating in one dimension only. For acoustic phonons the changes in 

lattice spacing are produced by the strain uAP(x,t)-D Therefore the interaction

potential for acoustic phonons is expressed as

Ua&- 0-^% <2-27>

This interaction potential applies only to longitudinal phonons as transverse elastic waves 

produce no first order change in lattice spacing and hence no dilation. Similarly, the 

interaction potential for optical phonons is expressed as

Uop(x,t) = D0u(x,t) (2.28)

The perturbing potential for phonon scattering is expressed as,

Us = K u (2.29)
P P

where Kp = wave vector and up = Fourier component of lattice vibration
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i(f3z—uit) * —i(/3z—uit) 
tt0 = Af +A/f

By using Eq.(2.30) and Eq.(2.29), we get the scattering potential as follows

/(Bz—u)t) __ * —i($z—u)t)
Vs=K PV +Kp Aff

Now, for the plane wave confined to a normalization length, -L/2 < z < 

function is given as

#(Z) = -U,te
41

The matrix element for above case will take the form

L/
72

H = f 9 (z)U (z)\P *{z)dz
k*k _// 5

72

f ( yr)e^[K A /PZ-W°+K -/k';
V /Vi p 0 P p /V^

u

■ K A f (l/)[e'(k_k'±P)z]Vzn P-L/ L

Now according to Fermi’s golden rule, the scattering rate is given by

2
S(k',k) = 2-k H

2n 
ft

2ir

k'k

2
K A

P P

ti2vf3

S(E(k')..E(k)±hu)

S 5(£,(k)-£(k)±M 
k',k±p

<5(±COS0 + —±—)
2 P vp

K
2

A
P P

(2.30)

(2.31) 

L/2, wave

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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Here | Ap| is the amplitude square of lattice vibration [See Appendix II] 

2

a IpixjpQ P(n +y2±y2) (2.37)

and

K = p 2D2 
A

(2.38)

By using Eq.(2.37), Eq.(2.38) and Eq.(2.36), the transition rate can be expressed as

S(k'k) = -^—p2D2 
H2v0 4

t>
2pUJp£l (•Np+y±iy)

<5(± cos 0+—± —) 
2 P vp

ixPD2
=-----4-(N+y± y)S(±cos9+^-±~) (2.39)

hvpujil 2p v/3

UJ
Here, — = v = sound velocity and v = p/m* = velocity. The transition rate in terms of k-

P s

wave vector can be expressed in terms of momentum wave vectors as

7I7W * D2

S(p,p’) =--------—(N +y±y)6(± cosO+^±—),fipio Qp P 2p vp
0

= C (iV + y.±V.)8(±co%e+^-±—) (2.40)
P P /Z /Z 2p vp

The total transition rate can be obtain by substituting S(p,p’) in the expression of 1Jr{p)

and summing all over the momentum space

—=£SCp,?') 
HP)
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fi 1-J^d^fCpiNg+fafyciP f 6(± cos 0+—±—)d cos 0 
(2tt)3 „ P P -1 2p v0

By using the identity of 5-function, the scattering rate for electron - phonon interaction is 

expressed as

i o @max i t
. — =----~d0 / Cg(N +±±-)01 2d0
r(p) (27r)2 a. 02 2

(2.41)

The Momentum Relaxation Time, the scattering rate can be written as

= £S(/>)(1——cosa) 
r (p) P P

(2.42)

where a is the polar angle between p and p'.[ See Annexure III ]

£
p

cosa — 1— ' ' K 1-------= ±——cos0 (2.43)

1 ^ , \/^0cos(>\ ■---------= Hs(p ,P)(±—------)
r (p) 0 P

m

(2.44)

O 27T OO 1 1 ry 1 Tlfi 111 tid——f d<\> J (.Np+—±— )C [iLdd f <5(±cos0H——±—)(±—cos6)dcos91
(27r)J 0 0 2 2 0 .ll 2 p v0 p

fi ... I I a2,f>0 u----- -- f (Ng+-±-}C S3A(r22.±-^)-d±d0
(27it 0min 2 2 0 2p vB p

where, fS(±cos0+^-±—)(±^-cose)dcos0^(^-±~). By using the 5-function
-1 2 p v0 P 2 p v0

