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2.    Computational methodology  

Development of the drug has always been time consuming and money spending. However, 

there exist rising many questions in achieving targeted drugs as well as therapy within 

required time and budget. With progress in computational research, computational 

simulations are becoming more convincing than experimental techniques [1]. In case of 

simulations, the behaviour of the system is studied using computer programming with a 

model of the system and then the desired results are reproduced with experiments. New 

scientific insight is obtained by observing such computer experiments; often for controlled 

conditions those are not accessible in the laboratory.  The in silico optimization of novel 

drug delivery systems can significantly increase accuracy and easiness of the application 

[2].   

In this chapter, we describe the computational methods that have been 

applied in the current thesis. We carried out computer simulations with the hope of 

understanding properties of assemblies of molecules in terms of their structure and the 

microscopic interactions between them. It was pointed out in the introduction that the 

present work focused on the anticancer drug design and to pursue the study, we performed 

molecular dynamics simulation (MDs) [3] and density functional theory (DFT) based first 

principle calculations [4] to gives a route to dynamical properties of the system such as: 

transport coefficients, time-dependent responses to perturbations and rheological 

properties such as electronic, structural and vibrational properties.  

2.1   Theoretical approaches  

The purpose of this section is to describe the theory and explain the methodology of the 

calculations. Ab-initio techniques are applied to solve the many body problem so that the 

detailed study of the ground state properties of the system could be under taken. The DFT 
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simulation package GAUSSIAN enables to computes an approximate solution to the 

many-body Schrödinger equation, either within density functional theory (DFT), solving 

the Kohn-Sham equations, or within the Hartree-Fock (HF) approximation. In 

GAUSSIAN, central quantities like the one-electron orbitals, the electronic charge density, 

and the local potential are expressed in localized (orbital like) wave basis sets.  

2.1.1 The Many body Schrödinger Equation 

This section presents an introduction to density –functional theory (DFT) calculating 

ground-state properties of electronic systems [5-8] and briefly presents the basics of 

density functional theory. The many-body problem, we consider is an N-electron system 

(atom, molecule, or solid) in the Born-Oppenheimer and non-relativistic approximations. 

The electronic Hamiltonian of the system in atomic unit system is represented as; 

                           H(r1,r2,...,rN) = - 
 

 
∑     

 

 
∑ ∑

 

     

 
   

 
   

  
    ∑      

 
                     (2.1)

 

Where,  (ne) = −∑α Zα/|ri− Rα| is the nuclei-electron interaction (Rα and Zα are the position 

and charges of the nuclei). The first and second term represents kinetic energy of electron 

and coulomb interaction respectively. The stationary electronic states are determined by 

the time-independent Schr ̈dinger equation, 

                          H(r1, r2, ..., rN)Ψ(x1, x2, ..., xN) = EΨ(x1, x2, ..., xN)                               (2.2) 

 

Where Ψ(x1, x2, ..., xN) is a wave function written with space-spin coordinates xi = (ri, σi) 

(with ri∈ r3 and σi =↑ or ↓) which is antisymmetric with respect to the exchange of two 

coordinates, and E is the associated energy. Using Dirac notations, the above equation can 

be rewritten in a representation independent formalism 
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                                                            ̂ |Ψi >= E|Ψi>                                                   (2.3) 

where the Hamiltonian is formally written as; 

                                                           ̂ =  ̂ +  ̂ee +  ̂ne                                                                            (2.4) 

with the kinetic-energy operator  ̂, the electron-electron interaction operator  ̂ee, and the 

nuclei-electron interaction operator  ̂ee. The quantity of primary interest is the ground-state 

energy E0. The variational theorem establishes that the E0 can be obtained by the following 

minimization 

                                                              <Ѱ| ̂  >                                                 (2.5) 

where the search is over all N-electron antisymmetric wave functions Ψ, normalized to 

unity <Ѱ| ̂|Ѱ> = 1. DFT is based on a reformulation of the variational theorem in terms of 

the one electron density defined as:  

                                      n(r) = N∫   ∫             
  d dx2……..dxN                  (2.6) 

which is normalized to the electron number, ∫  (r)dr = N [5-8]. Therefore, the only way to 

make the things manageable is to resort to some approximations.  

