
CHAPTER - 1

INTRODUCTION

Characterisation of a nuclear system in terms of its symmetry properties and 

its behaviour in terms of certain statistical quantities is important for the 

overall understanding of various nuclear phenomena. Here, it is implied that 

for overall understanding of the system, the vast detailed information is 

somehow not necessary and only few relevant "statistical quantities" are to be 

dealt with. There is a clear similarity between this and the statistical 

mechanics where detailed is glossed over and one deals only with 

thermodynamical variables which are defined in a statistical sense. It is in 

this sense that the word 'statistical spectroscopy' /!/ is coined to describe 

the subject. The spectral distribution methods (SDM) developed by Prof. 

French and co-workers /2,3,4/ are precisely based on these two underlying 

principles, namely the symmetry and the statistical spectroscopy. The 

information derived in statistical spectroscopy falls mainly in three 

categories:

(i) the level density I(E)dE which gives the total number of states in an 

energy interval between E and E+dE,

(ii) expectation value of any operator K with respect to hamiltonian 

eigenvalues and various symmetries, and

(iii) transition strength of various operators R(E,E') between hamiltonian 

eigenstates at energies E and E'.

Each of these is further subdivided /5/ into (a) locally smoothed forms, and 

(b) fluctuations around the locally smoothed forms. The SDM concentrate on



2

the behaviour of locally smoothed forms of observables. Fluctuations, which 

cannot be handled in the same manner as averaged forms, are studied 

separately. ' The study of fluctuations requires introduction of ensembles of 

hamiltonians /5,6/, whose matrix elements are randomly distributed. In other 

words, fluctuations may be studied through statistical considerations involved 

in random matrix theories.

In a quantum mechanical system, occurrence of symmetries implies that the 

eigenstates of the system can be characterised by additional quantum numbers 

corresponding to symmetry labels. Also, symmetry considerations are useful 

in finding conserved quantities which lead to selection rules. Some of the 

obvious implications of symmetries are degeneracies in mass or energy and 

relationship between energies and transition probabilities. Transformations 

which leave the hamiltonian of a quantum mechanical system invariant lead to 

symmetry groups. These groups usually correspond to space-time symmetries 

of angular momentum and parity arising out of invariance of H under rotations 

and reflections in a three-dimensional space, and dynamical symmetries like 

isospin which describe charge independence of nuclear forces. These 

symmetries are taken care of through complex nuclear spectroscopy, which 

makes use of second quantisation and spherical tensors in order to account for

Pauli's exclusion principle and rotational invariances implied by a spherically
Jsymmetric, charge independent hamiltonian.! The model spaces can be

decomposed into subspaces defined by JT symmetries, thereby causing the

dimensionality of states to reduce considerably. For example, in the 2s-ld
4shell, the four-particle space (ds) has dimensionality of 10626. After (JT) 

decomposition, the largest subset has dimensionality 69. This feature is not 

very useful as the dimensionality even after (JT) decompositon is very large

for higher particle cases even in s--d shell itself.
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The standard approach followed in the conventional spectroscopy for studying

nuclear properties is this: one starts by defining a Hilbert space which

should in principle be an infinite-dimensional Hilbert space but is taken to

be finite in practice. A model space is defined by distributing the particles

over N single particle states. A hamiltonian is constructed, which acts on a

set of basis states defined in the model space. Eigenvalues and eigenvectors

are then obtained by the usual diagonalization of hamiltonian matrices. Once

the wave functions corresponding to a given hamiltonian are obtained, various

nuclear properties like transition rates, expectation values of operators, level

densities, etc. can be obtained. Unfortunately, except for the simplest

system, an exact solution of such a many-body problem is impossible due to

the computational limitations in dealing with large spaces. For example, in

the s-d shell which consists of 24 single-particle states, size of the largest
JT matrix for (ds)4 is 69, for (ds)8 is j 2268 and for (ds)12 is 6706.

Dimensionality of the hamiltonian matrices increases very rapidly as the

number of active particles in the space increases, which causes the model

space to enlarge. In the fp shell consisting !of 40 single particle states, the

largest JT matrix for (fp)4, (fp)8 and (fp)12 has dimensionality of the

5 5order of 300, 10 and 4 x 10 respectively, which is a massive number.

