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3.1 Introduction

As discussed in the previous chapter, electron scattering by phonons play a key 

role in the physics of semiconductor. Furthermore, it was noticed that in order to 

understand the transport mechanism of carriers with certain probable perturbation in 

initial momentum and energy through the electrical devices, the interaction of carriers 

with phonons is essential. In addition to this it is observed that the study of electron - 

phonon scattering under the dimensional confinement is important and has been 

considerable interest recently. It is seen that the doping of small amount of N in the 

gallium arsenide results in the reduction of band gap energy which is useful for many 

optoelectronic devises. Similarly, the electron transport in DMS is also important to 

understand the various applications like data storage and memory devices. The present 

chapter contains the study of theoretical description developed for the carrier-phonon 

interaction in two dimensional nanostructures and later applied to the dilute nitrides as 

well as dilutes magnetic semiconductor heterostructures.

3.1.1 Dilute Nitride Semiconductor

There exists nowadays a large interest in the study of large-gap semiconductors

like the Ill-Nitrides, because of their use in devices, like diodes and lasers, emitting in the 

blue and near-ultraviolet region [1], The on-going development of dilute nitrides such as 

GaNAs and GalnNAs is the focus of a considerable research activity due to their 

potential application across a range of device applications including lasers [2-7], photo 

detectors [8], solar cells [9] and transistors [10]. The term dilute nitride is widely used to 

describe III-V semiconductors consisting of a low nitrogen (<5%) content. It was 

proposed by Kondow et al [2] that increasing the indium fraction in the quaternary
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GalnNAs alloy reduces the band gap but increases the lattice parameter. This makes it 

possible to balance the nitrogen and indium contents of GalnNAs to target a narrow-band 

gap material and near lattice parameter matching to substrate materials such as gallium 

arsenide. The large lattice parameter difference between GaAs and cubic GaN (20%) 

makes the ternary GaAsN alloy scientifically interesting. Since GaAsN is generally 

grown on GaAs substrates, strain arising from the mismatch will have an enormous effect 

on any alloy epilayer properties. Although the fraction of the group V element which is 

substituted by nitrogen is relatively low, the smaller ionic radius of the nitrogen is 

observed to dramatically decrease the band gap energy [11, 12] and decrease the lattice 

parameter with significant increase in electron effective mass and a decrease in electron 

mobility[13,14]. Furthermore, a new optical transition (E+) above the fundamental band 

gap energy has been observed [15, 16]. The incorporation of only one percent of nitrogen 

into GaAs induces a strikingly large reduction of 0.18 eV in the fundamental band gap 

energy [17]. This reduction is much larger than the changes observed when alloying 

different III-V compound semiconductors at its percent level. It is now generally accepted 

that the unexpectedly strong effect of nitrogen on the band gap is related to the fact that 

replacement of atoms such as As with the much smaller and more electronegative N atom 

leads to a large, local perturbation of the crystal lattice potential. Extensive experimental 

and theoretical studies over the past decade have led to several proposals aimed at 

understanding of the origin of the large band-gap in these systems [18-22]. The effect of 

nitrogen on the electronic band structure of dilute nitrides can be described in terms of an 

anti-crossing interaction between localized nitrogen states and the extended conduction- 

band states of the semiconductor matrix [23]. The interaction leads to a significant
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modification of the band structure of the dilute III-N-V alloys. Neugebauer and Van de 

Walle [24] have estimated that the equilibrium solubility of nitrogen in GaAs is of the 

order of only 2 at. %, making it necessary to use non-equilibrium growth methods. Due to 

its large miscibility gap GaAsN tends to phase separate when the nitrogen content 

becomes appreciable [25]; however, nitrogen incorporation up to nearly 15% has been 

reported using a nitrogen plasma source combined with a relatively low growth 

temperature of 500 °C on a GaP substrate [26], The large data available for the quaternary 

GalnNAs alloy regarding the luminescence from low-nitrogen-containing (<1%) 

quantum-well-based structures indicates their emission wavelength falls just below 1.3 

pm at room temperature for indium contents below 30% [27], It has also been noted that 

the addition of higher nitrogen concentrations rapidly degrades the microstructure, 

preventing its use in optical devices. Some reports of higher nitrogen-containing 

materials have been made and, in particular, GalnNAs quantum dots with 4% nitrogen 

have been observed to give peak emission characteristics up to 1.5 //m [28].

3.1.1.1 Bandstructure 

(A) Phenomenology

The existence of discrete energy levels due to N impurities in GaP has been 

known since the 60s. For example, Thomas and Hopfield [29, 30] observed sharp lines in 

absorption and fluorescence spectra that they attributed to excitons bound to deep-level 

isoelectronic traps. The most prominent of these was associated with an isolated nitrogen 

atom substituting for a phosphorus atom with an energy level about 0.02 eV less than the 

band gap energy. The deeper lines were associated with nitrogen (N-N) pairs. The first 

observation of such discrete states in GaAs did not come until much later. Wolford et al
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[31] reported the recombination of an exciton bound to a single nitrogen atom in 1982, 

whilst Liu et al [32, 33] made the first observations of N-N pairs in GaAs in 1990. 

However, in GaAs, the single nitrogen level appears as a resonant level above the 

conduction band edge. An interesting property of these energy levels is that they remain 

pinned with varying nitrogen concentration, implying that the impurities do not interact 

and confirming their trap-like nature.

As the nitrogen concentration is increased in GaNAs (or GalnNAs), the band-gap 

exhibits a very large red shift [34,35], characterized by an optical bowing coefficient that 

appears to be composition dependent and an order of magnitude larger than that in 

conventional III-V alloys [36]. At the same time, a dramatic increase in the electron 

effective mass m* is observed at low N concentrations [37-41], despite the reduction in 

bandgap, after which m* varies non-monotonically with x [42]. Additionally, as more 

nitrogen is incorporated, the pressure [43, 44] and temperature dependence [45] of the 

band gap is reduced.