2.1.2 The Born-Oppenheimer Approximation 

The very first approximation is Born Oppenheimer approximation. Even the simplest 

molecule, H2
+
, consist of three particles, hence its Schrödinger equation is quite difficult to 

solve analytically. To overcome this barrier, we apply the Born-Oppenheimer 

approximation, by taking the advantage of relatively low velocity of nuclei as compare to 

electron due to nucleus‟ relatively heavy mass. Due to this difference, electrons can 

respond almost instantaneously to displacement of the nucleus. Thus instead of solving 

rigorous Schrodinger equation for all the particles at once, we consider nuclei to be fixed at 

its position and solve the Schrodinger equation for electron and the static electric potential. 



   

27 
 

The Born-Oppenheimer approximation is very reliable for ground electronic state, but it is 

less reliable for excited state. Applying this approximation to the many body Schrodinger 

equation, allows to solve the electronic structure problem in an efficient way,  

                                                                                                                             (2.8)                             

with       Ĥ = ∑ 0   
 

 
  
       (  )1   ∑

 

  ⃗   ⃗  

 
   

 
                                                      (2.9) 

where, 
n  is the many body wave functions for the N-electron eigen states. This Fermionic 

wave function has antisymmetric nature and changes sign with interchange of coordinates 

of any two particles. E is the total energy. Due to approximation of fixed position of nuclei, 

the second term of Eqn:  

Ĥ=  
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  ⃗   ⃗  
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               (2.10) 

becomes zero and the last term appears as a constant in total energy expression. 

2.2 Fundamentals of DFT 

2.2.1  Introduction 

DFT can be stated as an exact reformulation of the electronic structure problem in terms of 

electronic density n(r) rather than the many-body wavefunction Ψ (r1σ1, r2σ2, ..., r (n) σ (n)), 

The major strength of the formulation is to provide an excellent compromise between 

accuracy and computational cost. Although in principle, the theory requires a universal 

functional which is in general unknown and must be approximated. In the following text, 

the basic of DFT which comprises of Hohenberg-Kohn theorems and the Kohn-Sham 
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equations are discussed. These concepts would form the building blocks of the 

computational implementation of density functional theory. 

 Solving a quantum mechanically interacting many body system to deduce the 

electronic structure of a solid is a very hefty task and is unsolvable even with the modern 

computing technology, however using Born-Oppenheimer approximation and considering 

only valence electrons and ions will simplify the problem a bit further, but it still remains 

unsolvable. Earlier the Thomas-Fermi method which is the precursor of DFT was used to 

describe electron systems. 

                          ̂ ( )  (   ̂    ̂     ̂   )  ( )      ( )                                      (2.11) 

where,   ̂   ∑   ̂
  
    ∑

 

  

  
     

  is the kinetic energy operator,  ̂    ∑  (   
  
   ) is the 

external potential, which describes the interaction with a crystal lattice and  ̂   

 ∑  (         ) is the electron-electron interaction potential. Within the Thomas-Fermi 

model, the kinetic energy density T[n(r)] is approximated by the kinetic energy of a 

uniform, non-interacting electron gas taken at a given density n(r). With the Hartree 

expression for the electron-electron energy plus the contribution of the external potential 

one arrives at the Thomas-Fermi energy functional    [n(r)]. Minimization of    [n(r)] 

produces the ground state density distribution and the ground state energy. Unfortunately, 

this method fails to describe the shell structure of atoms and it cannot explain the existence 

of molecules. Modern DFT generalizes the THOMAS-FERMI approach in such a way that 

it behaves as an exact theory for an inhomogeneous many-body problem. The DFT based 

calculation uses a set of equation which is solved iteratively, and these set of equations are 

known as Kohn-Sham equations.  
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2.2.2 Hohenberg-Kohn Theorems 

Consider an electronic system with an arbitrary external local potential v(r) in place of 

vne(r).The corresponding ground-state wave function Ψ can be obtained by solving the 

Schr ̈dinger equation, from which the associated ground-state density n(r) can be deduced. 