One way of partially overcoming these difficulties is to choose an appropriate 

basis state such that the dimension of the hamiltonian matrix is appreciably 

reduced. This procedure is not entirely satisfactory, since it assumes

goodness of symmetries, which may not necessarily hold true.

The SDM have proved to be a powerful alternative to the conventional

approach. This method deals with the kind of spectroscopy that is well
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adapted to study general aspects of nuclear structure like the distribution of 

levels, goodness of group symmetries and also to search for simplicities in a 

complicated system. Besides searching for general simplicities, this method 

allows us to study the details of low-lying states of a nuclear system. A

knowledge obtained from such a study is helpful in suggesting a good

approximation method for detailed problems.

In SDM, instead of studying the detailed spectrum of various quantities, one 

deals with their distributions in energy with respect to configuration, 

isospin, angular momentum, etc. The distributions are examined in terms of
i

their moments /7/, which are in turn expressed as traces of products of

operators. These moments are calculable without knowledge of eigenvalues or 

eigenfunctions. Moreover, in this approach, the model space may be 

decomposed into subspaces which are defined by various symmetries like U(N), 

UfN^) 0 U(N2) 0 ..... 0 UCNj) system* The action of the central

limit theorem (CLT) of statistics in spaces of our interest gives rise to

further simplicities - it enables us to express smoothed forms of observables 

in terras of few low order moments only. Through the virtue of CLT, the 

density of states /°(E) in large particle number space turns out to be nearly 

a gaussian. While using SDM, we take advantage of the fact that the many 

particle nuclear system is dominated by interactions of two or maximum three 

- body rank. If the body rank of the interaction is much smaller than the

number of interacting particles, so that only few particles can interact
f

simultaneously, then the eigenvalue density of states tends to a gaussian as a
i

result of the CLT /8,9,1Q/. For all interactions considered by us, H is 

defined by maximum rank - 2, or two - body interactions. The CLT

approximation is therefore valid.
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In the following sections, we discuss few specific characteristics of SDM like 

moments, distributions, trace propagation etc.

A Moments and Distributions

In spectroscopy, we start by defining the eigenvalue problem

H^i=Ei^i (l}

where H is the hamiltonian operator, tjf., and E. denote eigenfunctions and 

eigenvalues respectively, in a model space. We can expand the functions 

in terms of the basis states 0^, transforming the eigenvalue problem into a 

matrix problem ;

Vi =tcal
a

so that the inverse transformation would be

1 Vi . (2)

1

2A plot of |Ca.| vs. eigenvalues Ej defines a distribution which can be 

studied via its energy moments. The P-th moment is defined as1 i

= H \Cai\2 = < 0tt|HP|0a> (3)

Instead of considering the distribution of a single state a , let us choose a
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set of states a , and define average moments for the set % as

= 1/dCa) E <0^1 Hp10^> (4)
w a£ct/v

where d(a) denotes the number of states or the dimensionality of the space 

in case of continuous eigenvalues, the summation can be replaced by 

integration. The moments of distribution are then calculated with respect to 

a weight factor, so that

j/^Cx) xp dx

Mp = -------------------------------- , (5)
QC

dx

/Ojx) is called the density of states defined in w-space and x denotes the 

energy. The moments defined with respect to the state density are called 

density moments. For a normalized state density, we have I^(x) dx = 1. 

The first moment defines the centroid energy, or centroid of the density 

function 6 (a).

Equation (4) expresses the moments as a sum over all diagonal matrix 

elements of powers of H which correspond to the trace of powers of H in 

the basis-state representation. The evaluation of moments for an arbitrary 

space would involve a large number of matrix elements of the hamiltonian, 

and is therefore extremely difficult. If however, the space is selected with 

symmetry considerations in mind, a, defining the irreducible representation

(irrep) of some group, methods which rely upon invariance properties of 

traces become available for the evaluation of moments. Besides, there also
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are other advantages - no restrictions regarding the size N of single particle 

states and the number of active nucleons need to be imposed. Also, for 

invariant subspaces, the distributions are close to normal and therefore one 

needs a small number of moments to characterise them.