(B) Early Theoretical Work

The deep-level trap states due to nitrogen in GaAsP alloys had been predicted by 

Hjalmarson et al [46] in 1980 using a tight-binding model. Although lattice relaxation 

around the impurity and the effects of second-nearest neighbor atoms were not 

considered, the results compared well to experimentally observed levels. Here, the 

adjective ‘deep’ refers more to the nature of the trap than the binding energy, since in 

pure GaP the trap is found close to the conduction band edge and resonant with the 

conduction band in pure GaAs. Early work modeling the effect of dilute concentrations of 

nitrogen in GaNAs involved first principles density functional theory (DFT), typically
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using the local density approximation (LDA) to deal with exchange and correlation. 

Rubio and Cohen [47] predicted a red-shift of the energy gap, due to localization of 

charge density on the nitrogen sub-lattice. This was explained in terms of large lattice 

mismatch between As and N and the relative increase in volume seen by the N atom in 

comparison to GaN. However, no relaxation of the lattice was employed and the 

calculations were based on ordered alloys. Geometrical relaxation was included by 

Neugebauer and Van de Walle [48], who found strong optical bowing in zinc-blende 

superlattices. The calculations predicted a closing of the energy gap, although this can be 

attributed to the well-known fact that LDA calculations underestimate the bandgap. This 

problem was addressed by Wei and Zunger [49], who considered the bandgap differences 

between the alloy and the binaries, hence partially canceling the LDA error. The problem 

of disorder was addressed by using ‘special quasi-random structure’ (SQS) supercells, 

which are designed so as to model the random arrangement of atoms in larger structures. 

These authors found that in the dilute limit, the conduction bandedge (CBE) 

wavefunctions are localized, impurity-like states. In this regime, the optical bowing 

coefficient was found to be large and composition dependent. Moreover, this impurity 

like region persists at large alloying compositions due to the localized nature of the CBE 

wavefunctions and consequent lack of overlap between them. To analyze the physical 

cause of the bandgap bowing, Wei and Zunger identified three contributory components 

to the bowing coefficient, due to: (i) volume deformation (ii) charge exchange and (iii) 

structural relaxation. The first of these was found to be relatively small. Charge exchange 

is due to the atomic orbital energy difference between N and As (related to the greater 

electronegativity of N). The structural relaxation is due to the size discrepancy between N
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and As. Subsequent theoretical work can be broadly divided into two complementary 

approaches. On the one hand, Zunger and co-workers have performed rigorous 

calculations using the empirical psuedopotential method (EPM). These workers argue 

that the red-shift and increased effective mass of the CBE is due to mixing of the F, L and 

X bands through the nitrogen impurity potential. On the other hand, the 

phenomenological band anticrossing (BAC) model proposed by Shan et al [43] suggests 

that the conduction band is split due to the hybridization of the localized nitrogen state 

and the extended conduction band states of the host semiconductor. This approach has 

been corroborated and expanded upon by O’Reilly and co-workers using detailed tight- 

binding (TB) calculations and a derived model based on linear combinations of isolated 

nitrogen states (LCINS). Whilst both of these approaches accurately describe such 

phenomenology as the bandgap bowing, pressure dependence of the bandgap and 

enhanced effective mass, they differ in interpretation. Since the BAC model is the 

simplest approach and provides a useful common terminology for the description of the 

band-structure, we shall review this first.

(C) The Band Anticrossing Model

According to the BAC model, the Hamiltonian of the dilute nitride system is 

given by

Em(x) VJx)'/2 
VN(xf En{x) (3.1)

where Em and En are the energies of the matrix semiconductor and localized nitrogen 

state respectively. Here we have anticipated the x dependence of the matrix interaction
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element {i//M|//jy/N) = VNx]/2 where |ysM) and \y/N) are the matrix semiconductor and

isolated nitrogen states respectively. This form was not given in Shan et a/’s original 

paper, although it has been independently derived by Lindsay and O’Reilly[50] via TB 

calculations and Wu et a/[51] using a Green’s function approach based on the coherent 

potential approximation (CPA). O’Reilly et al [52] also derived this form for a 

GamNAs„,_i supercell using a Green’s function approach due to Vogl [53]. As we shall see, 

TB calculations show that Em and Em will also have an x dependence, which for the time 

being we just imply in (3.1).

The energies of the upper and lower bands in the perturbed system, denoted by E+ 

and E. respectively, are found from the resulting eigenvalue equation. The solutions are

E± =~(e„ + Ea, ±{[En-EMf + 4V^x}) (3.2)

From this expression, we can see that E- is red-shifted with increasing nitrogen content. 

This successfully predicts the observed bowing of the conduction band as well as the 

pressure [43, 44] and temperature [45] dependence of the energy gap. By assuming a 

given k dependence for Em (usually parabolic), the effective mass can be calculated, 

giving good agreement with experiment for very low nitrogen concentrations. Evidence 

for the existence of the E+ band was given by Shan et al, who identified a E+ transition in 

photo modulated reflectance (PR) spectra [43], Before giving a qualitative explanation of 

these effects, it is useful to define the fractional F character of the bandedge 

wavefunctions (we assume here that we are dealing with nitrogen in GaAs or GalnAs, 

which are direct band semiconductors, so that the unperturbed conduction band of interest 

is indeed the F valley - this is not the case in GaP).
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In the BAC model, the resultant wave function of the perturbed system will be a 

linear superposition of the matrix semiconductor and nitrogen wavefunctions:

\'/2.(1 |2 \ ’

l-KI ) K) (3.3)

In this case, the fractional. F character is p^| , i.e., the projection of the matrix 

wavefunction on|^/+). Now it can be shown that

Kl =
(AE)2 (l±9)/2

\l/2

V2nx
+ 2 (3.4)

where,

0 = sgn(A£')
r , \'/2i+.4V*x-

(AE)~
(3.5)

and. AE~EN-EM . From this we find that if EN > EM, in the lower F-band

I«2 I |2ai,\ < 1, whilst in the upper E+ bandO < \a*S < 0.5. This implies that E is always

more extended in nature, whilst E+ is more localized- often being referred to as a resonant 

state in the literature. As we shall see, this result is at variance with both EPM and TB 

calculations.

