
CHAPTER - 2

INVERSE ENERGY WEIGHTED SUM-RULES

The spectral distribution methods (SDM)/4,22/ which make use of moments and 

averages of operators in a model space offer a useful technique to study most 

of the nuclear properties in a given spectroscopic space. These methods 

have been extensively used to study averaged properties of the nucleus like 

level densities, spin and isospin cutoff factors, averaged spectra, averaged 

strength distributions, averaged expectation values of various operators, etc.

In SDM, one usually starts by defining a distribution of states with respect to 

energy in terms of its few low-order moments, and proceeds to calculate 

smoothened forms for operator averages via moments defined for such a 

distribution. A rather simple approximation would be to work in the scalar 

space defined by distributing a finite number of particles in a set of single 

particle states, and take operator averages in the complete space. This 

however, is zeroth approximation as the detailed structure is averaged. 

Accuracy can be improved by either taking into account higher order moments, 

or decomposing the space according to some unitary symmetry, to include finer 

details. It turns out that these methods are quite successful in calculating 

ground state energies/3/ and ground state occupancies /17/. A detailed study 

using Wildenthal's universal s-d interaction performed recently by Sarkar et. 

al. /23/ confirms the claim of validity of SDM even in the ground state 

region, which lies far away from the scalar centroid.

Here, we deal with corrections to' the ground-state binding' energy when the 

effective hamiltonian is approximated by various model hamiltonians based on
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linear combinations of pairing and Q.Q operators/24/. Such a correction 

involves taking care of the difference between HQ^ and Hmodei perturbatively, 

via inverse energy weighted sum-rules. This work has been partially done 

by Ms. Pramila Shenoy /20/, who obtained expressions for the first and the 

second order terms in the scalar and configuration spaces. This chapter 

briefly reviews her work, and in addition gives complete result for five 

model hamiltonians in configuration space.

The first section gives scalar result for the first, second and third order 

correction terms to the binding energy. This result has already been derived 

by Halemane /19/, who gave expressions for a variety of inverse energy 

weighted sums. We give an alternate and comparatively transparent derivation 

of Halemane's result. Arguments are then extended to the configuration space.

The next section deals with explicit expressions for correction terms in the 

scalar and configuration spaces, which are obtained as parametric derivatives 

of the perturbed eigenvalue Eft of the perturbed hamiltonian. The unperturbed 

eigenvalue density is assumed to have a gaussian shape characterised by its 

centroid and width. The perturbation merely causes a slight shift in the 

centroid and the width of the density function and does not affect the normal 

nature of the eigenvalue density. In the scalar space, expressions are 

derived for first four correction terms, while the derivation is limited upto 

the second term in the case of the configuration space.

These expressions are then used to derive corrections to the ground state 

binding energy of a nucleus obtained using the model hamiltonians Hm0£}ei, which 

approximate an effective interaction Hq^ A brief discussion on the five
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model interactions used here for approximating the effective hamiltonian is 

also included in this section.

The last section gives the binding energy corrections upto the second order 

for the five model hamiltonians in scalar and configuration spaces, followed 

by discussion.

A Inverse Energy Weighted Sum-rules

Sum-rules in SDM are encountered in two different ways. One set of sum-rules

is obtained when an excitation operator 0 acts between two eigenstates of

the hamiltonian H. This gives rise to strength function R(E,E') between

initial and the final state energies E and E' respectively. Moments of the

strength which can be expressed as expectation values of operator 0+H^0 as a

function of energy E give rise to different sum-rule quantities, determined by

the index p. 0+0(E) corresponds to the non-energy weighted sum of the

strength with the starting state energy E and with respect to intermediate

energy states. Similarly 0+HQ(E) or the linear-energy weighted sum gives

the centroid of the strength distribution. 0+H20(E) (quadratically-energy

weighted sum) gives an idea about the spread of the strength with respect to

energy of the intermediate states. These sums are used to study single

nucleon transfer processes and are discussed in a later chapter. Secondly,

the sum-rules arise when a hamiltonian is perturbed by a small operator oc J<,

iX being only a multiplicative parameter. In this case, the expectation values 
2of K and K as a function of energy are related to the width of the

eigenfunctions of H at E, when expressed in terms of eigenfunctions of K; such 

calculations have been reported earlier by Potbhare /25/. So far, not much 

attention has been paid to inverse energy weighted sums. This is partly due 

to the notion that one has to deal with Green's functions and complete
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solutions of the problem in order to deal with inverse energy weighted sums. 

