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2.1 Introduction to Density Functional Theory 

In this chapter we discuss the brief formulation of Density Functional Theory (DFT)1 

to predict the ground state/fundamental properties of materials. DFT has been 

recognized as one of the most frequently used successful technique and a quantum 

mechanical tool for studying and predicting the properties of periodic bulk solids and 

material interfaces.2,3 Also, DFT has gained a lot of attention due to its prediction 

power as in direct research/experimental investigation it is quite difficult due to the 

associated expenditure of chemicals and technical difficulties like the study of 

materials under extreme pressures and temperatures or in case of the study of the 

toxic substances or nuclear radiation associated studies, etc.4,5 DFT is superior due to 

the quantum mechanical approach as compared to classical approach; this is because 

the classical approach fails to describe the interaction of quantum systems such as 

electrons in a periodic system, electron-phonon interactions, quasi-particle 

dispersions, non-equilibrium states, etc. The quantum approach to investigate the 

interaction and behaviour of electron in materials deals with solving the many body 

time independent Schrödinger equation. But, the problem with this method is that we 

have to consider 3N degrees of freedom of the many-body electronic wave-function. 

This can be modified by representing the many-body electronic wave-function in 

terms of the electron density. This approximation drastically reduces the degrees of 

freedom of the many-body wave-function from 3N to just three (3), making the 

calculations computationally quicker and easier. 

During 

development of the first-principles method based on DFT investigating the ground 
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state of a quantum system.6,7 Ever since then, the DFT has revolutionized the material 

science through its prediction power of material properties. This is achieved 

computationally by solving the self-consistent field-based approach using the 

Schrödinger-like equation.  

2.2 The Schrödinger Equation and Many-Body Problem 

The description of structure and dynamics of many-electron system particularly for 

obtaining the solution of the Schrödinger equation was considered as a major 

challenge for theoretical physicists prior to the development of DFT. To understand 

the behaviour of a system governed under the quantum mechanical rule-set, we need 

to determine the wave-function (r) of the quantum particle at every point 

 in the region of interest, and this can be achieved by solving the Schrödinger 

equation.8 The Schrödinger equation for an electron moving in a weak periodic 

potential could be solved under the nearly free-electron approximation to obtain 

energy eigenvalues as a function of the momentum k, which is known as the electronic 

band structure.9 The time-independent Schrödinger equation is represented by: 

        (2.1) 

                                 = 

Where, H is the Hamiltonian operator which is the sum of the kinetic and potential 

energy, E is the energy eigenvalue for the stationary state described by the wave-

function . Therefore, for an electron in a potential energy landscape V(r), the 

L.H.S. of the above equation can be re-written as; 

                                               (2.2) 



 

27 | P a g e  
 

Here, m is the mass of electron and the momentum operator P, which can be expressed 

as follows: 

                                                     (2.3) 

When we wish to study the many-particle systems such as, collection of electrons and 

ionic nuclei together, we need to introduce a so called many-body wave-function, , 

which depends on the positions of each electron and each nucleus in the system. In 

the case of N electrons with position coordinates r1, r2,...,rN and M nuclei with position 

coordinates R1, R2,...,RM, we can represent the many-body wave-function as  

(r1,r2,...,rN,R1,R2,...,RM). Moreover, the solution of such many body ground states is 

quite difficult due to the mathematical complexity. This can be reduced to the solution 

for the ground state density distribution given by a single particle Schrödinger 

equation using the approximation which is discussed in the proceeding section. Apart 

from the kinetic energy term (T), the Hamiltonian in the Schrödinger equation also 

includes the potential energy term (V), also addressed as the effective potential arising 

from the Coulomb interaction between the electrons Vee, electrons and the nuclei VeN 

and between the nuclei VNN. The Hamiltonian is then represented as: 

H = TN + Te + Vee + VeN + VNN    (2.4) 

 