The reduced pressure dependency can be explained in terms of the pressure 

insensitivity of the localized nitrogen states. Hence, as the hydrostatic pressure is 

increased, the matrix semiconductor band edge will be pushed up towards the resonant 

nitrogen level. As this level drops into the band gap, there will be a transformation from 

the lowest conduction band states from extended to highly localized, leading to a 

saturation of the pressure dependence.
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At low temperatures, the conduction band edge will be close to the nitrogen energy level. 

Hence, it will have a reduced F character (i.e. be more localized in nature). As such, it 

will have reduced temperature sensitivity and the initial change in band gap with 

increasing temperature will be slow. At higher temperatures, more of the higher lying 

band states will have crossed over the nitrogen level and the band-edge will now have a 

much greater character (more extended in nature). There should therefore be a 

transition to more band-like temperature dependence. This is indeed the dependence 

observed by Uesugi et al [45].

(D) The Empirical Psuedopotential Method

An immediate criticism of the BAC model is that it only considers the effect of a 

single nitrogen impurity. The effect of other localized states due to nitrogen clusters is 

completely neglected. Moreover, since the matrix interaction element in the BAC model 

represents the average interaction of the localized states, it cannot account for disorder 

effects. These issues must be addressed by more detailed calculations.

In the EPM approach employed by Zunger and co-workers [59-63] many different 

environments can be investigated by constructing large supercells with the substitution N 

atoms placed on anion sites either at random or according to some rule. Typically, these 

researchers use SQS supercells mentioned earlier. Structural relaxation is obtained by 

using the valence force field method (VFF) [64, 65]. Atomic psuedopotential are then 

constructed and the supercell Hamiltonian is diagonalised to obtain the band energies and 

wavefunctions.

At very low N concentrations (the impurity limit), a resonant impurity state is 

found above the valley CBE, associated with an isolated nitrogen atom. This state is
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found to be highly localized with half of the electronic charge within the nearest 

neighbors cell. However, according to the EPM calculations, this energy level increases 

rapidly with nitrogen incorporation, becoming too far away from the host CBE to interact 

with it and produce the bandgap bowing as described in the BAC model. Instead, it is 

argued that the nitrogen potential causes the mixing of states from many different bands, 

giving rise to perturbed host states (PHS). It is the behavior of the PHS in the presence of 

an isolated N state that gives rise to the bandgap bowing. As in the earlier LDA 

calculations discussed above, the main physical causes of the large bowing were found to 

be charge exchange and structural relaxation.

The increase in effective mass is attributed to mixing of and L states, the 

effective mass being much greater in the L valley than in the valley. As the pressure 

increases, the -L interaction becomes less significant and E- gains greater X character. 

This leads to a repulsion from the X state and an even greater effective mass. This mixing 

of states in E- represents a delocalization in momentum space, which implies localization 

in real space. Recall that in the BAC model, it was shown that the character of E- was 

always greater than 0.5, implying delocalization in real space. The EPM calculations 

offer no direct evidence of the E+ level. Instead, the E+ transition is interpreted in terms 

of a configurational weighted average of the N and L levels. An important prediction of 

the EPM approach is the formation of cluster states (CS) in the bandgap as observed 

experimentally. These states have little overlap and so do tend to interact or broaden in 

energy as the nitrogen content increases. The CS are not held responsible for any effect 

on the optical bowing, since this is found to be large when only isolated N states are 

present. Thus the bowing is attributed solely to the effect of the latter on the PHS.
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As the N content increases, the PHS are found to broaden, moving down into the 

bandgap and sweeping through the CS. This coexistence of localized states and the PHS 

is identified as the amalgamation limit, characterized by alloy fluctuations. At higher N 

concentrations, the PHS move past the CS into the alloy limit, in which the bandedge 

states become delocalized and conventional alloy behavior is predicted.

In summary, the EPM method predicts much the same phenomenology as the 

BAC model, although the interpretation is quite different. Of course, as it stands, the 

BAC model is an extremely simple one and we would not expect it to compete with 

detailed calculations in regards to predictions. In the next section, we will find that both 

the general form and interpretation of the BAC model is supported by supercells 

calculations using a tight-binding method to find the band-structure. In the meantime, we 

note that it is agreed that a localized impurity state is formed on the nitrogen site. This is 

akin to a deep level state, which cannot be represented by a superposition of eigenstates 

from a single band. Thus, the N state itself can be thought of as a mixture of different 

band states. It is not entirely clear from the literature whether the mixing of the , L and 

X valley wavefiinctions in the EPM calculations is quantitatively different from mixing 

with N states, formed from different band states, or whether this is a matter of 

interpretation.

The issue of the localization/delocalization of E- remains an issue, although, as 

we shall see, this can be reconciled once the BAC model is generalized to deal with the 

cluster states. The main contention between the EPM calculations and the BAC 

interpretation seems to be the assertion that the N state moves too far up in energy to 

interact with CBE.
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(E) Tight-Binding and the LCINS Model

Support for the picture of a localized nitrogen state interacting with the host 

semiconductor conduction band has been offered by O’Reilly and co-workers employing 

detailed tight-binding calculations [50, 52, 61-63]. As in the EPM method, supercells are 

constructed and relaxed using VFF calculations, whilst the lattice constant is set 

according to Vegard’s law. The electronic structure is then calculated using an sp3s* 

tight-binding Hamiltonian (i.e. a model in which the sp3 basis is augmented with the 

inclusion of an excited 5-state, 5* on each atom).

For an isolated nitrogen impurity, the existence of a highly localized state 

resonant within the conduction band was confirmed [50], Then, by allowing Em and E,\ to 

vary linearly with x and the BAC matrix element to have the dependence Fv x1/2, the 

BAC model could be fitted to the TB calculations for the variation of the bandedge A. 