It is clear that these cannot be expressed in terms of linear polynomial 

traces, for the energy term in the denominator indicates a non-linear 

expansion. Recently, however, Halemane /19/ applied SDM to Rayleigh- 

Schroedinger perturbation theory and obtained expressions for a variety of 

inverse energy weighted sums. We now give a simpler procedure for deriving 

these sums.

The eigenvalue density of H in a finite dimensional space is always discrete. 

However, as the spectral distribution methods deal only with few lower order 

moments, a density of states /O (E) characterised by these is assumed 

continuous. Ratcliff /IQ/ gave a procedure to generate a smoothened spectrum 

from such assumed continuous density function. The spectrum so obtained is 

an averaged spectrum, free from level to level fluctuations. This procedure 

is described in detail in the fourth chapter. The averaged position of E , 
the nth level starting from the ground state is given by

En
n - 1/2 = D * f/°(x)dx = D * F(E ) = pn (1)

J ii U
— CO

where D is the dimensionality of the space and F(E ) is the distribution

function at energy E . If a small operator &.K is added to H, the

perturbation will shift the eigenvalues. The new set of eigenvalues E cann y oc
be obtained similarly using /^(x) characterised by moments of H + «K : 

£n,or
D * J/Ow(x)dx = D * |/0(x)dx = n-1/2 = pn . (2)

-oo
The above relation can be written down for a strictly rigid spectrum, i.e. by
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assuming that no crossing of levels takes place. Using Rayleigh- 

Schroedinger's perturbation theory, the eigenvalue En a of the perturbed 

hamiltonian is expressed as

E = E n +«S. (E „) n,a n,0 V n,Cr
“2 S2‘En,0> «3 VE„,0> (3)

and so on. (En is the expectation value of K as a function of energy

E n and S„(E n) is the first inverse energy weighted sum. S„(E _) 

corresponds to the next (quadratically) inverse energy weighted sum and so on.

\ iSince we shall deal with a particular eigenvalue only, the suffix n is 

dropped. From equation 1, we have

dp

da

d
O = — f p CxDdx ~ J a

OCX -oo

dE a _
—- p CE 3 + f — p CxDdx _ a a J _ *a da - oo da

C43

dE 1 Ea

so that----- » ------------ J* — p Cx3dx C5Dda p CE i> -ox da
a a

In the limit ac—* 0, as the integration limit does not depend upon oc , the 

integration over x can be interchanged with differentiation with respect to 

k, yielding

dE
a

da a=0
S„ CE_D = KC E_Z> 10 0

__1__
PqC EqI)

d_

d
da

[ J^aCx3dx ]
L-oo J a=l

[ F«CE°3]
<63
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where F^iEp) is the distribution function at E = E^. The suffix 'O' 

indicates unperturbed values. This result was originally given by French and 

Chang /26/.

Higher order corrections, namely SgCE^), Sg(E^) etc. can be obtained 

similarly, by further differentiation of SE^/a* with respect to <x . On 

differentiating equation 5 twice with respect to a, one obtains:

1 d
SpCEn3> = - —5 E

2 0 0 A 2 a. -2 ocx a=0

-----1----- I* ^P CE ) | - --- ( F CE))])2 ll
2^0CE0D ^ da a~° dE0^ PCEQ3\ da a ij

and

S^C EqD

0'“0

I 2? E 
6 da3 a a=0

C7>

S F«£v)l - 6 tW saCEo3 *V>
ao

pCE^) ]

6p0CE0D LV da

+ a C8D
aEQ

Detailed derivations for SgiE^) and S^E^} are given in appendix <I-A).