Here, TN and Te are the operators of kinetic energy for the nuclei and electrons, 

respectively. It is very difficult to solve this problem exactly, hence, one must find the 

acceptable approximation.  
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Where, i and l are indices running for electron and nuclei, me and M stand for the mass 

of electron and nuclei, and  define the charges on different nuclei, ,  

and  represent the distances between electron-electron, nuclei-nuclei and 

electron-nuclei, respectively. The solution of the equation (2.5) is the eigen state and 

energy eigen value which is the total-energy of the system. Once the total-energy of 

the system is determined, the ground state properties of the material at equilibrium 

condition can be obtained. The Hamiltonian in equation (2.4) consists of atomic mass, 

mass of nuclei, atomic number and charge of electron. This method is known as the 

first-principles calculation as the solution of equation (2.5) does not require any 

adjustable parameter. In reality, the equation (2.1) is easily solvable for smaller system 

such as hydrogen and helium but for larger systems containing many electrons is 

difficult to solve, therefore, several approximations to this theory were proposed 

which are discussed in detail in the proceeding sections. 

2.3 A Journey from Wave-Function to Density 

2.3.1 The Born-Oppenheimer Approximation 

The first approximation was made by Born and Oppenheimer10 for the many-body 

time-independent Schrödinger equation wherein, the kinetic energy of nucleus is 

neglected since they are much heavier than the electrons thereby reducing the average 
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kinetic energy of the nuclei much lower than the electronic one. This approximation 

led to the decoupling of electronic and ionic motions. Therefore, the first term of 

equation (2.4) disappears under this approximation and the last term that is potential 

of nuclei becomes constant. The major contributing terms in equation (2.4) are the 

kinetic energy of the electrons (Te) and, the potential energy due to electron-electron 

and electron-nuclei interactions; while the potential generated due to the nuclei-nuclei 

interaction is treated as a constant. Hence, equation (2.4) becomes11: 

H = Te + Vee + VeN + Constant    (2.6) 

The modified Hamiltonian operator can be expressed as the sum of three terms; the 

kinetic energy of electrons, the electron-electron interaction and the interaction of 

electrons with the nuclei treated as an external potential (Vext). Hence, the Equation 

(2.6) can be re-written as: 

H = Te + Vee + Vext      (2.7) 

Here, the electron kinetic energy operator for the electrons is , and the 

potential due to electron-electron interactions and atomic nuclei and electron are 

  and , respectively. 

Here, ri represents the coordinates of electron i and V is the external potential. The 

average total-energy for a state specified by a particular , not necessarily one of the 

eigen functions of the Equation (2.1), is the expectation value of H, that is   

         (2.8) 
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The notation  emphasizes the fact that the energy is a functional of the wave-

function. The external potential justifies the effect of nucleus over electrons which are 

relatively fixed, this leads to the independent electron approximation. 

2.3.2 Independent Electron Approximation 

Independent electron approximation is bifurcated into two basic classical approaches 

that is, (i) Hartree and, (ii) Hartree-Fock (HF) methods.12 

2.3.2.1 Hartree Approximation 

Simplest way of writing the many body wave-function  as a product of single particle 

functions suggested by Hartree is presented below: 

(r1,r2,r ,rn )=   (r3  (rn )                           (2.9) 

These single particle wave-functions  satisfy the single particle Schrödinger 

equation together with potential term due to the average field of the other electrons. 

                           (2.10) 

equation6 

                                              (2.11) 

and, Vext is the potential due to the nuclei-nuclei interaction. 