The advantage of expressing moments in terms of invariant traces is that they 

are calculable exactly without any knowledge of either eigenvalues or 

eigenfunctions of the hamiltonian. From equation (4), the centroid of the 

density function would simply be averaged sum of all eigenvalues. One can 

deduce an expression for the density function in equation (5) as a sum over a 

series of 5-functions.

implying a discrete structure for the eigenvalue density of states; which is in 

general true since the space is finite dimensional. However, in large spaces, 

with the number of eigenvalues in a small energy interval being much larger, 

the density of states is assumed continuous.

In terms of the centroid energy, we can define the more significant central 

moments /11,12/ as:

/%(x) = Z / d(&)
^ L 1

(6)

Cv C' Cv w
(7)

Obviously, J4ioc= 0, The second central moment is given by
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6 (Op defines the width of the density function, which gives the spread about 

the centroid energy. The higher moments are related to the shape 

parameters. The first and the second shape parameters namely the skewness 

■^and excess 7^ are given by

AcT'W l6'(5!,)3 and t CT(«))4 - 3 .

The relation between moments and the density function can be obtained through 

a characteristic function 0(t) defined by

0(t) = fe1Xt/<>(x)dx = £(it)P/p! Mp (8)
-<*> p. o

so that the state density is given explicitly in terms of moments as: 

oo co co
/O(x) = J elxt 0[t}dt = I elxt 2L(it)P/p! Mp dt. (9)

- ao -03 p: 0

It is not possible to calculate /?(x) exactly, as higher order moments are 

difficult to evaluate. One can nevertheless approximate /°(x) in terms of its 

low-order moments. Once the centroid and width of a distribution are known, 

it is possible to define a gaussian approximation to the density function:

d(a)/0(E) = [d(a}/J2*4a)]exp {- (E-G(Ct))2 / 2<?{%)} . (10)

The higher moments can be incorporated into the density of states by defining

the density function as an Edgeworth or a Cornish-Fisher expansion /13/
4-around a gaussian density. For a normal density >■= 0 and = 36 f Ms*°> 

etc., so that and all higher order shape parameters go to zero.
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It is important that distributions be describable via their low-order moments. 

For subspaces defined by group symmetries, nearly gaussian distributions are 

expected. In choosing the subspace which defines a certain symmetry, no 

assumptions regarding the goodness of the symmetry are made. The choice 

of u helps us in learning about the goodness of group symmetries /14/, 

proving therefore that distribution methods combined with group theory is a 

good way of investigating group symmetries.

B Evaluation of spectral moments

The spectral distribution methods seek a direct way of calculating moments 

without evaluating many-body matrix elements. This can be seen as we obtain 

an expression for the moments of a k-body operator in an m-particle space. 

Let us consider a general k-body operator 0(k). The average expectation of 

Q(k) in k-particle space is

<0(k)> k = «0(k)»k / (JJ)

where <<0(k)» denotes the trace of the operator O(k) in 

ancj N denotes the total number of single particle states.

m-particle space, we have

< Q(k}> m = «0(k)» m / (JJ) •

It is possible to relate the above two averages through a binomial 

coefficient

<0(kJ>m = (®) <0(k)>k (11)

k-particle space 

Similarly in the
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Such an average over m-particle states is called 'scalar' average. It can
{

be considered to be an average over the irreducible representation [lra] of 

U(N). The binomial coefficient (®) which propagates the average of 0(k) in 

the defining k-particle space to the rest of the space is called a 

'propagator'. If the operator whose average we wish to calculate does not 

have a definite particle rank, one could decompose it into operators of 

definite particle ranks. The propagation concept can be generalized to 

operators of mixed particle ranks. For any operator 0 having different 

particle ranks starting from 0 to a maximum rank V, 0 = £ O(t). The total

average of 0 in m-particle space is
t-.o

■VJ .
<o>in = r ( ) (®)<o(t)>t, (i2)

t-.o

The propagation formula for scalar averaging requires input information kO(k)| 

for t = 0 to v particle rank. While dealing with finer averages (i.e. over 

states defined by subgroups defined by U(N)), the principle remains exactly 

the same as in the scalar averaging, though the propagators might be 

difficult to construct. The moments of operators in m-particle space are then 

evaluated by expressing them as a linear combination of averages over simpler 

subspaces involving only few particles.