.B Correction to Perturbed Eigenvalues

(a) Scalar Space Correction

The result in the scalar space can be immediately applied whenever the 

strong action of the central limit theorem (CLT) renders the eigenvalue 

density function into a gaussian defined by its centroid € and width <5\ The
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change in the centroid merely shifts the eigenvalue spectrum while the change 

in width corresponds to the scale change. We have

G = <H>, GU) = <H> + *<K>
62 = <H2> - <H>2 ; <S"k2 = <K2> - <K>2

<52(cc) = 62±2olZ,66k + O)

X, in the above set of equations is the correlation coefficient between 

H and K. The scale change parameter A is defined by

o o 9*= it [ci)/6 - 1 ) = (1 + 2 at><?k /<$ + or *k /<$*) - 1 . (10)

Geometrically, the total change in an eigenvalue will have contributions from 

change due to centroid shift and that due to scale change, which h related 

to the change'in width. The second change is proportional to the distance of 

the eigenvalue from the centroid of the eigenvalue density, which is (EQ-G). 

With these two shifts, the perturbed eigenvalue E^can be written as:

Ea = EQ + ot<K> + A(Eq-6) . (11)

We must remember that the above changes are valid only in the CLT limit. 

This expression for perturbed eigenvalue E^ can be differentiated n-times to 
obtain the n n order correction as :

Sn(E„) = (l/nl)anE / Oa)n | 
n 0 * « ofr o

(12)
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The first four correction terms turn out to be :

S1(Bq) = <K> + (E0-9) dk/ 6 .

S2(Eq) = 1/2(1- t,2) (Eq-S) 6k/6 ,

(13)

S3(Eq) = -1/2 (1- t}) (Eq-6) <5-k3/63 ,

and s4(e0^ = -1/8(1- t,2) (1-5 t2) (EQ-6) <?R4/<S4 .

A better approximation can be obtained by incorporating higher order moments 

of the density function. This could be done by using a Cornish-Fisher 

expansion around a gaussian density, which gives expression for perturbed 

eigenvalue as:

1x« = x0+ ^ 6^x0-1) + ^a/ 24(x®-3x^ + Vw/ 36(4x3-7x0) , (14)

where x0= (EQ-S) /6 T

V'« = ^3«/<S3(«> ^<(H+«K)3>/<(H+ otk)2>3/2,

= M, //w) -3 = (H+ <XK)4 /<(H+ CCK)2) 2 - 3 ,
X*\(S

H = H - <T H > and K = K-<K>.

j/^and Y^are the first and the second shape parameters respectively, which
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correspond to the skewness and excess of the eigenvalue distribution. 

Differentiating X^(as given by equation 14) with respect to , and taking 

CLT limit (Y'^Y'2 —► 0), the first order correction term with higher order 

averages is given as

S..(En) = 3x*/acr 1 --1 <HK> xrt- 1/2 < KH2) (xj-l) 
iU ^0 3 u

- 1/6 ( <KH/ - 3 4 KH/) * (x2~3xQ) (15)

The above expression involves traces of products of three or more operators, 

which become cumbersome to calculate. Therefore we do not make use of 

equation 15.

(b) Extension to configuration space

Despite the assurance of working of the CLT in region of interest, the scalar 

space results are a rough approximation, this being an inherent property of 

averaging methods. Since, taking into account higher moments is tedious, it 

is desirable to partition the space according to some known symmetry to 

improve the accuracy of the result. Following that, the space is now 

decomposed according to configurations; each configuration is specified by a 

configuration density defined by its centroid and width. The overall state 

density P(E) is then expressed as a sum of intensities of all configurations 

into which the space has now been subdivided!

P(E) = 1/DI d PC(E) = 1 IC(E)/D, (16)
c G c

where d is the configuration dimensionality and D = Id is the total 
C c c

dimensionality. Each terra in the above summation corresponds to the
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intensity of the configuration in the eigenvalue distribution at energy E. It 

becomes necessary to deal with intensities in the case of configuration 

partitioning, since configuration symmetry is not necessarily a good symmetry. 