2.3.2.2 Hartree-Fock Approximation 

Since electrons are Fermions, it was necessary to address them under the Fermi-Dirac 

statistics. This is incorporated by replacing the product wave-function by a single 

determinantal function.13,14 ciple, the 

asymmetric nature of the wave-function and the effect of correlation for electrons 

could not be ignored. Hence, Hatree and Fock considered the asymmetric wave-

function given by the following equation: 
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               (2.12) 

In the HF approximation, minimization of equation (2.10) is done by considering the 

above asymmetric wave-

determinant.15  

                (2.13) 

The determinant of the wave-function can hence be written as,  

     (2.14) 

where, , P is the permutation number and p represent the number of 

interchanges for making up this permutation. Substituting the Slater determinant of 

many-body wave-function in equation (2.10) gives expectation value of Hamiltonian 

as, 

 

                                           (2.15) 

 as 

exchange energy. Minimization of equation (2.15) leads to Hartree-Fock equation 

given below: 
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This is an improvement over Hartree method due to the involvement of exchange energy 

considering the asymmetric nature of the wave-function. However, total-energy  involves 

determinant is quite large; hence this approximation is computationally quite costly for large 

as well as small systems.  

2.4 Thomas-Fermi Theory 

The first approach for solving many body systems to calculate ground state energy 

using density-based theory originated from the Thomas Fermi (TF) theory.16,17 In 1927, 

Thomas and Fermi proposed that the electron density can be used as basic variable 

instead of single particle wave-function or orbitals and the total-energy of the system 

can be written as a functional of electron density. The kinetic energy of N interacting 

electrons is given by the following equation which is written in terms of the electron 

density  as: 

        (2.22) 

The total-energy can then be written as a functional of electron density by adding the 

kinetic energy, electrostatic energy and external potential as a functional of electron 

density 

             (2.23) 

Here, E is the total-energy of the system. The total number of particles can be obtained 

by the minimization of above energy with a constraint recognized by Lagrange 

multiplier as: 

;                  (2.24) 
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The equation 2.23 can be solved self-consistently. The Thomas-Fermi theory does not 

include the exchange energy. Dirac extended this approximation via including the 

exchange interaction and the correlation functional.18,19 However, the shell structure 

and behavior of the atoms of complex systems were not considered in Thomas-Fermi 

theory. This was addressed in the approximation by Hohenberg and Kohn. 

2.5 Hohenberg and Kohn Theorem 

Hohenberg and Kohn established the connection between the electron density and the 

many body Schrödinger equation. In 1964, they introduced two theorems which is 

considered the initiative of density functional theory and developed the proof for the 

following two theorems.20  

Theorem I: 

external potential Vext(r) determines this potential uniquely".20,21  

The above statement states that the electron density uniquely determines the 

Hamiltonian operator (Equation (2.4)) as the ground state is a unique functional of 

density. The Hamiltonian can be computed from the density simply by integration 

over the entire space which is specified by the external potential and the total number 

of electrons N. In a nut-shell, the charge density and the Hamiltonian operator could 

be uniquely determined corresponding to the wave-functions  (for all states). 

To prove this theorem,20 we will consider two different external potentials  and 

 which correspond to different ground state wave-functions, (1) and (2) both 

of which have the same ground state density n(r). Therefore, these two external 

potentials lead to two different Hamiltonians, (1) and (2). This means that (2) is not 

the ground state of (1); hence, we have, 
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                          (2.25) 

The last term can be re-written as: 

             (2.26) 

 

                                      (2.27) 

From equations (2.25) and (2.27), we have  

               (2.28) 

 

The (1) or (2) are just the notations, therefore, we can swap the labels 1 and 2 and we 

will have the following relation:  

 

                              (2.29) 

Then adding equation (2.28) and (2.29) produces contradiction,  

 

 

The assumption that the two different external potentials  and  which 

actually correspond to the different ground states of wave-functions (1) and (2), both 

have the same ground state density n(r); which is not possible. This means that there 

can only be one external potential Vext(r) that can produce the corresponding ground 

state density n(r), and conversely, that the ground state density n(r) uniquely 

determines the external potential Vext(r). 
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The Hohenberg-Kohn theorem can be generalized, as the nature of the quantum 

particles; i.e., the Fermions or Bosons and interacting or non-interacting are not 

considered. 