Therefore, one has a mapping from the potential v(r) to the ground-state density n(r),  

                                                    v(r) −−−−−−> n(r)                                                       (2.12) 

In 1964, Hohenberg and Kohn [4] showed this mapping can be inverted, i.e. the ground-

state density n(r) determines the potential v(r) up to an arbitrary additive constant, 

                                           n(r)
       

                ( )
 v(r) + const.                                        (2.13) 

The following two theorems put forward by Hohenberg and Kohn (HK) in 1964 forms the 

basis of DFT:[9] 

  Theorem 1  

The ground state density n(r) of a many-body quantum system in some external potential 

    (r) determines this potential uniquely. This formally enables using the three-

dimensional (real) function n(r) instead of the 3N-dimensional (complex) many-body wave 

function Ψ {r1, r2,…. r(n)} as the basic variable. More precisely, all physical observables 

can in principle be expressed as functionals of the electronic charge-density. The second 

major ingredient is the existence of a variational principle for the energy functional. 

Theorem 2  

For any trial density n(r) it holds E0 ≤ E [n(r)], where E0 is the ground-state energy for the 

system. In other words, the minimum value of the total-energy functional E [n(r)] is the 

ground state energy of the system, and the density which yields its minimum value is 
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exactly the single particle ground-state density. The explicit form of this energy functional 

reads, 

                                               , -   ∫  ( ) ( )     , -                                           (2.14) 

                                             , -   
 

  
∬
 ( ) ( ́)

    ́ 
    ́   , -                                        (2.15) 

where the universal functional is often separated into the classical Coulomb term due to the 

charged electrons and the new universal functional G[n]. 

2.2.3 Kohn-Sham Equation 

The HK theorems (1964) were helpful in providing the theoretical foundation for DFT (fig. 

2.1), the crucial role in simplifying the problem was played by Kohn and Sham (1965) 

[10].
 
For any interacting ground state density   (r), a corresponding noninteracting 

system in some effective potential    is constructed such that the non-interacting 

Hamiltonian    = T +    produce the same ground state density   (r). 

In other words within the framework of KS approach, the intractable many-body problem 

of the interacting electrons in a static potential is reduced to a tractable problem of non-

interacting electrons moving in an effective potential. The K.E expression from TF model 

is non-complying for atoms and molecule in practice. The wave function could be used to 

calculate K.E easily, provided that the former is known. To overcome these complexions 

Kohn and Sham (1965) [10] approached the problem in rather a ingenious way they 

coupled the wave function and density approach. They reformulated the total energy 

functional as follows: 

                  , ( )-     , ( )-   ∫,    ( )       ( )- ( ) 
       , ( )-         (2.16) 

where   , ( ⃗)- is the kinetic energy of electrons in a system which has the same electron 

density as that of the real system but with no electron-electron interactions. This is the system 
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of non-interacting electrons, but electrons are still interacting with nuclei.                                

The Coulomb interaction is: 

                                                                 ( ) = ∫
 (  )   

(    )
                                                (2.17) 

It includes the electron self-interaction explicitly, since the corresponding energy is given 

by 

                                       ∫     , ( )- 
   = 

 

 
∫∫

 ( ) (  )       

(    )
                               (2.18) 

Which represents interaction of , ( ⃗)-, with itself     ( ⃗) is the external potential, i.e. the 

potential coming from nuclei. The last functional, )]([ rnExc


 is called exchange-correlation 

(XC) energy. This includes all the remaining energy contributions i.e. electron exchange, 

electron correlation, a portion of kinetic energy to obtain the true kinetic energy and 

correction for the self-interaction introduced by the classical potential, which were not 

accounted by the previous terms. Applying the variational principle 

                          
  , ( )-

  ( )
 = 
   , ( )-

  ( )
 +     ( )       ( )   

    , ( )-

  ( )
                           (2.19) 

                                   or    µ = 
  , ( )-

  ( )
  

   , ( )-

  ( )
 +     ( )                                            (2.20) 

where 𝛍 is electronic chemical potential and 

                                     ( )       ( )         ( )      ( )                                    (2.21) 

                                  with              ( )   
    , ( )-

  ( )
                                                     (2.22) 

Schrödinger equation for non-interacting particles: 

                                              [ 
 

 
        ( )]   ( )

                                               (2.23) 
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where the operator on left hand side, depends only on  ⃗, and not upon the index of the 

electron which is presented by subscript “i”. It is same for all the electrons. KS orbitals

KS

i r )(


 , can be used to compute the total electron density: 

                                                  ( ⃗)   ∑    
  ( ⃗)   

                                                 (2.24) 

This can be used to calculate the improved potential )(rVeff


 self consistently. Electron 

density can also be used to calculate the total energy, in which kinetic energy, )]([0 rnT