M , w.

identity, the momentum scattering rate is expressed as

1 - n ‘‘Tv

r (p) (27tf 0- 2 2 0 2p v0 p

m

(2.45)
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Here, for acoustic phonons, co= cos=pos and for optical phonons, co = coo ~ constant. In this 

case the scattering rate for electron phonon interaction is given as

2.5 Carrier Scattering Mechanisms Chapter 2

fi '^max
f C0(N ^+-±-)0zdp

«P) M Pmin 13 ^ 2
(2.46)

where,
irm*DZ irm*DZ 

._____AA
0 tlpu Qp hut mp

0 0

{*.* pn=/»}

i
irm * IjO "max ii , nf (N +-±~)-------- &-p2d0

T(p) (27r)2 /3min 0 2 2 hmv p

in * Dl 8
max ^Ka2,f (iv +-±- )/3Adf3

Avtipv p 8 . 0 2 2
(2.47)

At room temperature N = (N+~±-)^Nu 
0 2 2 *

1
m*D] 0xmx 9

-d- / (Nu WdH 
sT(p) ^TThpv P g.

By using equipartition theorem, N « k T , the scattering rate is expressed as
us B L

m*DZk T
_J_ =------A.g__4(g2 __p2 )
r(p) 4tthlC p max m»n

(2.48)

Now for acoustic phonons, with wave vectors near the zone center ua/3 , the phonon 

momentum is given by,

p = kj3 = 2p ± cos 6 ±—— 
v(p)

(2.49)
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For phonon absorption, when 0=0,the phonon momentum will takes the form,

h[3 (aco.phonon) = 2p[\ ± y, ,] 
max '

(2.50)

In the case of ADP scattering being approximately elastic near room temperature,

Tip =2p-2m* v(p) and tip = 0, the momentum relaxation time is expressed as 
max min

1 nDAkBTL
g (£) (2.51)

%Cl cr{p) rm(p)

where, gc(E) is the density of states. Eq. (2.51) indicates that the scattering and 

momentum relaxation rates are equal but only when acoustic phonon scattering can be 

regarded as elastic; acoustic phonon scattering is isotropic. However, at low temperatures, 

ADP scattering is anisotropic.

2.5.2 (b) Optical Deformation Potential (ODP) Scattering

Since at higher temperature, the optical phonon becomes important, in the present 

section we briefly present the optical deformation potential scattering. For optical 

phonons, which displace neighboring atoms in opposite directions, the displacement 

produces a change in lattice spacing directly, and in this case the scattering due to optical 

phonons is given on the basis of Eqn. (2.28) for optical phonon deformation potential. In 

three dimensional semiconductors, optical phonon vibration consists of one sub lattice 

moving against the other. In contrast to the simple change in volume of unit cell produced 

by longitudinal acoustical phonons, optical phonon scattering is sensitive to the symmetry 

of the crystal. The scattering rate for the carrier - optical phonon scattering is written as

7XD2

/.S(p\p) =----- 2_(JV + -±-)<5(±cos04- —± —
hvppuja 0 2 2 2p vp
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■kDl

■----------- {N
tipfjpu) Q 0 

0

+ - ± -)S(± cos 8+—±~) 
2 2 2p v(3

(2.52)

where, v - (^j/) and 2

The total scattering rate can be obtained as

—r (p) /?

o 2-It OO ,1 » 1 , ,==——— f d(j> f (No +-±-)C /32d/3 f <5(± cos6+—±—)dcos8 
(2?r)3 0 0 2 2/3-1 2p v/3

o pmax i i -= -ii- / (tf +I±i)C /?2</0
(2tt)2 Q . 2 2/3
v ' ^min

0
(2tt)2

^ '"^max 
—f 
trn^ngmm

W0
1 1 82 

2 2 8

„ I i max------ (iV +-±-) f [fid8]
4ntipped ° 2 2 3 .

0 mm

(2.53)

Where, hco0 is optical phonon energy and t>8 = p[± cos 6 ± ^cos2 0 ± ]

When, 0=0, (3=pmax and can be expressed as

=p[l±fij%l
E{p>

's„»rf[,±iF%>2fr

and 8 — o
min
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Now from Eq. (2.52), we have

1 _ 1

t(p) t (P)
m

D2m*
o

Airhppuj
0

N +-±- fP —fP ,
Mmax 'mm,0 2 2.