Theorem II: The functional that delivers the ground state energy of the system, describes the 

 

This theorem is another form of the variational principle in terms of the density instead 

of wave-function. It is implied that20 

   (2.30) 

and 

    (2.31) 

 

where  is system dependent while other part is universally constant 

that can be define H-K functional FHK[n]) as: 

      (2.32) 

 

Substituting equation (2.32) in equation (2.31) becomes 

 

     (2.33) 

 

If  were known exactly, then we can have the exact solution of the Schrödinger 

equation without need of such approximations. 

     Consider a system with the ground state density n(1)(r) corresponding to the 

external potential Vext(1)(r). The expectation value of the Hamiltonian with the unique 
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ground state and wave-function (1) is equal to the H-K functional have the form given 

below:  

    (2.34) 

Therefore, the density, n(2)(r) corresponds to a different wave-function (2 ) having 

energy E(2) of this state is always greater than ground state energy E(1): 

   (2.35) 

The H-K functional evaluated the correct ground state density n0(r) which is indeed 

lower than the value of this expression for any other density n(r) given by equation 

(2.33). Therefore, density based variational principle is also known as the second 

Hohenberg-Kohn theorem.  

2.6 The Kohn-Sham Equation  

Hohenberg and Kohn20 theorem play unique role for the foundation of density 

functional theory.22 The Hohenberg-Kohn theorems divides the energy into two parts, 

one is the system dependent that is  and other is the unknown 

functional FHK[n]. Major problem is to find the unknown functional FHK[n] to have 

exact solutions. Kohn and Sham devised a better way to handle the unknown FHK[n].  

The Kohn-Sham approach considered auxiliary system of non-interacting 

quasiparticles that have the same density as the true interacting problem, i.e., there 

exists some single particle potential Veff(r) which when applied to non-interacting 

electrons, yields the same ground state density as the fully interacting problem. 

The total energy for the interacting system can be written as:20 

      (2.36) 
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where T[n] is the interacting kinetic energy functional and V[n] is the Coulomb 

potential functional for the interacting system, and Vext(r) is the external potential.  

Here, we have assumed the non-interacting system while the interacting system have 

the same density. Therefore, we can add and subtract the non-interacting kinetic 

energy (Ts[n]) and the Hartree energy (EH[n]) to (2.36) respectively which is give as:  

 

            (2.38) 

  (2.39) 

The exchange-correlation energy is defined as: 

     (2.40) 

The exchange-correlation energy (Exc[n]) is also universal functional as it depend on 

the external potential. The kinetic contribution to the correlation and the Hartree-Fock 

exchange and the electrostatic contribution to the correlation are given by (T[n] Ts[n]) 

and V[n] EH[n] respectively. 

The Hartree energy EH[n] is the classical electrostatic energy for a charge distribution 

n(r) given as: 

     (2.41) 

The non-interacting kinetic energy Ts is then evaluated from the single particle wave-

functions, 

      (2.42) 

and the density n(r) and particle count N of the non-interacting system can be 

straightforwardly calculated as: 



 

38 | P a g e  
 

       (2.43) 

with 

       (2.44) 

 

The minimization of the ground state can with respect to density n(r) of the effective 

potential Veff(r) is the solution of KS auxiliary system is given below.  

 

    (2.45) 

Where, Ts[n] 

are functionals of the density. We can Schrödinger like equations after substituting 

equations (2.26) and (2.27) in to equation (2.29) 

       (2.46) 

 

Where, , , the i are the eigen values and HKS is the 

effective Hamiltonian. 