We assume that each configuration density is a gaussian, given by

where Gq(c) and 6 q [c) are the configuration centroid and width 

respectively for unperturbed H. The perturbation os K added to H acts on 

each configuration differently so that each configuration centroid and width 

gets perturbed:

Suffix 0 indicates unperturbed values which correspond to H , The perturbed

configuration density (E „) can be obtained by substituting the expressions0( **

for the perturbed centroid, perturbed width and F^into configuration density 

expression of equation (17). Making use of equation (6) and (7), the first 

and the second order correction terms in the configuration space are obtained

(17)

6«(c) = 60(c) + « <K>°

<5*fc) = d02(c) + 2 £crfk(c)tf0(c) + orVk2(c)

t
as

^ expressions for correcfion terms are derived in appendix 1-8
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pccx :>
and S CE ) = — I E(d /D)------- -- <■ C Cc3 He_Cx 3

2pC E ) L c crlCx 3 K J C
0 0 c

CEq3 =[E (dc/D)pcCE03 < <K>C + Cc<^Cc3 xc >]/P(B0) C183
c

1 r 1
-- E(d/D)
CEq3 L c C <

+ 2 <K>CcfTCc3C He-Cx 3 + C C<K>C32 + af Cc3 3 x >]
k ^ c 2 c k c J

1-----3[ E(d /D)--S- pcCx 3] f E(d /D)pCCx 3[<K>C+ Cc<t:Cc3x ]]CE„33'SI- c C o^)Cc3 cJLcc c ck CJ2C pC Eq3 3 L c

C pC Eq3 3 L c
2 [ E (dcXD)p'=Cxc3 «K>° ♦ Cc^Cc3 xc> ]

“ [ E (d -D)
L C!

pcC x 3 „
------- £_ < <K>CX + cx - 13 C PTCc3 > , ,
S0Cc> - C193

where x = CE. - e,Cc33 / <?lCc3 . c O O O

H8re He^x) are the Hermite polynomials in x, and c in the above equations 

indicates that the corresponding quantity is calculated in configuration space. 

Note that in general, t,c cannot be called the correlation coefficient as 

configuration partitioning does not necessarily correspond to a good symmetry. 

However, it has the same structure and hence the same nomenclature is used:

£c =<{K-<K>c) (H-KH^jyV^lcJ^tc) (20)

G Application to ground slate energy 

A substantial amount of study in nuclear structure centres around the two 

highly schematic quadrupole and pairing operators due to their association 

respectively with the long-ranged and short - ranged parts of the nuclear 

interaction. A large amount of experimental evidence in this respect has
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prompted us to use a linear combination of these two operators as an 

empirical approximation to the effective hamiltonian. It is possible to obtain 

ground state energies for Q.Q and pairing operators analytically. In some 

cases, exact energy values can be found without resorting to shell model 

calculations. If a part of the effective hamiltonian can be treated exactly, 

the remaining part can be treated perturbatively.

A nuclear hamiltonian defined by its single particle energies and two-body

matrix elements can be decomposed according to its different unitary ranks
giving the total H as a linear combination; H = lP5 + tP + iP, where the

superfix denotes the unitary rank. is the averaged part of the nuclear
hamiltonian, iP is the single particle energy part and iP h-as terms related to

two-body nucleon-nucleon interaction. There exist two types of single particle

energies, namely the external single particle energy (ESPE) and the

interaction - dependent induced single particle energy (ISPE). The ESPE is

generally taken from the spectra of a lone nucleon above a closed shell.

17For example, energy levels of Q provide the ESPE's for most of the s-d 

shell interactions. These may be denoted as £4. The ISPE denoted by A, 

are obtained through two-body matrix elements of the effective interaction. 

The total single particle energy for the i-th orbit = 6^+7^: In spherical orbit 

formalism, the ISPE are given by

A; =
m-l
n~-T Z wf!.. [JJtTJdtSjj) - -r 1 Wt11. • [ J] [T] (1+6,,)JT

l JTT ijij N ijTT ^ ij- cm

where =

denotes the

number of single particle states in the i-th 

total number of single particle states and W

orbit, N =1N;

TT 
jjkl is the
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antisyrametrized two body matrix element in the JT space. In the above 

equation, if the summation is carried over only angular momentum J instead of 

JT, the single particle energy retains the isospin T dependence. One thus 

gets isospin ISPE as

(22)

where =(i/2-)N| and fi = While constructing model hamiltonians, we can

choose to keep some part of the model hamiltonian same as that of the 

effective interaction hamiltonian. Following are the model hamiltonians 

^model3 extracted by Kota et al/6/.