, is 

calculated from corresponding orbitals, rather than density itself: 

                                                 , ( )-   
 

 
∑ ⟨  

  |  |  
  ⟩ 

                                        (2.25) 

and rest part of total energy as 

                                                     , ( )-   ∫     ( ) ( ) 
                                    (2.26) 

Thus, in KS approach, the electrons move in effective potential which includes the external 

potential and the effects of the Coulomb interactions between electrons e.g. exchange and 

correlation effect. The crucial quantity in KS approach is the XC energy    , ( ⃗)- 

containing terms coming from the Pauli‟s exclusion principle, from correlation due to the 

repulsive Columbic electron-electron interaction and from the contributions due to the 

kinetic energy of the interacting electrons. Even though    , ( ⃗)- must be very complex, 

great progress has been made with remarkably simple approximations like Local Density 

Approximation (LDA), Local Spin Density Approximation (LSDA), Generalized Gradient 

Approximation (GGA) etc. 
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2.3 Properties from the DFT calculations for present study 

In the present section, we briefly describe the methodology adopted for properties 

investigated to understand the interaction between different molecules such as SAs and 

ligands. The calculated properties from the DFT are Mulliken charge [11], Molecular 

electrostatic potential (MEP) [12], Natural Bond Orbital (NBO), Frontier molecular 

orbitals (FMO), Fukui indices and vibrational spectra. 

2.3.1 Mulliken charge 

Mulliken charge, also referred as partial charge [13] is used to characterize the electronic 

charge distribution in a molecule and the bonding, anti-bonding, or nonbonding nature of 

the molecular orbitals for particular pairs of atoms. To develop the idea of these 

populations matrix, consider a real, normalized molecular orbital composed from two 

Figure 2.1. Flow chart for self-consistent density functional calculations. 
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normalized atomic orbitals [14]. Mulliken charges can be obtained by a simple 

multiplication  

                                                                                                                             (2.27) 

where, P is the Mulliken population matrix, D is the density matrix, and S is the overlap 

matrix.  

2.3.2 Molecular electrostatic potential (MEP)  

MEPs are used to investigate the biochemical reactivity between target SA and ligand 

monovalent, bi- valent and mimic saccharide molecules [12].   

                                 ( )   ∑         ⁄   ∫      (  )       ⁄                        (2.28) 

where, Zα and Rα denote the charge and position of nucleus α, respectively, ρ shows the 

electron density. Equation renders the electro- static interaction between the unperturbed 

charge distribution of the molecule and a positive unit charge located at point r.    

2.3.3 Natural Bond Orbital (NBO)  

The NBOs [15] are one of a sequence of natural localized orbital sets that include natural 

atomic (NAO), hybrid (NHO), and (semi-)localized molecular orbital (NLMO) sets, 

intermediate between basis AOs and canonical molecular orbitals (MOs). 

AOs → NAOs → NHOs → NBOs → NLMOs → MOs 

In accordance with the simple bond orbital each bonding NBO σAB can be written in terms 

of two directed valence hybrids (NHOs) hA, hB on atoms A and B, with corresponding 

polarization coefficients CA and CB , 

                                                           =                                                           (2.29) 

that vary smoothly from covalent (cA = cB ) to ionic (cA >> cB ) limit. Each valence 

bonding NBO must in turn be paired with a corresponding valence anti-bonding NBO, 

                                                                                                                    (2.30) 
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As a result of each σi → σj* perturbation, the starting NBO acquires a weak anti-bonding 

“tail” in the final (doubly occupied) NLMO Ωi. More generally, each semi localized 

NLMO Ωi can be expressed as a linear combination of the parent Lewis-type NBO σi 

(with coefficient cii ≅ 1) and residual weak contributions (cji ≅ 0) from non-Lewis (NL) 

NBOs σj* 

                                                                  ∑      
   

                                           (2.31) 

2.3.4 Frontier molecular orbitals (FMO)  

The interaction of two orbitals gives rise to a new set of orbitals. If overlap is neglected, 

the difference in energy before and after the interaction is given by the second-order 

perturbation expression. 