The shift in Em can be expressed by a linear relation in x

em (*) = Em (0) - acx (3-6)

The fractional character of the CBE also exhibited a good match with the BAC model 

(the fractional character of the valence band edge was found to vary as 1 -x). From this, 

it could be shown using a k.p formulation that, despite the decrease in bandgap, the 

effective mass increases with x. These features demonstrated the agreement between the 

models for the E- band at least. For the E+ band, however, it was found that no unique s 

like state could be defined. Instead the energy level broadens with increasing N content.

An important consequence for modeling the GalnNAs alloy is the effect of the 

nitrogen nearest-neighbour environment on the nitrogen state energy and interaction 

element VN. O’Reilly et al [62] find a near linear increase in the impurity energy as the
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number of In nearest-neighbors increases. At the same time, Vn decreases so that the 

overall effect of In incorporation is to weaken the interaction with the host conduction 

bandedge states.

Since the calculated wavefunction for a single nitrogen impurity is so localized, it 

was argued that a similar wavefunction could be associated with each N atom in the 

supercell. It was then shown that the resonant wavefunction implied in the BAC model 

and calculated for an ordered array of nitrogen atoms could be very well approximated by 

using a linear combination of isolated nitrogen states (LCINS) associated with the 

individual N sites. It was found that this approximation remained good up to alloy 

concentrations of around x = 0.25, at which point the overlap between N states could no 

longer be neglected.

For a random alloy, the approach required adjustment to deal with the inevitable 

formation of N clusters around shared Ga nearest neighbours. Thus, in addition to a basis 

set of isolated N states, pairs of N-N states are also introduced (with odd and even parity 

about the shared Ga site) along with the host semiconductor CBE state. The Hamiltonian 

for the system can then be found by taking the inner product of the basis states |^} with 

the full tight binding Hamiltonian HTB

If the eigenstates of this system are written | lj/) = . af 15^) then these and the eigenvalues Et

can be found by solving

(3.7)

3.8)
j j
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Note that the overlap element [y/j j (//",.} has been included since the basis states are

not assumed to be orthogonal to one other. The results are found to be in good agreement 

with the full TB calculations lending weight to the idea that the perturbation of the CBE 

is due to the interaction with localized nitrogen states. At low N concentrations, the 

primary interaction is associated with states near the isolated nitrogen energy level. As 

the N concentration increases, the energy spectrum of these states broadens and the CBE 

passes through and hybridises with the N-N clusters, reducing the fractional . character 

(to less than 0.5 in some cases, in contrast to the BAC model), greatly affecting the 

effective mass at the band-edge. A remarkable feature of the LCINS model is its ability to 

predict the observed non-monotonic variation of the effective mass with N 

concentration 14 mentioned earlier.

Instead of calculating the Hamiltonian in (3.7) with the host semiconductor 

bandedge state \ ysM)included in the basis, an alternative strategy is to first diagonalise the 

Hamiltonian for the nitrogen states alone and then construct a matrix incorporating the 

interaction of these states with \y/M) [63]. The interaction matrix element is defined by

{W:\H\yfm) = V.,I4}Tc (3.9)

where the root of Nc, the number of primitive cells in the supercell, is included due to the 

normalisation of the basis states and V,- is a material constant. This allows the LCINS 

model to be rendered in a generalized form of the BAC model, where we now have n 

bands corresponding to n - 1 localized nitrogen states.
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3.1.2 Dilute Magnetic Semiconductors

Diluted Magnetic Semiconductors (DMSs) are alloys between a non-magnetic 

semiconductor (e. g. GaAs) and a magnetic element, usually manganese (Mn) [64]. 

Therefore, semiconducting and ferromagnetic properties coexist in these materials. This 

leads to important technological applications since the charge and the spin of the electron 

could be used in the same device. At the same time, the underlying solid state system has 

an enormous interest for basic science. Dilute magnetic semiconductors are formed by 

doping the semiconductor matrix with a dilute amount of 3 d transition metal atoms 

(magnetic ions). This special class of semiconductors is hoped to form the basis of 

relatively new class of electronics called spin transfer electronics, or spintronics. In 

spintronics, the ability to efficiently inject spin-polarized carriers and detect electron 

spin-orientation forms the basis of this newly emerging class of electronics. The inclusion 

of Mn into the host, introduces a 3d energy level in the energy gap. This energy level is 

considered an acceptor level since it is closer to the valence band energy. These localized 

3d energy states of the magnetic ion are coupled to one another through carrier mediation.

Several theoretical models have predicted that the addition of Mn to GaN 

produces a spin-polarized impurity band within GaN’s band gap, and that carrier 

mediated ferromagnetism in GaMnN occurs when the Fermi level (Ef) is located within 

this impurity band [65-67]. Therefore the location of Ef will determine the occupancy of 

this impurity band and thus the availability of carriers to mediate ferromagnetism.

The possibility of controlling both the charge and the spin of the electron has attracted the 

interest of researchers for several decades. Magnetic semiconductors, such as Europium

69



3.1 Introduction Chapter 3

chalcogenides and semiconducting spinels that have a periodic array of magnetic atoms 

were extensively studied in the late 1960s.

A C

Fig. 3.1 Three types of semiconductors: (a) a magnetic 
semiconductor, which has a periodic array of a magnetic element, 
(b) a diluted magnetic semiconductor (DMS), an alloy between a 
nonmagnetic semiconductor and a magnetic element and (c) a 
non-magnetic semiconductor, which contains no magnetic ions 
[64].

However, the crystal structure of such magnetic semiconductors is completely 

different from that of the most commonly used semiconductors (e. g. Si and GaAs) and 

the crystal growth of those materials is notoriously difficult. On the other hand, diluted 

magnetic semiconductors (Fig. 3.1) are based on widely known semiconductors like 

GaAs that can be doped with impurities to change their properties, usually to p- or n- type. 