(1) HS1 = ESPE + aOm) HQ + b(m) Hp

Here, the external single particle energy of the model hamiltonian is 

same as that of the effective interaction. Hp and Hq are two-body 

matrix elements of the pairing and quadrupole operators respectively. 

Averaging is done in scalar space, over all states with fixed particle 

number m, hence a and b depend upon m.

(2) HST1 = ESPE + a(m,T) HQ+b(m,T) Hp

This interaction is similar to HS1, the only difference being that 

averaging k done rnfte scalar space over fixed particle number m and also 

fixed isospin T. This gives an (m,T) dependence to the coefficients 

of Hq and Hp.

(3) HS2 = ESPE + ISPE + aH0 +bHQ p
As indicated, in this approximation, apart from ESPE, the ISPE are 

chosen to be the same as that of the effective interaction. Hq and Hp
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refer to the unitary rank-2 parts of Hq andHp respectively. Since the 

entire particle number dependence is absorbed in the ISPE, the matrix 

elements of Hq and Hp and therefore the coefficients a and b are

independent of particle number m.

(4) HST2 = ESPE + Isospin ISPE + a (m,T) H„ + b (m,T)Hn.
w P

In this model hamiltonian, more information is incorporated by taking 

the isospin ISPE from the effective interaction. Hq and Hp are the 

tensor rank-2 part ot HQ and Hp respectively, with respect to the 

group U(fi) ® 11(2). Once again the coefficients are a function of

particle number m and isospin T,

a Til » Tr 1 »T*0
(5) HST3 = ESPE + isospin ISPE + a H_. + a H + c H .

Q P Q
Single particle energy is same as that of HST2 hare and advantage has

been taken of the fact that the irreducible rank-2 parts of operators

Hq and Hp propagate independently. Therefore, T = 0 and T = 1 part

of the operators can be separated from each other and their

correlation coefficients with respect to Hq^ can be individually

maximised to obtain corresponding coefficients for constructing the

model hamiltonian. Hence they arc. propagated separately. Pairing operator

does not have T = 0 component. For the three components
T=1 T=1 T=0Hq ,Hp and Hq , we would have three coefficients a, b and c

respectively. The coefficients turn out to be independent of (m,T).

Coefficients oF Hq and Hp for different model interactions can be obtained 

by maximising the correlation between H ^ and the corresponding part of 

H d r Detailed expressions for these are given by Kota et. al. /24/.
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Consider an effective hamiltonian H„, which is approximated by a modelr

hamiltonian H^, The difference between them is small, and is therefore 

treated perturbatively:

HF = HM + <*K = H + HM per C23)

where H = <X K is the perturbation hamiltonian, <x being the perturbative

parameter. The correlation coefficient between Hp and is given by

C (kf, hm) = t>FM = <Hf f24)

/v

where H = H - <H>. Once the centroids are subtracted out, the correlation 

coefficients depend only upon the direction and widths of the two 

hamiltonians. Therefore we can assume without the loss of generality that the 

hamiltonians are zero centered in the space, i.e.

^Hp) = = 0 -<,Hf “ • C2ff>

To compare the model hamiltonian with the effective hamiltonian, we choose 

that these two have the same widths in the scalar space, so that

= . (26)

The hamiltonian H may be assumed to have a width (T . The correlationper 17 per
coefficient between the effective and perturbation hamiltonian is denoted by 

^HF' It is found that
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HF = ^ M / ^pBr ( t MF " ^ per = 2<*p * c 27)

Substituting these values into equations(13), the scalar space corrections to 

the binding energy turn out to be

w = - u-W Eg

S2(Eg) - 1/2 Eg (1 -tlp )

W = 1/2 (l-tMp)2 <HtMp)Eg

S4(Eg) = 1/8(1* 4MF)2(3-5£MF)(l-tMF)2 Eg a8>

sl(Eg)*s2(Eg) = -1/2(1- CMF)2 Eg

S3(Eg)*S4(Eg) = 1/S (l-t*F )(l*CMF)(7-5CMF)Eg.

