
CHAPTER - 3

GEOMETRICAL DERIVATION OF CLT RESULT

The spectral distribution methods (SDM), used for the study of nuclear 

properties, deal with distribution of physical observables rather than the 

observables themselves. In the case of energy distributions, the discrete 

eigenvalue spectrum can be recovered through the Ratcliff procedure. The 

accuracy of such a calculation depends upon the extent to which the 

approximation is made. One can construct energy eigenvalue distribution 

fairly well using low-order moments of the hamiltonian. The operation of the 

central limit theorem (CLT) in model spaces of interest makes this approach

meaningful. Besides the hamiltonian, there are other interesting operators

namely the number operator n, the quadrupole and other electromagnetic 

transition operators, operators related to particle transition or a product of 

these operators, whose expectation values with respect to hamiltonian 

eigenfunctions are of considerable interest. The spectral distribution methods 

provide smoothened forms for expectation values of such operators as a 

function of energy /22/.

Though the smoothened forms for various operators depend largely upon

energy, one cannot rule out their dependence on other quantum numbers like

angular momentum J, its z-component Jz, isospin T and so on. A beginning

has been made to bring out such dependences using bivariate and multivariate

distributions defined in terms of these quantum numbers and E /27/. For

example, if one seeks a J dependence, it is possible to obtain a bivariate
z

level density r\{E,M), where M is the eigenvalue of J . This density can be
z

explicitly constructed in terms of its bivariate cumulants K . If the higherITS
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order cumulants are small in magnitude, the corresponding bivariate density 

can be expanded as a series around a bivariate normal S_(E,M); the
U

expansion involving only few low order cumulants. Measurable properties like 

binding energies, yrast lines, level densities, spin cutoff factors etc. follow 

directly from ,r|(E,M). There are, however, other measurable properties 

like the spherical orbit occupancies, static moments, electromagnetic sum-rule 

quantities, etc. which cannot be derived directly from "^(E.M) but are 

expressible as expectation values with respect to E and M. The complete 

analytical expression in terms of averages of products of operators for the 

expectation value as a function of two variables turns out to be a series 

expansion using bivariate orthogonal polynomials defined by the bivariate 

density function /28/. Under the action of CLT, only terms upto linear in 

variables contribute in the expansion, other terms becoming negligible.

In this chapter, a simple, geometrical way is presented to obtain the CLT 

result for the expectation value of an arbitrary operator K in terms of one 

and two variables. For obtaining the' result in the bivariate case, use has 

been made of the conditional density ^(xly) of the bivariate density 

SG(x,y); x and y are the eigenvalues of operators X and Y respectively.

A Univariate Case

Let K be an operator in an m-particle space with X as the hamiltonian having 

eigenvalues x. As a consequence of the CLT, the energy-eigenvalue density 

function in the first approximation is given by gaussian with centroid 6 and 

width <s ;
jh- i 2,

r[(x) =(27T<5 ) exp{-J (1)
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When a small multiple of an operator K is added to X, so that X—> X + KK; 

then to the first order in <X, the eigenvalue x —* x (or) = x + #.{% | K|x> = x + 

t*K(x); where K(x) is the expectation value of K in the m-particle space. 

Thus, we have (dx^/a>«)l= K(x). Again due to the strong CLT action, the new 

eigenvalue density function T1 (x) would be a gaussian but with the centroid
’Of

and width depending on the parameter ol . Because of the change in the 

hamiltonian, we have

<X>~*<X> + = G + <x<K> ,

<3 —y + 2«^(X-G}K^ + pc term

(j- <5(1 + {(X-GjfQ'QC/tf2) + higher order terms in oc .

The centroid of the density function shifts by cx<K> and the overall scale is 

changed due to the variation of 6 by a factor of <X<(X-G)K>/6* Now it is 

easy to see how a particular eigenvalue x gets shifted due to these changes. 

Figure 3-1 indicates these shifts: (i) First of all, shift of centroid introduces 

a constant shift in all eigenvalues x —» x + a<K) . (ii) Secondly, the scale 

change introduces a shift proportional to the distance from the centroid which 
is equivalent to stretching or contracting; x (x-6.)<(X-G)K^<x/£* Both these 

combined produce shift

x x +oc{<K> + <(X-6)K> * (x-G) //]

giving rise to the CLT result for expectation value of K as a function of 

energy;

K(x) = <K> + <(X-G)K> (x-G) /£2 (2)
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The arguments given here will be valid for any density which does not change 

its shape on introduction of K and then the CLT result is exact. However, if 

the shape changes, the CLT result corresponds only to the leading terms in 

the series expansion.

B Bivariate case

Let us extend these arguments to the bivariate gaussian density ^(x.y), a 

function of x and y (the eigenvalues of operators X and Y respectively). 

Such a density is characterised by five parameters namely, two centroids 

(&) and <Y> ), two widths ( 6x and <5^) and a correlation coefficient between 

X and Y denoted by § and given as

<(X- <X> ) (Y- <Y> )) (x-<X>) (y-<Y>)

- --------------jj----------------------vj(x,y)dxdy.

x y
<6 c5 

x y

(3)

For simplicity^ we assume that centroids are zero and the variables x and y

(and corresponding operators) are normalised in such a way that <5 = 6 =
x y

1. The density function r^(x,y) then is given by
1 , x2- 2?xy + y2 v

T\(x,y) = ---------- exp
9 i/a.27T(1« $*)

—...... ?— y

2(i- q2)
(4)

The number of states in the interval x to x+dx and y to y+dy is given

by D* Y^(x,y)dxdy, where D is the total number of states (dimensionality) in 

the model space. It must be kept in mind that such an interpretation is
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possible only if operators X and Y commute.