III-V DMSs are defined in an analogous way and are the most important DMSs studied 

mainly due to their high Curie temperature (Tc), the highest of all 

DMSs. In fact, the interest in this field was boosted by the demonstration in 1996 that 

ferromagnetic transition temperatures in excess of 100 K can be achieved in manganese 

doped gallium arsenide, (Ga, Mn)As [68], much higher than the previous record of only 

7.5 K. for (In, Mn)As [69], Recent advances in Gai_xMnxAs have demonstrated that 

electrical control of their spin properties can be used for the manipulation and detection 

of magnetic signals. The Mn2 ions in these alloys provide magnetic moments, and at the
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same time act as a source of valence-band holes that mediate the Mn2+-Mn2+ interactions. 

This coupling results in the ferromagnetic phase.

Among the problems in the production of DMS samples is the low solubility of 

magnetic elements in III-V semiconductors. Since the magnetic effects are often 

proportional to the concentration of magnetic ions, x, it is necessary to introduce a sizable 

amount of magnetic moments (a few percent or more) for the material to develop 

cooperative effects. This requires doping that exceeds the solubility limit of III-V 

semiconductors. This problem was overcome by low-temperature nonequilibrium 

molecular beam epitaxial (MBE) growth. MBE is a physical deposition process (basically 

evaporation) that is carried out in ultra-high vacuum and at substrate temperature 

typically not exceeding 800 Celsius. Due to the unobstructed molecular flow of the 

species to be deposited and the chemical cleanliness of the substrate surface, highly 

controlled growth of very thin epitaxial layers is possible. However, segregation of 

impurities during MBE growth is an obstacle in obtaining high concentration of magnetic 

ions. In addition, after the sample is prepared and found to be ferromagnetic below Tc, it 

is usually necessary to show that ferromagnetism is not caused by the segregation of 

purely magnetic components, e. g. MnAs during the fabrication of (Ga, Mn)As, but that 

Mn has been randomly substituted in the host semiconductor instead. Usually, the quality 

of the samples is examined by observing the Reflection High Energy Electron Diffraction 

(RHEED) patterns which help to determine if there is any phase segregation [70].

As mentioned before, the possibility of using the spin as well as the charge of the 

electron for information processing will find tremendous application in technology and it 

is the basic idea of spin electronics or spintronics. In order for spintronics devices to work,
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polarized carriers have to be introduced into a semiconductor, for example using 

ferromagnetic contacts. However, these devices have not been fabricated yet. The main 

reason is that it is very difficult to inject net spin polarization directly from a metal into a 

semiconductor [71], due to the conductance mismatch between the two materials that will 

cause big suppression of spintronic effects. It is at this point where DMSs would become 

extremely useful because they would substitute the metallic contact and provide a FM 

contact that has a conductance similar to that of the semiconductor. Therefore, DMSs 

have many potential advantages over metals for the fabrication of spintronic devices. A 

theory of spin-polarized transport in inhomogeneous magnetic semiconductors has been 

developed in Ref. [72] similar to the standard theory of charge transport for p-n junctions. 

It is likely that these proposed applications for DMS will be realized only if 

ferromagnetism at room temperature can be achieved.

The transport properties of bulk materials and two dimensional structures are of 

great importance in materials’ assessment particularly in developing and optimizing new 

device structures and highly affected by the phonon scattering, which is inherent to the 

solid state of matter. The electron mobility is influenced strongly by the interaction of 

electrons with phonons. The saturation velocity of carriers in a semiconductor provides 

the speed of a microelectronic device fabricated from this semiconductor [73]. Evidently, 

the practical switching time of such a microelectronic device will be limited by the 

saturation velocity and clearly therefore, the phonons play major role in the fundamental 

practical applications and limits of such microelectronic devices. The dynamics of carrier 

capture in the active quantum well region of a polar semiconductor quantum well LASER 

also introduces the importance of carrier-phonon interactions in modem semiconductor
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devices. It is observed that the loss of energy by an electron depends on the rates for both 

phonon absorption and phonon emission. Further, it is observed that the dimensional 

confinement of phonons in inter-sub-band semiconductor lasers changes the LASER gain 

and leads to enhanced population inversion in some asymmetric double barrier quantum 

well LASERs [74]. The dimensional confinement of phonons restricts the phase space of 

phonon wavevactor and hence, the carrier phonon interactions in nanostructures are 

modified by the phonon confinement. In the present chapter, we present the carrier- 

phonon scattering formulation for two dimensional nanostructures and its application to 

the dilute nitride alloys. The scattering rates have been calculated by using the 

deformation potential coupling mechanism which has been already described for the bulk 

structures in the previous chapter. This approach has been quite successfully used earlier 

in the case of bulk semiconductor and as well on its nanostructures [75, 76], but this is 

probably the first attempt in the case of dilute nitrides.

3.2 Phonon Scattering of Confined Carriers (2D)

In a bulk semiconductor, carriers are free to move in three dimensions, but in 

modem semiconductor devices, carriers are often confined in quantum wells where they 

can move only in two dimensions. Important examples are silicon MOSFETs and 

modulation doped III-V FETs where the carriers in the channel are confined near the 

surface in a potential well. The scattering rates for these two- dimensional carriers are 

different than for three dimensional carriers. The calculation of two- dimensional (2D) 

scattering rates proceeds much like it does for three-dimensional (3D) electrons, but the 

proper wave function for confined carriers is an essential aspect. The density of states for 

carriers in a quantum well is piecewise constant at
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k ~ (3.10)
* W

where k=1,2,3................ nmax and W is the width of quantum well. For an infinitely deep

well, the envelop functions can be considered as

F (z) = J}wsink z (3.11)
n v z

In the case of quantum well, the electrons are confined in z-direction, but they are free to 

move in x-y plane. The total wave function for the electron is

/Vp
<p(x,y,z) = F (z)——

» 4a
(3.12)

where, A is the cross-sectional area. Because the momentum in z-direction is quantized, 

the electron’s energy is also quantized and expressed as

, *2kl 444 , r‘2k2p
+ —— =-------------- — H---------------

n 2m* 2m* W* 2m*
(3.13)