                                                 ∑   
  ⁄
                             if n is even                       (2.32) 

                                            ∑     (   )  
(   )  ⁄
           if n is odd                       (2.33) 

If n is even, then the (n/2) eigenvector represents the highest (doubly) occupied 

molecular orbital (the HOMO), whose energy is λn/2 . The next eigenvector pertains to the 

lowest unoccupied molecular orbital (the LUMO), whose energy is 
  

 
  . Then the 

HOMO– LUMO separation is given as: 

                                                        
  

 
 
  

 
                                                                 (2.34) 

2.3.5 Fukui indices 

The Fukui function is the derivative of the electron density with respect to the number of 

electrons of the system. It has been formally defined as, 

                                                                ( )   [
  

  ( )
]N                                               (2.35) 

where,  ( ) is the external potential and the functional derivative must be taken at a 

constant number of electrons N [16]. 
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  ( )      ( )    ( )
                     (Nucleophilic attack)                                 (2.36) 

   ( )    ( )      ( )
                    (Electrophilic attack)                                 (2.37) 

     ( )    ( )
                                         (Radical attack)                                         (2.38) 

Where, ρN+1, ρN and ρN-1 represent the electron density of anionic, neutral and cationic 

residues, respectively. 

2.3.6 Vibrational spectra 

In the wave mechanical solution of the vibrational motion, the potential and kinetic energy 

of the molecule should be substituted in the Schrödinger equation. Assuming the harmonic 

nature of the vibrations the following expression is obtained for the vibrational energy.  

                                                   ∑    
    
    .   

  

 
/                                             (2.39)  

where,   is the frequency of the normal vibrations,   is the appropriate vibrational 

quantum number,   is the degree of degeneration. 

2.4 Molecular dynamics Simulation (MDS) 
 

As discussed previously, drug-discovery is a time-consuming process, and to 

overcome this; various computational methods have been employed like structure based 

drug discovery (SBDD) and ligand-based drug discovery (LBDD) which rely on the 

structure of the target and ligands respectively. Although there are several methods 

available, The two main families of simulation technique are molecular dynamics (MD) 

and Monte Carlo (MC); additionally, there is a whole range of hybrid techniques which 

combine features from both. Molecular dynamics (MD) simulations have turned out to be 

the essential technique in the field of the designing of new bioactive compounds [17-22]. 

MD simulations explain the crucial role of protein conformational flexibility in binding to 

the ligand or vice-versa. Moreover, MD simulations have been successfully employed to 

observe the interactions [23-32] and equilibration structures of the bio-molecules such as 
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membranes, proteins, and nucleic acids [33-38]. The stability of the docked complexes 

was extrapolated by employing the Newtonian equation of motion (equation 2.40).  

2.4.1 Equation of motion 

                                                                 ≈   
    

   
                                               (2.40) 

From the above equation,    is the force on the    atom,    is the mass of the 

   atom,     is the acceleration of the     atom, and 
    

   
 is the change in the position of 

the     atom with respect to the time. The dynamic behaviour of the finalized candidates 

with respect to the biological environment studies were studied using Maestro Desmond 

Interoperability Tool (academic) [39, 40] and GROMACS 2016.4 [41]. 

In general, MD simulations are used to calculate the force on the     atom with respect to 

the time. The calculated force is defined as the first derivative of the energy with respect to 

the change in the position of the atom (equation 2.41).  

                                                          = 
  (            )

   
                                                    (2.41) 

Here in equation 2.9,    is the force on the     atom, 
  (            )

   
 is the change 

in the potential energy of the specific conformation with respect to the position. This 

potential energy is calculated by employing the force field [42]. In terms of 

mathematics, the force field is defined as the expression encompassing the functional 

form the potential energy. In other words, the force field incorporates bonded and 

non-bonded interactions, which are formed between the different atoms as represented 

in Figure 2.2 
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Figure 2.2. Different types of interactions observed in a molecular system 

 

 

 

 

 

The energy of the system/model is calculated as the sum of the bonded and non-bonded 

interactions (equation 2.42), where bonded potential is made from stretching, bending 

and rotation along the bonds (torsion) (equation 2.43) and non-bonded potential is 

composed of pair-wise addition of electrostatic and Van der Waals 

potential (equation 2.44). 

                                                     ( )                                                       (2.42) 

                                                                                        (2.43) 

                                                                                                      (2.44) 

So far, various types of force fields have been developed for the simulations of 

the biological systems [43-45]. In our study, we have used the optimized potentials 

for liquid simulations (OPLS) force field [46-49] and GROMOS 54a7 force field  

[50] to calculate the potential energy of the system (equation 2.45). 