C Central Limit Theorem and Normality of Distributions 

As mentioned earlier, the state density can be well described in terms of its 

low-order moments, through the application of a strong result in statistics 

namely the central limit theorem (CLT). This can be shown to hold exactly 

for noninteracting particles. In a noninteracting particle system, the m-
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particle eigenvalue density can be expressed as convolution

/Om(E) = j /0m-i(E') dE' . (12)

The characteristic function in m-particle space would be

0m(t) = 0eitB (E1) ^(E-E*) dE' dE , (13)

On repeated convolutions, one gets

0m(t) = (01(t))m so that In 0m(t) = m In (01(t)) .

Expanding both the In-functions in a series in terms of paramters Kp(i) we 

have

H(it)P/p! Kp(m) = mX(it)P/p! Kp(l)

P p

or K (m) = 111 Kn^1^ •

K are called cumulants of the distribution. These are directly related to
hr

the central moments. The first few cumulants are

Ki = Mi = 0 

K2 = ^2 =

K3 = ^ 3
2K4 = M4 " 3% ’
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so that the shape parameters can be directly defined in terms of cumulants

t-p ■ V2 "pt2

For m-particle space, we have

y (m) = m K (1) / (m<S2(l))p/2 = m“p/2+1 K (1) /<JP(1) . (13)
P~^ P P

For p>2, / 9(m)—> Q as m—* ao . 
p-z

Hence in the limit of large particle number, all shape parameters rapidly 

vanish. This is the CLT result for noninteracting particles. Essentially, 

additivity of cumulants indicates that the distribution tends to normality for 

large m.

Though no rigorous proof of the application of the CLT to the case of 

interacting-particles has yet been formulated, there are indications that the 

CLT result continues to hold for interacting particles too. This implies that 

since the interaction within the nucleus is predominantly two-body in nature, the 

CLT is expected to work in large particle number spaces as long as the 

interaction rank remains much smaller than the number of interacting 

particles.

Analysis of shell model calculations has shown that the shell model spectrum 

is essentially a gaussian. Calculations using a two-moment and a four-

moment distribution for the energy eigenvalues in many particle spectra have 

been done by Chang and Zuker /15/. Exact shell model calculations in the ds



13

shell, with JT matrix dimensionalities ranging upto 1200 using a realistic 

interaction have been compared with moment-method results, and excellent 

agreement is obtained. A detailed numerical study regarding the origin of 

normality of distributions has been carried out by French and Wong /8/ and 

by Bohigas and Flores /9/, suggesting that the gaussian nature of the spectrum 

is connected with the two-body nature of effective interaction and the direct 

product nature of the m-particle states. The normality of distributions is

quite rigorously proved (for studies belonging to a fixed exact symmetry) 

using two-body gaussian orthogonal ensembles (GOE) by Mon /IQ/. It is 

expected that the extensions of the central limit theorem give rise to the 

normality of distributions over states of fixed unitary symmetry.

D Applications of SDM

The density of states /O(E) plays a very important role in SDM. Its 

statistical implication can be derived from the fact that the eigenvalue 

density of states is a laplace transform of the partition function. The 

discrete eigenvalue spectrum can be recovered from the density function using 

Ratcliff's /16/ procedure. This is described in detail in the fourth chapter. 

For an approximately normal density functiqn, the region near the centroid 

where the density of states is large, will have small level to level 

fluctuations. Error expected in eigenvalue calculations in that region will not 

be large. As one moves towards the tail region (where the ground state is 

expected to lie), the density of states rapidly decreases, and level to level 

fluctuations increase. Values obtained using Ratcliff's procedure are not 

expected to yield a good eigenvalue spectrum. It then becomes necessary to 

either consider higher moments or partition the space into configurations.



14

Accuracy in the calculations increases tremendously, as can be seen by comparing 

ground state binding energy with exact shell model results.

Apart from binding energies, ground state occupancy /17.18/ is another 

important parameter which is easily calculable using SDM. Experimentally, 

one can deduce the ground state occupancy through stripping and pickup 

reactions. Since they are directly comparable with experimental results, 

occupancies can be used to test the validity of different effective interactions 

/17/. Also, occupancies being the expectation value of one-body operator 

(the number operator), are useful in the study of single particle behaviour 

inside the nucleus.

An important application of SDM is to obtain the expectation value of an 

arbitrary operator K with respect to the hamiltonian eigenstates. The 

hamiltonian H is perturbed by the operator cxK, where « is a small 

perturbative parameter. The eigenvalues of the hamiltonian get perturbed so 

that E -» E oj . The expectation value of K is then expressed as a parametric 

derivative of the perturbed eigenvalues E^'.