The matrix element due to perturbation required for carrier scattering rate given in 

previous chapter is given as

"*>=+f>*£"V!r <3J4)
—00

The matrix element takes the form as

+00H = / F}&- _ 
PP’ -00 4a

-ip'p-p/n
±i0p-p ±10 -z 

ApK^e P e *
iPpP/t>

F (z)~—---- —dpdz (3.15)
i 4a

where, subscript, i, refers to an initial subband,/ to the final subband and p is the parallel 

case, where use of initial and final wave functions
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JppfT

and

p
p

— F (z) 
/

JPp-p/*

VI

±10 -p ±i0 .z
and perturbation potential Us=A0K0e p e 2 has been made to obtain the matrix

element. The integral over the transverse plane gives a ^-function expressing momentum 

conservation in the plane so eq.(3.15) becomes

H
PP'

"T’O® * -4-//5 *7

= / fy(z)F.(z)e z dzA0K0 
—oo

-iPp-p/r,

VI

jPp-p/*

VI
■±i0p.p

dp

+oo
= I Ff(z)P](z)e z

—oo

±i0p'P
A0K0e

±i\0p-p+0zz
dz

^ "t//5 *z= / Ff(z)Ft(z)e A0K0S
—oo

Pp,Pp±n0p
dz (3.16)

S(p,pr) =
* ±i0-z

2
f Ff(z)F-(z)e ' z 

—oo
dz A0 K0 6 8(£'~E+tiu)

Pp,Pp±ti0p
(3.17)

tOO •?
Where, the integral / F0(z)Fj(z)e z dz is called the form factor.

—oo

The transition rate is given as 

- = E S(P,p<)
r p'
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■bo® * ±i/3 -z 2
/ Ff(z)F.(z)e z

—oo
dz AP 'K0 6 ,

Pp’Pp±nPp
5(E'—E+Tiuj) (3.18)

3.2.1 ADP Scattering Rate

The present section deals with the carrier scattering from the acoustic phonons 

which has been used to investigate the transport properties of dilute nitrides in the present 

work. Using eq. (2.30) and (2.29), where according to Bose-Einstein Distribution, the

K Tnumber of phonons to count the thermal energy is N^= B L , therefore,

n kbtl

2pOcj^ top

2
KP AP -P1D1

L-L. 1/ 4. */

+ nV2

KDT,fi

A 2pQoJjj

dakbtl dakbtl

n
ICfl

(3.19)

Where C, is the elastic constant. DA is the acoustic deformation potential (ADP)

expressed as

1/2

Where, m

(3.20)

is electron effective mass and M is atomic mass (in g),
E

which varies with lattice temperature. The scattering rate is expressed as
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I
T

w_
2 is

K,
2 oo
I
o

* ±/5 'Z

Fj-WF^e
2
dp

WDAKBTlJ 

2w 2C)ft 0

* ±//3 -z
Fj-(z)Fj(z)e z d/3

WL.J
47tCjA 0

h driB'Z
Fj-(z)F-(z)e z ftd/3 —=A~ Area

z w

nL fc t oo uAf-BlL +oo
/ Ff{z)F-(z)ck f Ff(z')F*(z)dz' f

+°° ±//3 -(z-z')
d/3

By using

Where,

,/ °? /?') 
e

0
d/3^=6(z—z'),

1-°aMlJ . , 2I _ , ,<2

r 2C)+ -oo

5ft
3yW

F)(z)|2cfe

2C^ 0^

|2Fj/zi dz is the effective extent of interaction in z-

For intrasubband i.e. i=f,

1 3

Wjj 2 W

and for intersubband i.e. /=* j

Wfi
f

-OO
Ff(z)

(3.21)

(3.22)

direction.

(3.23)
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w

Therefore, the scattering rate for the two levels can be expressed as

— = E —
Tfl

dakbtl 1

2 CjA w.ft Pp’pp±h!3p
6(E'-E+hw)

(3.24)

2̂aVl

1
"ft.

E 6 ,
v pp’pp±fipp

6(E'-E+t)u) (3.25)

Here the summation in 3D and 2D results in just (1/2) of 3D DOS and (1/2) of 2D DOS 

respectively. Further to consider emission and absorption, we have to multiply by 2. 

Hence the final scattering rate of 2D carriers is,

*dakBtL 1 g9n<g),

ft tiCj wft

*Dakbtl l
hCj Wfl

S2D<£) (3.26)

and

«dakbtl 1 

ncj w
S2D{E) for intersubband

‘wDAKBTL 3

hc{ 2 W
■82 for intrasubband

(3.27)

(3.28)

The obtained carrier - acoustic phonon scattering can be used to obtain carrier acoustic

phonon contribution to the resistivity using where e is electronic charge, n is
ne
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the number of charge carriers and r is the carrier acoustic phonon relaxation time. The 

mobility of carrier in reference to the acoustic phonon is expressed as

a c
3 .1 7 x 1 Q- 5 du

Vi
(3.29)

where, d is the density of material, u is the average sound velocity, DA is the acoustical 

deformation potential and T is absolute temperature. The sound velocity can be found

out by the relation u _ kOD V

tl . 67T2 ,
where 0D Debye temperature is and V is average

atomic volume, mo is rest mass.