       [
     

 

   
  ∈  (

   
  

   
   

   
 

   
 )]             (     )

 +         (     )
 + 

         ,
  

 
 (      )   

  

 
(       )  

  

 
(1+cos3φ)+

  

 
(1-cos4φ)]                  (2.45) 
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In the equation 2.45, the harmonic potential function was employed to model the angle 

bending and bond stretching, whereas cosine function was used to formulate the dihedrals 

of the system. The bond length (r) and angle (θ), having subscript eq denotes the 

equilibrium state of the same. The torsion term is indicated by reduced Fourier series 

which incorporates the summation of all the dihedrals of the system. For modelling, the 

non-bonded interactions, pair-wise interactions (i and j) were calculated by employing the 

Coulomb‟s law and Lennard-Jones (LJ) potentials [51]. As per geometric combining rule, 

LJ potential parameters that are, σ and ϵ are site-specific [48]. For the calculation of the 

long-range interactions (electrostatic), particle-mesh Ewald (PME) method is utilized 

under the periodic boundary conditions [52]. For a macromolecule, the solution of the 

Newtonian equation is unrealistic as the biological systems comprise of thousands of 

degree of freedom. Thus, to overcome this, different algorithms were developed to solve 

the Newton equation of the motion (equation 2.8) like Leap-Frog integrator [53], Velocity 

Verlet integrator [54] and Verlet integrator [55]. The solution of the algorithms provides 

us the trajectory of the system while performing the dynamics calculations. In our work, to 

calculate the position and momentum of the complex, Velocity Verlet integrator was 

used. Equation 2.46 represents the calculation of the change in the position, and 

equation 2.47 represents the change in the velocity of the system with respect to a 

specific time interval. 

                                            (      )   ( )   ( )    
 

 
a(t)                                   (2.46) 

                                               (    )   ( )   
 ( )  (    )

 
                                       (2.47) 

In equation 2.46 and 2.47, x(t), v(t) and a(t) are the initial positions, velocity, 

and acceleration of the system, respectively.  (      ) and  (    ) are the 
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updated position, velocity, and acceleration of the system with respect to the time 

interval of Δt, respectively. 

To restrict the dynamic movement of the least important covalently hydrogen 

bonding, the integration algorithms employed are, LINCS [56], RATTLE [57] and 

SHAKE [58] algorithms. And to perform this step, a time-step of 1.5 to 2fs is 

required for the simulation of the bio-molecules [59]. In the current thesis, we 

applied M-SHAKE algorithm [60] and the LINCS algorithm [56] to calculate the 

distance constraints. It uses Lagrange multiplier to compute the magnitude of the 

force and predicts the changes in the position accordingly until the position constraints 

are satisfied. 

2.4.2 MD in various ensembles 

 

MD simulations are playing an important role in answering various biological 

questions as this technique can mimic the experimental situation [61]. We can control 

the experimental factors like the number of atoms, temperature, pressure, ionic 

concentration, and solvent type by employing the statistical mechanic‟s ensembles  

[62]. Depending on the type of factor/variable we wish to keep fixed, different 

ensembles can be generated [63, 64]. These variables are the macroscopic 

properties of the system like temperature (T), volume (V), pressure (P), the chemical 

potential of particles (μ), number of particles (N) and energy (E) [3]. Different types 

of ensembles are canonical (NVT), isothermal-isobaric (NPT), microcanonical (NVE) 

and grand canonical (μVT). Out of these four ensembles, most frequently used 

ensembles are NVT [65] and NPT [66]. NVT is the constant volume and temperature 

ensemble, and NPT is the constant pressure and temperature ensemble. NVE [67] 

ensemble is not realistic as it keeps the energy and volume constant. For the 
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equilibration process, the constant energy ensemble is not recommended because it is 

not possible to obtain the required temperature. Therefore, in the present thesis, we 

have used the NVT ensemble followed by NPT to provide the algorithmic stability to 

the selected system. We have employed Nose-Hoover thermostat [68] to treat the pressure, 

and Martyna-Tuckerman-Klein barostat [69] was exploited to treat the 

temperature of the system. The general steps involved in conducting the MD simulations are 

shown in figure 2.3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. General steps involved in MD simulation. 
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