K(E) <E | KI E> = dE*/3>«
rf.-O

Recently, Halemane /19/ obtained a variety of inverse energy weighted sum- 

rules by applying SDM to Rayleigh-Schroedinger pertubation expansion of Ew. 

The second chapter here deals with few inverse energy weighted sum rules. 

Correction to the ground state binding energy has been obtained in terms of 

inverse energy weighted sums when the effective interaction hamiltonian

is approximated by various model hamiltonians Hmodel' These model
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hamiltonians have been constructed by taking different linear combinations of

pairing and quadrupola operators. The difference between He„ and is

small, and is treated as a perturbation. The first correction term to the

eigenvalue expression corresponds to K(E), or the expectation value of K as a

function of energy E. The second correction term gives the first inverse
20energy weighted sum, and so on. The results have been applied to Ne, 

which lies in the s-d shell. The PW effective interaction is taken as Hq^. 

This work has partially been done by Ms. Pramila Shenoy /20/ who calculated 

scalar corrections and few configuration space corrections to the binding 

energy. This chapter gives a review of her work, and gives a complete 

result in the configuration space for five model hamiltonians.

Besides the hamiltonian, there are other interesting operators like the number 

operator n , the quadrupole operator Q.Q., other electromagnetic transition
d

operators, etc. whose expectation values are of considerable interest. The 

SDM provide smoothened forms for expectation values of such operators in 

terms of energy. Attempts have been made to figure out dependence of 

smoothened forms on other quantum numbers like J,T. The complete analytical 

expression in terms of averages of product of operators involves series of 

orthogonal polynomials defined for the state density function. A similar 

expansion can also be written down using bivariate orthogonal polynomials (if 

possible to define) for a bivariate density function. The exact result would 

require evaluating all terms in the series which would be tedious for higher 

orders. However, due to the application of the CLT in many-particle system, 

this approach becomes meaningful as one would obtain a good approximation by 

using only low-order terms, which are easily calculable. One gets the CLT 

limit by retaining only linear terms. The third chapter presents a simple
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geometrical way to obtain the CLT result for the expectation value of an 

operator K as a function of one as well as two variables using univariate 

and bivariate gaussian densities respectively. For the univariate case, 

the calculations are straight forward, and one defines shift in the eigenvalues 

due to changes in centroid and width of the given density function. For the 

bivariate case, we proceed via conditional density r^(x|y) of the bivariate 

gaussian G(x,y) to obtain shift in eigenvalues.

The fourth chapter deals with an extensive study of single particle aspect of

various nuclei via single nucleon transfer (SNT) reactions. The SDM provide

a useful approach for studying these, as most measurable properties of a

nucleus are expectation values of one-body operators in the ground state.

For example, the occupancies are the expectation values of the number

operator. In the ground state, these alongwith other properties are measured

via the single nucleon transfer reactions. In this chapter, we calculate

further single particle properties namely the centroids and widths for particle

removal and particle addition strengths for various nuclei in the s-d, f-p

and upper f-p-g shells. These numbers are important for experimentalists as

they provide information for the excitation energy in the final nucleus upto

which an experiment must be conducted so as to exhaust the entire strength

for a pickup or a stripping reaction. The occupancies, centroids and widths
p

are defined in terms of moments M (E) of the strength distribution, which 

are defined through expectation values of operators of the kind 0+H^0. The 

centroid for the pickup strength is calculated using two different methods. 

One of them is the polynomial expansion in which only terras upto linear in 

energy are considered. In the other method, we use a recent result obtained 

by Kota and Kar /4/ in which the density of the strength function for a set
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of initial and final states is expressed in terms of a bivariate gaussian, 

which can be easily integrated to obtain moments. For the centroid of the 

stripping strength, we make use of an identity /21/; the difference between 

particle occupancy weighted pickup strength centroid and the hole occupancy 

weighted stripping strength centroid gives the effective single particle 

energy. It is interesting to study these, as they can be compared with 

experimentally obtained figures from particle removal and addition centroids. 

The widths for pickup and stripping strengths are calculated using moments of 

the bivariate strength function.

The fifth and the final chapter presents a summary of the work done and 

includes an approach to future problems related to this field.