3.2.2 ODP Scattering of Confined Carriers

We present here the carrier scattering from optical phonons by using deformation 

potential mechanism, however, in the present investigation, the scattering for acoustic 

phonons has only been considered at lower temperature. The first theoretical step was 

taken long ago by Fuchs and Kliewer [77] who described confined long wavelength and 

interface optical modes in a thin ionic slab. They described the ionic slab in terms of a 

dielectric continuum and the modes they obtained satisfied the usual electronic boundary 

conditions when there are no free charges, i.e. the continuity of tangential field and the 

normal component of the electronic displacement. They assumed that the longitudinally 

polarized (LO) and transversally polarized (TO) modes were dispersionless in the sense 

that does not depend upon the wavelength. This meant that there were no mechanical 

effects to worry about.
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A microscopic model of an ionic slab by Jones and Fuchs [77] showed the 

simplicity of the dielectric continuum model (DC model) and observed the weak 

dispersion of LO and TO modes. This model was first applied to the problem of confined 

optical modes in semiconductor multilayer. In a direct gap polar-semiconductor an 

electron in conduction band interacts only with LO modes, via their long range electric 

fields and not at all with the TO modes. From the general analysis of Bom and Huang 

[78], it can be deduced that the electric field, E, associated with an optical mode is related 

to the relative displacement of ions, u, as follows:

2 2
E —-----_-lL_ S(W) = _------ TQ-

soo uLO~uTO

Where S(oo) is the field factor, Si is the ionic charge density and ea is the high frequency

permittivity. Thus whenw = u , £ is the LO field and whenw = w , the field £ =0.
LO TO

In the DC model, the allowed optical modes in a polar layer are determined only 

by electric boundary conditions and only the LO and interface modes need to be 

considered as these are the only waves that have electric fields. Because the permittivity 

vanishes for LO modes, the boundary conditions entail that the potential vanishes at an 

interface. The allowed modes in a quantum well formed by two barriers of the same 

material for symmetric case are

u =q A e costa z] n —iq A e sinx x LO x 2 ’ z z LO

4 <■% t" Cl __ ,

q a = nn n— 1, J, j.............. <z< —
z 2 2

While for the antisymmetric form, this takes the form

M (3.30)

80



3.2 Phonon Scattering of Confined Carriers (2D) Chapter 3

/ \ iv*1) I \
u =iq A e sinl# z u =q A e coslq,z)
x x LO xz ’ z z LO v “ ; (3.31)

q a = mr ; n=2,4,6..... ; — — < z < —
z 2 2

The DC model has been applied to structures other than a simple quantum well, 

the main examples of structures being quantum wells containing a monolayer [79, 80], 

Quantum well with nearly metallic layers [61] and Quantum wires [82], The optical 

modes predicted by the DC model are not those observed in Raman Scattering 

Experiments [83] nor are they those obtained in computationally intensive lattice 

dynamics calculations. It is hardly surprising that this is the case given the total neglect of 

mechanical boundary conditions in the DC model. Unfortunately it is not always clear 

regarding the boundary conditions. It is difficult to describe the nature of the optical 

mode stress in a continuum model. Modes in the barrier scatter electrons in the well via 

their associated interface mode fields. Summing the effects of all barrier hybrid modes 

turns out to be very close to the DC result for the barrier.

Carrier Scattering Rate:

Consider the interaction of an electron with longitudinal confined phonons in

quantum wells. The confined phonons are 2D phonons. Their frequency depend on q

and m, but because the dispersion of optical phonons is small in the long-wavelength

limit, we can attribute the same frequency g>lo to all confined modes.

We get the following projections of the vectors (p,z) to the x-y plane and z-axis.
q,m

(

q3m
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Here the function H„,(z) corresponds to the symmetric and antisymmetric solutions in 

terms of eqs.

iq x iq x
<j> =<j> e cosq z <j> =<j> e sinq z
s 0,s z a 0 ,a z

where, <po’s are some amplitudes of the waves, and

H (z) — co$(mnz/L) ; odd m 
m

=sin(7?ot/Z) ; even m

Having the explicit form of , we can introduce the optical displacement associated
q,m
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with the particular solution =Q w- as well as the polarization . Thendo)

q,m q,m

we calculate the electrostatic potential

e_
(p,z]=-4ire7^2^i-j!k

q,m

H(z)
1_____jqp

q2+{nm/Lf
(3.32)

From this procedure, we get the coupling of electrons and confined LO phonons:

4/re-y hV,0/
'SLMu

Hm^ Jqp
LO

(3.33)

TlnQ,kQ,k\q,m,LO
) = -47reT'/%

SLMuLO■
JnO,n,m

q2+\*"/LJ2 k,k+q
(3.34)

Here,Gno,n,m is the square of the overlap integral that can be calculated analytically:

• . . i2

JnQ,n,m'
2 Ll2
— / dz cos 
L-L/2

n0z
L L

Hm{z)
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32[n0nm) 1—(—l) 0\nn+n+m

m2-[nQ+nf
(3.35)

Finally the scattering rate is expressed as,

2e2w

r(Vo)
LO

'

1 1 1.1
Nw+-±-

koo k0. 2 2J

6[E"{k0+qYEAk*)+hu)LO

n9m
(3.36)

2# +
L J

We can draw qualitative conclusions from these formulas. It can be seen from the 

equation (3.36) that the coupling factor, in contrast to the case of acoustic phonons, 

decreases with the decease of well width. The interaction of carriers with the LO phonons 

is the primary phonon mechanism responsible for scattering at temperatures above few 

tens of degrees Kelvin.

3.3 Results and Discussion

In the present section, we describe the results obtained on the relaxation rates due 

to acoustic phonons via deformation potential for the diluted nitride semiconductors and 

the diluted magnetic semiconductors (DMS) alloys. This section will also deal with the 

important conclusion carried out on the basis of results obtained from the present study. 

In the present calculation of the relaxation rate the inter-subband scattering is induced by 

the ADP scattering is considered. In this case the acoustic phonons carry little energy, so 

an electric field accelerates carriers to the energies exceeding the bottom of the next
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subband before scattering to a higher subband. The doping of nitrogen in GaAs is 

considered at the interstitial position which is shown in the Fig. 3.2.

3.3.1 Dilute Nitride Semiconductors

The acoustic phonon scattering rates calculated by using Eq. (3.27) for the two- 

dimensional GaAsi_xNx alloys of 6 nm quantum well width at room temperature have 

been presented in Fig. 3.3. The input parameters for the calculation of scattering rates 

are presented in Table 3.1. The temperature and nitrogen concentration dependent 

acoustic deformation potential (ADP) DA is used in the present calculation for GaAsi. 