By using the value of (3max we have, [See Appendix IV]

1

r(/0 2irfippu!
0

N +-± 
. o 2 2)

P
t,

2

2
(2.54a)

-zr

2puj
N +I±i 

o 2 2)

m* ^2m*E(p)

nfi nti

■kD

2 pu
N +-±- 

0 2 2
g (E±ftui ) 
c o

(2.54b)

It is seen from Eq. (2.54b) that a carrier with any energy can scatter by absorbing optical 

phonons but only those whose energy exceeds hoo0 can emit optical phonons. The high 

energy carriers shed their energy by emitting optical phonons and the energy loss can be 

characterized by the energy relaxation time

—— = E S(p,p')[\-EY ) (2.55)
t (/>) P\T 1 X {P)I

E

For very high energy carriers, phonon emission greatly exceeds absorption so,

1
r (p) 

E

tiwn
= E S(p,p')—C) 

P\ T E{p)
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1 H
HP) E(P)

tux) xD2 

__0 o
E(p) 2pui . 

0

h7dr

E(p)2p
l±i

o 2 2)
N g \E±hu}^j (2.56)

From above equation the relation between momentum and energy relaxation time can be 

obtained. The quantity (E(p)/h(0o) signifies the number of optical phonons that must be 

emitted to remove the earner’s kinetic energy E(p) so that the te(p) may greatly exceed 

tm(p).

2.5.2 (c) Polar Acoustical Phonon (PAP) Scattering

In polar semiconductor, acoustic phonons also produce an electrostatic

perturbation known as piezoelectric scattering. This effect is much weaker than the polar

optical phonon scattering, but is important at very low temperatures when the number of

optical phonons is small and carriers do not have sufficient thermal energy to emit them.

If a semiconductor crystal consists of dissimilar atoms (e.g. SiC), where the bonds are

partly ionic and the unit cell does not contain a centre of symmetry, carriers may be

scattered by longitudinal acoustic waves due to piezoelectric scattering [26]. The

dielectric displacementD = x E+P vanishes, where P is polarization. Since there is no
0

space charge due to the spatial displacement of carriers is negligible in comparison to that 

of ions. For a propagating wave of finite wavelength, a strain (vr-<Sr) will exist where 8r

is the displacement of lattice atom from its equilibrium position and is expressed as
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(2.57)

The dielectric displacement with this displacement is given by

D = XX E+e (V -Sr) (2.58)
0 pz r

The factor of proportionality ep2, obtained from piezoelectric measurements, is called 

piezoelectric constant and is of an order of magnitude 10'5 Coul/cm2.For D=0, the electric 

field will be written as

Now, since E is proportional to |vr •£/•), the potential energy, be = \e\ JEdr =|ej£/ ■ By 

using the electric field, the potential energy is expressed as

When this relation compared with equation for acoustical scattering reveals that instead

but depends on q = |k' - k|« 2k sin(6> / 2) = 2jsin(i9 / 2), hence the absolute magnitude of 

matrix element Hk’k is given by

(2.59)

(2.60)

which in contrast to DA is not a constant

(2.61)
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Here K2 is dimensionless electromechanical coupling coefficient given 

. The scattering probability can be obtained from Fermi’s golden rule

and the momentum relaxation rate is expressed as

l V j2tt 

(2tt)^ fi

*BJ 
2 VxXqQ2

5{E(k')~-E(k))dk( 1 - cos0)sin6d0(2n)

where q2 4k2 sin(8/2) and dk = h 1
2s)

T

m

2^2 -ntp-

I/-e2K2
**0 J2

C

kBT

(2.62)