Consider now the conditional density function Yj(xjy) when y is fixed;

nNy) = ^(x.yJ/ixCy)

which is a gaussian. It can be immediately shown that the expectation value 

of x for Y^(x|y) [centroid of T^(x|y)] is ?y . In statistical language this is 

called the regression line (Fig.3.2a)

oo
\x Y|(x|y) dx = <?y

'OO
(5)

Let us add a small operator ocK to X. Due to the strong action of CLT, we

can assume that this does not result in any change of shape, that Is, the

density function still remains a bivariate gaussian. Such an addition however

is going to affect in three ways: (i) change of centroid along the x-axis, (ii)

change of scale parameter along the x-axis and (iii) change of the correlation

coefficient which results in rotating the regression line. Consider a

particular eigenstate with eigenvalue (xQ,y), which can be obtained through

Ratcliff procedure using the conditional density Y^(x|y). We would now like

to find out how x shifts as a function of <X. The value of cU0/cM then is 
° d- o

the expectation value of K at (xQ,y) in the CLT limit.

The addition of oc K shifts the overall centroid of the bivariate density along 

x-axis by CX<K>, (see Fig.3,2b)

x0-» xQ + «<iO or dxQ = «<k>. (6)
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Secondly, the width of X also changes

<S 2
x

x 2 _ rf2
°(X+otK) “ °Xict +•

2c\-<K?0 + c<*d^

or <5 x -+ 6xl 1 + 2o(<KX> + AJ )% • (7)

Since d = 1, we have an overall change of scale factor given by
X

1 -i 1 +«<KX> +<X<$K,/l +' higher order terms in a.

i 2In the limit a —*■ 0, for dx0/do< | , we shall see that c{ and higher
<K-o

order terras vanish. Such a scale change shifts xQ by oc<KX)x^, as the 

stretching is proportional to the distance from the centroid on x-axis (see 

Fig-3,2c. Combining these two effects, we have,

dx0 = 0(<K> +<X<KX> x0 . (8)

The change of orientation of regression line d$ due to the addition of o<K has 

two effects; (i) change of centroid of the conditional density and (ii) change 

of scale factor (stretching) due to change of width of the conditional density 

r\(x|y) .

<XY> + 01 < KY>

<? fa= 1 »---------------------------------------
a 1[2.

(i + 2 a < kx> + oi26 l)
(9)

(Note: We have already assumed that both X and Y are unit width operators).
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= § + <X K K(Y- ? X)> + higher order terms in <X . (10)

Hence dxQ due to centroid change is

dxQ = 3<? * y = cx<K(Y-?X)>y . (11)

Width of the conditional density r^(x|y), which originally was 

4l - ? is now changed to \ll - (<?+ 3?) .

iOnTTa^)
=J(l- ^~2) £l - <K(Y-?X)> J- to the first order

m a. (12J

The corresponding change in the scale factor therefore is {l- [oj<K(Y- ?X)>/

(1- ? )]}. Keeping in mind that this is the change in the scale factor for

conditional density and hence the stretching is going to be proportional to the 

distance from the centroid of conditional density, we have (Fig. 3.2d).

c*S<K(Y-<?X)>

dxQ = ----------------------- * (xQ-Sy) ' (13)
(1- ?2)

The shift dxQ due to all these effects now can be written down to the first 

order in a,,

dxo

of(y- <? xQ)

l

a(K) + «<KX> x + 0
<K(Y- <?X)>; (14)
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Figure captions:

Figure 3.1a-b: Changes in eigenvalue xq of operator X when X is
perturbed by a small operator ofK with respect to a univarwfce 
distribution of operator X. (a) change in eigenvalue due to 
centroid shift and (b) change in eigenvalue due to scale 
change.

Figure 3.2 a-d: Changes in eigenvalue xq of operator X when X is
perturbed by c*K with respect to a joint bivariate 

distribution of operators X and Y. (a) conditional density 
y^(x|y) with unperturbed centroid at x = ?y, (b) shift in xq 
due to change of centroid of the conditional density, 
(c)shift in xo due to change of scale of the conditional 

density and (d) shift in xq due to change in orientation of 
the regression line.
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(y-?x)
K(x,y) = —° = <K) + <KX> x +-------- < K (Y- ?X)> , (15)

Joe „
1 - ?2

This is the CLT result for expectation value of K as a function of two 

variables (x,y) when the density is assumed to be a bivariate gaussian.

If, instead of the operator X, the operator Y is perturbed so that Y Y 

+ of K, similar result for expectation value K(x,y) can be obtained in terms of 

shift of eigenvalues of Y, In that case however, it is not possible to define 

the conditional density Y|(x|y), since for defining Y^(xjy), the bivariate

density Y|(x,y) is normalised with respect to the marginal density (y), it 

is necessary that Y\(y) remain fixed. Shift in eigenvalues of Y would change 

the centroid and width of the y-distributton, so that Y\(y) —* ^(y,*), 

whereas Y^(x) remains fixed. One can therefore follow a similar procedure 

as described above, but through the conditional density Y|(y|x).