XNX system is obtained from the value of ADP of GaAs and GaN due to the 

nonavailability of the same for GaAsi-xNx. It is seen from table 3.1 that the ADP values 

show minor variation with the change in nitrogen concentration and temperature. 

Similar variation is also observed for the effective mass of carriers and elastic constant. 

The Figure 3.3 reveals that the scattering rate decreases with the increase in nitrogen 

concentration. This is due to the reduction of bandgap with the increase of nitrogen 

concentration [11, 12, 17]. The unexpectedly strong effect of nitrogen on the band gap 

is due to the fact that the replacement of arsenic atoms with the much smaller and more 

electronegative nitrogen atoms. This results in to a large, local perturbation of the 

crystal lattice potential. However, only a minor effect on the lattice constant of the 

resulting alloy is observed from the small content of nitrogen.
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Nitrogen 
Concentration 

(x %)

Effective 
mass ratio 

(m*)

Elastic
constant
C| (GPa)

Da

(eV)

0.000 0.065 119.00 52.25

0.001 0.0651 120.66 52.20

0.002 0.0652 122.34 52.15

0.006 0.0656 129.09 51.90

0.008 0.0658 132.52 51.80

0.010 0.0660 135.66 51.70

Table 3.1 Acoustic Deformation Potential DA and Elastic 
Constant C/ for different nitrogen concentration.
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0 5 10 15 20 ■ 25
Energy (meV)

Fig 3.3 Variation of scattering rate with thermal energy for different 
nitrogen concentration in GaAsi.xNx.

The Fig.3.1 depicts that there is a significant change in the scattering rate even 

with 0.1% of nitrogen doping in GaAs. Here, we consider the maximum extent of 

diluted concentration of nitrogen below 10% as beyond this segregation may take place 

for GaAsN alloys. The N is isolelectronic with arsenic (As) and it behaves more like 

impurity atom than conventional alloying element. Due to a resonant interaction of a 

nitrogen state with the bottom of the conduction band, the bandgap is reduced in this 

dilute nitride alloys. Similar observation is made for the Bi alloy and it is believed to be 

due to a resonant interaction with the top of the valence band. However, the trend of 

scattering rates remains similar for all ‘x\ We have also investigated the effect of 

quantum well width on the acoustic phonon scattering rates for dilute nitride alloys 

GaAso,9No.i. But, we present the graph only for GaAso^No.i in figure 3.4. The Figure 3.4 

reveals that the scattering rate decreases as the width of quantum well increases. This is
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due to the fact that the effective extent of interaction in z- direction decreases, which is 

more prominent in intrasubband.

Fig.3.4 Variation of scattering rate with thermal energy for different quantum 
well widths of GaAS]_xNx.

3.3.2 Diluted Magnetic Semiconductors

The electron acoustic phonon scattering rates calculated by using Eq. (3.27) for the 

two-dimensional Ga{i_x)MnxN alloy (for 0.0<x< 0.1) have been presented in Figure 3.5. 

In the present calculation of scattering rate for 2D DMS alloys, no effect of spin is 

included, which is separately dealt in chapter 5. The scattering rate for all considered 

concentration of Mn increases with the energy which shows similar behaviour and almost 

same value in the case of lower energies but varies exponentially for higher energies. The 

inset shows the high energy variation of electron-acoustical phonon scattering rate. This 

increase of scattering rate at higher energy is due to the fact that the deformation potential 

increases due to the increase of phonon density of states resulting from confinement of
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phonons and restriction of phase space. It is important to see and understand the effect of 

Mn concentration on scattering rate, we have also calculated the scattering rate for 

different Mn concentration. The Figure 3.6 presents the variation of scattering rate with 

the Mn concentration which reveals that the scattering rate decreases with increase in Mn 

concentration. This is due to the simultaneous increase of effective mass and total atomic 

mass. However, the effect of atomic mass is more significant than the effective mass on 

ADP (kindly see table 3.2). The Fig, 3.7 shows the behaviour of acoustic deformation 

potential (ADP) with energy and Mn concentration. It is seen form the figure that the 

ADP increases with energy but decreases with the concentration. To understand the role 

of Mn on acoustic phonon contribution to the resistivity of the reference material GaN,

Fig.3.5 Variation of acoustic phonon scattering rates for two- 
dimensional Gai_xMnxN with manganese concentration and thermal 
energy.

we have calculated the resistivity of two dimensional alloy and presented them in Fig. 3.8. 

The inset shows the variation of scattering rate with Mn concentration. The resistivity
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increases but its increase is faster for higher concentration of Mn similar to scattering rate. 

The calculation of total resistivity by considering all different scattering mechanism is in 

progress.

Concentration

x (<0.1)

Effective mass

(xlO'28 gm)

Da

(in eV)

0.000 2.0020 21.61

0.001 2.0843 21.16

0.002 2.1860 20.66

0.003 2.2766 20.25

0.004 2.3720 19.84

0.005 2.5180 19.25

0.006 2.6278 18.84

0.007 2.7420 18.44

0.008 2.8998 17.96

0.009 2.9610 17.74

0.010 3.1086 17.31

0.100 13.010 08.39

Table3.2 Effective mass and deformation potential for 2-dimensional 
Gan.*)MnxN.
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Fig.3.6 The variation of scattering rate with manganese concentration.
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Fig.3.7 Variation of acoustical deformation potential (ADP) with 
manganese concentration and thermal energy.
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Fig.3.8 Resistivity variation with thermal energy and manganese concentration.

3.4 Summary

We have calculated the acoustic phonon scattering rate for the two dimensional 

GaAs'i-xNx and Gai.xMnxN nanostructure for different well widths and concentrations. 

The width of the well as well as the concentration of nitrogen and manganese in host 

influences the carrier acoustic phonon scattering rates. The reduction of scattering due to 

the increases in concentration is attributed to the reduction of band gap of two 

dimensional diluted nitrogen alloys. This reduction of band gap influences the acoustic 

deformation potential which in principle is main quantity directly influencing the 

scattering rate and transport properties.
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