The Eqn. (2.62) shows that the energy dependence of im as e 

2.5.2 (d) Polar Optical Phonon (POP) Scattering

In polar semiconductors, like GaAs, the interaction of carriers with the optical 

mode of lattice vibrations is known as Polar Optical Phonon (POP) scattering. In polar 

semiconductors, the bond between adjacent atoms is partially ionic; the As atom acquires 

a slight positive charge and Ga atom a small negative charge. The magnitude of this 

charge, termed the effective charge, q*, is a fraction of the electronic charge, q, and is 

determined by the degree of the ionicity of the bond. Deformation of the lattice by 

phonons perturbs dipole moment between atoms which results in an electric field that 

scatters carriers. Phonon scattering in polar semiconductor may occur from either 

acoustic or optical phonons. Polar optical phonon scattering which is neither elastic nor
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isotropic [27, 28], is a very strong scattering mechanism for compound semiconductors 

like GaAs. The scattering rate for POP scattering is expressed as
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r

m*q2u
0_

4nttk e p 
0 0

k T°l N +-±i S . a Tip _ u>±cos04——H-----
k

. 00
. 0 2 2. 2 P vfi,

* 2 m*q bj

Airtik e p 
0 0

k
N +-±~0 ~1

k . 0 2 2,
, oo

HrJxd£

2
q lj —I

r(p) 2irk £ nJ2EW 
00 ' /m

N sinh+(N +l)sinh_1 
0 huin o

A/
E(P)

tiuj,0
(2.63)

where the first term represents POP absorption and the second tenn represents POP 

emission. The second term applies only when E(p)>hoo so that emission can occur.

i
r(p)

q2u)

4irtik e 
0 0

k / ) p
—2—1 N +i±- In max
k o 2 2J p

i 00 J l min )

(2.64)

To find the pmax and pmin wave vectors, 6-function in equation of S(p’,p) is set to zero, 

which results in to a quadratic equation

2pu>^2±(2£cosff)^_-----o=0 (2.65)
tl tiv

whose solutions give those values of p which satisfy energy and momentum conservation 

fro a given scattering angle 0. Solving for pmax and pm;„ (-l<cos 0 <+l), we find

p =£■ 
max fi

hu!
l±Jl±-

E(p)
(2.66)
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and

0 =-^Tl± 2_
min ft r?)

(2.67)

The energy relaxation rate due to POP scattering is found by weighing each transition by 

the fractional change in energy. For high energy electrons, the POP emission dominates 

and the energy relaxation time is expressed as

2.5.3 Electron - Electron Scattering

When the carrier density is high, collisions between carriers are an important 

scattering mechanism. There are two types of processes: a binary process in which one 

carrier collides with another and a collective process in which a carrier interacts with the 

plasma comprised by carriers and carriers interact with oscillations in the carrier density. 

Such fluctuations are accompanied by electric fields which oppose the fluctuation and 

produce oscillations at the plasma frequency

(2.68)

The momentum relaxation time can be expressed as

(2.69)
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w = 
p kz m* 

s 0

(2.70)

This sustains only forw r>l. The charge density oscillations of the plasma and electric 
P

±i(j3x—ut) p dx p„
field produced by this are given by p =A {e y and e = /--— = ——

P P 0 . k e„ i(3k sn
s 0 ^ s 0

respectively. The interaction potential for electron - electron scattering is expressed as

U
PL

-qJeBdx= WB
Wj2

(2.71)

The matrix element for carrier-plasma scattering by using the interaction potential given

above can be expressed as

H =..^ 6 (2.72)
P'P kseQa2 p',P±fiB

By equating the classical, electrostatic energy to its quantum mechanical counterpart, we 

find

,2 hupkse0 .. , J-l N +-+-
F 2 2

(2.73)
P 2 n

where, Np is the number of plasmons (quantized plasma oscillations) as given by the 

Bose-Einstein factor. The transition rate will be given as

s(p,p')-
■Kq2uip

kse0p2a
,1-1N +_+_F 2 2,

6 6\E-E^hu}np‘,p±ti/3 ‘ p (2.74)
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w+iTi
6

, . ftp_up
± COS 6-i——H—1^22]

2 p vp,

where, S 6(E-E+h/3) ->
p,p±‘hu>p flvfj

, „ ftp “8
±COS0+—T~i-

2 p vp

* 2mn*q uj 
and C =----------1

P ftkse082pQ

The scattering rate for plasmon scattering can be expressed as

q2u
(N +i-T-)ln(-S^L)