:Irv configuration space, expressions for the first and second order corrections 

follow from equations (18) and (19). In this space, no approximations can be 

afforded with respect to configuration centroids and widths, since each value 

is different for each configuration. We can still Have equal norms by 
demanding that the scalar width remain same for Hp and H^. However,the 

correction terms involve centroids and widths of all the three operators 

namely Hp, and Hp0r>. The final expressions for first and second order 

correction to the ground state energy are:
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S1(E) = E {
1 c /o(E) ^

*?«) - + CMP(E> °'per(E> *c } (29)

S (E) , r Ijii2
c 2P(E)«- c <t£(E) {-----[ T J cSn<E) (crc (E))" He0(x )

?j0/FJ . l MPV ' v per v w ' 3^Ae'per

+ 2 <e°(E> - «J(E)) c£F(E) <^°r(E) He2(xc)

+ [ <^|<E) - *g(E)>2 + (^p°r(E))2 ] He1(xc) J ]

2#° ( E ) L c
E ic(e> |(«®(e> - *£<e>> + c£p

K] ] [ 5 ^

Oo(E)) L eE I°<E) i *S«> - *Jj<E> + CMP<E>,:rper<E> *o } ]

* [ 2 s;ai { V‘e<e>L c <rJ(E) ^ 0 *
«?<*» + CSp<E> He2(*o) } ]

(30)

where IC(E) = d0 PC(E)/D; D = E d . />(E) = E I°(E)
0 c c c

and xc = <E - *J(E>) / cr£(E)

He.(x ) are the i-th order Hermite polynomials in x . X c c



35

D Results and Discussion:

Calculations are carried out for five model interactions namely HS1, HS2.HST1,

HST2 and HST3 to obtain correction to the ground state binding energy of
20 16 Ne which contains four particles above u. core. The effective interaction

chosen is the PW interaction of the s-d shell, that gives a binding energy of 
2040.6 Mev for Ne. Table2-i gives a, b and c coefficients for all five model 

hamiltonians, which are calculated using available computer programmes.

The first and the second order corrections to the ground state binding energy 

are given for both scalar and configuration spaces. For the scalar space, it

turns out that these two are large. For example, in the case of HS1, for E
8

= -45.8 MeV, t =0.799, 5^9.21 MeV and S2 = -8.28 MeV. The third and

fourth order corrections are extremely small. These values are respective/^

= 1-66 MeV and = - 0-75" MeV. The CLT approximation is therefore

justified, as higher order corrections would be still smaller. The first two

corrections calculated for scalar and configuration spaces are displayed in

Table 2.Z. The second column shows binding energy of the five model
20interactions. These values for Ne are directly taken from ref./6/. Column 

3 gives the corrected scalar binding energy. Rest of the columns correspond 

to configuration space corrections.

The root mean square derivation can be calculated as

Arms ” (Jl(Eg(V ' W’2 <M>hm

This value turns out to be 4.22 MeV for scalar space and 2--Q5 MeV for
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Table 2.1: Coefficients for quadrupole and pairing operators for

Haml. a* ( Q. Q ) b*(pair) c*<Q.Q)

HS1 -0.1266 0.1916 0.799
HS2 -0.1070 0.1600 0.846
HST1 -0.1166 0.3060 0.806
HST2 -0.0977 0.2574 0.855
HST3 -0.0750 0.3160 -0.113 0.857

Table 2.2: First and second order corrections to the ground
20state binding energy of Ne

Haml. Eg(Hji) Scalar space Configuration space

Sl<Eg) S2(Eg) Eg(HM)+AEg Si(Eg) S2(Eg) Eg(HM)+AEg

HS1 i tfc
.

cn CD 9.21 -8.28 -44.9 12.94 -3.64 -36.5
HS2 -43.2 8.38 -7.57 -43.4 5.99 -2.27 -39.5
HST1 -43.8 6.74 -6.22 -42.4 7.03 -3.37 -40.1
HST2 -47.0 6.82 -6.32 -46.5 9.17 -2.99 -40.8
HST3 -46.1 6.55 -6.08 -45.6 8.12 -4.45 -42.5
Hp -40.6
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configuration space. Clearly, configuration space gives better results than the 

scalar space. The first order correction S^CE) (which is positive) has 

nearly the same magnitude for both scalar and configuration spaces. The 

second order correction S2(E) (which is negative) is smaller for configuration 

space, indicating a faster convergence of the inverse energy weighted sums in 

the configuration space.