----------- —----------------------- ....................==r v ~i---------1----------------------------r(p) 4nftk e J2W* p 2 2 P .
jO' /m min

(2.75)

A large pmax refers to short wavelength oscillations, but about one Debye length is 

required to screen out the charge of a carrier. When pmax exceeds about 1/Ld, the 

scattering should be treated as a binary collision. Since Eqn. (2.75) does not apply to 

binary collisions, pmax is replaced by pco, which is equal to pmax or 1/Ld, whichever is 

smaller. The scattering rate for plasmon scattering is written as

, q2Up(Np+Ulp 

rip) 4
In co

p]+\±^±ftujpjE(p)
(2.76)

For high carrier densities, plasmon scattering is an important component of the total 

scattering rate, but when the electron density exceeds about 1018cm‘3, and the scattering 

rate may be high, the effects of electron plasmon scattering can be subtle.

If the plasma oscillations are not heavily damped by phonon scattering, then the 

total momentum to the plasma, but another will gain momentum. In this case, the 

electron-plasmon scattering is similar to binary electron-electron scattering, and the 

biggest effect may be simply to change the shape of the electron distribution function.
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2.5.4 Ionized Impurity Scattering

Carriers are scattered when they encounter the electric field of an ionized impurity. 

The ionized impurity attracts mobile carriers which screen the potential. Therefore, the 

appropriate perturbing potential is the screened Coulomb potential,

U (r) =
s 4nkse0 r

(2.77)

where, L 
D

ks£0kBT
?2"o

is the Debye length.

By using the perturbing potential for ionized impurity scattering, the matrix element can 

be evaluated as

H
P'p 4ltks£0r)

Je -ip'-r/h UD ip-r/ft 
ie dr

4lrkse0r

2ir woo
fd<PjJ
0 0 0
/ dtpf f e / De‘(P P ^ r k rdrsmOdO (2.78)

According to geometry of the scattering event h/3 = p’-p and hB - 2psin(^), the 

matrix element takes the form

H -1 
p'p a

=1
n

4irks£0

OO 2jt+1 /[ -O aJ dtp f J J Oe.^cosS
0 0-1

d (cos 6)dtpdr

,2 1

, 4nkse0.

(2.79)

(2.80)

D

The scattering rate can be expressed as
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5(P,P’) 2tt

ft Qkse0

S(E'-E)

2%Njq4 S(E’-E)
(2.81)

where, Ni/fi is the number of impurities in the normalization volume. When mobile

carriers are absent, L -> oo , the transition rate takes the form 
D

S(P,P')=-
2-jrNjq4

mk2sel
S(E’-E)

(2.82)

When the carrier density is very high Ld is small so that
'7.)

in the denominator of Eq.

(2.82) dominates. For this strongly screened case,

s{p,P<)=2^Jq lJ?s{e^e) 
mkjsl

(2.83)

The momentum relaxation time can be evaluated as follows:

1 E S(p,P')
p\ T

i p1——cosa 
P

2n 1 oo
Iff $\P,P")

(2ttny o-io
1—— cosa 

P
p’2 dp'd{cosO)dsj> (2.84)

If we orient the z-axis pointing to the initial momentum, then a=0, p=pz, pz'=p'cos 0 and 

eq. (2.84) becomes
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l
rm(P)

Njq4 °j? 1 

2irti4k2e2 0 -1
(I—cos0)d(cos9) $(E'—E)p'2 dp (2.85)

(Here we use p=p' as ionized impurity scattering is elastic). With the substitution, 

x=(l-cos0), the integral in eq. (2.85) becomes

1
e

i
4 (p/fif

ln(l+4L2D(p/nf 4 L2d{p/*)2
1+4 L2D(p/K}2

1
4 (p/f>?

8m*£(p)(4,/t>2)

l+8m*£(p)(4A2)
(2.86)

After inserting this result for le in eq. (2.85) and integrating over p', we find

T (p) = 
m

I6nj2ni*kp~

Njq4
ln(l+(8 m*E(p)L2D / %2

-1

l+(8m*E(p)L2D/n2)
E/2(p) (2.87)

The influence of ionized impurity scattering decreases at high temperatures or at high 

electric field because both increase the kinetic energy of carriers.
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2.6 Summary

In the present chapter, we have described the different mechanisms for the 

scattering of carriers for the very general case of bulk system. The chapter describes the 

scattering mechanisms due to carriers, phonons, ionized impurities, etc in the frame work 

of Fermi’s golden rule. The scattering rate and the momentum and energy relaxation rates 

are evaluated from the transition rate, S (p, p’). Since our motive were to introduce the 

basic procedure to obtain scattering rates for a general case so that they can be extended 

for the specific problem of carrier scattering rate for two dimensional structures in the 

next chapter.
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Appendix -1

We first calculate the available states in k-space and then use the energy- 

momentum relation in parabolic bands to give the density of states in terms of energy. In 

the consideration of the density of states, the situation is complicated due to energy 

degeneracy. That is, that for some of the allowed energy levels, there are more than one 

possible combination of components in k-space that will give the same energy. In a 

quantum well, there is only one restricted energy level, therefore, the degeneracy is 

always 1 (not taking into account the electron intrinsic angular momentum spin). In a 

quantum wire, the degeneracy depends on the values of two sets of energy levels. While 

for a quantum dot there are three sets of discrete energy levels. This is only valid if and 

only if,

2irn 2ti77 2tt /;
k =—A- k =—k =----------£•

XL y L z L

where n x, n y, n z are integers.

With this restriction in k-space, only certain values of k-space lead to acceptable 

electron wave-functions solutions. K-space would be filled if each position was filled 

with a cubic unit cell of volume. Explicitly, the volume of k-space would be:

V =
3D

The problem of finding the number of allowed states amounts to finding the number, of 

these allowed states between spheres of radius k and k +d k. In bulk, the volume between 

the two shells is given by:

V dk = 4jr|ip dk (b)
3D

2tt (a)
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Therefore, the number of states is given simply by dividing this volume by the volume of

a single energy state. At this point it is convenient to introduce an additional factor of two

to account for the intrinsic angular momentum of the electrons or spin states. The number

of states is given as

g(k)
3 D

-- 2x s3D,dk

r3D
(c)

To obtain the density of states per unit volume in terms of the energy we must find a 

relation between E and k,

(d)

The differentiation of |k| with respect to energy is given as .

dk — (e)

Taking the bulk case as an example, the density of states in terms of energy is then

g(E) dE- 
3 D

2mE 2mE
2*2 ■K ft in2

dE - 1 2m
2ttz /C

X
E/ldE (f)

This gives the density of states per unit volume per unit energy at a wave vector-k.
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Appendix - II

Proof:
P

7^-'"+>2±X)
2pu>gSl P

Quantum mechanically, the vibrational energy is

E = {N + y'7)tiLj

Where, N=0,l,2...........

Now the kinetic energy of the vibration is

(i)

KE = j/2M du

dt
(ii)

where M is the mass of the oscillator. Further the lattice displacement with wave vector p

is:

i(Bz-uit) * —i(f3z—ust)

P
COS(j0Z — U> t + (j> )

p p
(iii)

dii
Jt-2L
dt I P

2du

dt
=4 lP

KE =YM(4 -2)

E = 2pQ

Comparing (i) and (iv) we have,

(iv)
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♦V
/■'

fv;.

Chapter 2

(N + /2 \hui

3

Therefore

(N + - 2 pil\Ad
I2 .2

,2 (V)

which can be written as

N ti 
3

(n +m 
6

2pQ^
3

; Absorption

; Emission

Or more generally,

A =—-—(N +b{±l4)
d 2 pujjQ d
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Appendix - III

L'l (p)<{p)±m m

1- — cosa = l-———z-------= ±— cos 6
P

Suppose \P-P'\ = (P2-P2-2P-P') 2

--Pii+(pyp)z-2^p-/z

ip[l-2
p

P

(M,

z^z:cosq=[1„(£>^i]
p p p2

, P , p-p.p-hfl 
.,1——cosa = l—£-± „ ■

2 2 
P P P

= l_l±PWcose
P2

1——cos a = ±^-cos9 

P P

where 9 is the angle between p and p.
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/i2
max

Appendix -IV
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E(p) ± huj
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