The effective Hamiltonian is given by: 

                                                   (2.47) 

Where,    

The Kohn-Sham equations is given equation (2.46) resulting to total energy EKS and 

density n(r) given by (2.41) and (2.43) which is independent of any approximation to 

the functional Exc[n].  If the exact functional Exc[n] were known then we can have the 

exact ground state density and energy for the interacting system. 
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2.7 Exchange and Correlation Functionals 

In order to solve the Kohn-Sham equation, we need to specify the exchange-

correlation function Exc[n] and defining it seems to be difficult to get from Hohenberg 

theorem.2 To have derivation of this functional, firstly we have to considered electron 

density at all place to be constant that is n(r) = constant as in case of uniform gas. This 

approximation was developed by Kohn-Sham found to be very successful in 

calculating the electronic structure of atoms, molecules, and solids.22 Afterwards, the 

variety of approximations for the exchange-correlation functional has been developed 

for different case validate with experimental data. Among them, the most widely used 

ones in generals are the local density approximation (LDA) and the generalized 

gradient approximation (GGA).  

The exchange correlation functionals is define as: 

    (2.48) 

Where, Fxc is the enhancement and its parameters depend on whether the functional 

is LDA or GGA. 

2.7.1 Local Density Approximation 

The local density approximation (LDA) is the simplest approximation for Exc which 

assumed that the electron density n(r) varies very slowly in space 23 so that each 

small volume-element of the system leads to locally inform in terms of homogenous 

electron gas at the same density. The LDA for exchange and correlation energy is 

defined as: 

        (2.49) 
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where, (n) is the exchange correlation energy per particle of 

a uniform electron gas of density and it is sum of correlation functional and an 

exchange functional: 

     (2.50) 

The exchange energy per electron for homogeneous system is given as: 

 

        (2.51) 

         (2.52) 

    Substituting equations (2.51) and (2.52) in equation (2.49) we have: 

     (2.53) 

However, this approximation cannot provide estimation to the long-ranged exchange-

correlation interaction that is van der Waals (vdW) interaction. To overcome the issue 

of this interaction, we have to include the non-local exchange-correlation term20 that 

is disused in dispersion correction.  There are many draw backs of LDA such as it 

underestimates band gaps in semiconductors and insulators and over-binds 

molecules/solids.23 

2.7.2 Generalized Gradient Approximation     

There is need of approximation beyond LDA to higher accuracy, therefore instead of 

considering slow varying electron density in space, the exchange correlation function 

is considered as functional of density as well as gradient which satisfies the sum rule 

23. The GGA for exchange and correlation energy is defined as: 
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      (2.54) 

    (2.55) 

where is dimensionless and is the exchange energy of the unpolarized gas. 

The generalized gradient approximation has attracted much attention it overcomes 

the drawback of LDA such in calculating cohesive energies of solids/molecules24 and 

gives more accurate equilibrium lattice parameters.25,26 The Most frequently used 

GGA functionals are Becke,27 Perdew and Wang (PW)28 and Perdew, Burke and 

Enzerhof (PBE).29 

2.8 Density Functional Perturbation Theory 

In solid state physics, the study of phonon is essential as the phonons play an 

important role in many of the physical properties of solids, such as the thermal 

conductivity and the electrical conductivity. Density functional perturbation theory 

(DFPT) is a powerful theoretical technique within density functional theory 

framework to calculate such properties.30 32 In this method, linear response is applied 

to the Khon-Sham equation to observe the change in solution of electron charge 

density due to small perturbation.33,34 Therefore, , E, n(r), etc. are subjected to 

perturbation in DFPT. The external potential 

expanded as 

                 (2.56)   

All derivatives are calculated  =0. Similar expansion is done for charge density and 

energy functional which is given as: 

                                                        (2.57)    
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                                      (2.58)    

Where,  

Here, the first-order derivative E does not depend on any derivative of n(r) whereas 

The second-order derivative energy depends on the first-order derivative of the 

charge density, . Therefore, the second order energy is used to calculate the 

dynamical matrix for phonon frequency calculations and Born effective charges. The 

expression of energy as functional of density is given as: 

                     
(2.59) 

 The second order term of energy is obtained as variational with respect to first order 

wave-function provided first order wave-functions are orthogonal to the ground state 

wave-functions

 
                                                                               (2.61) 

Here, dynamical matrix is Hermitian, therefore its eigenvalues  and 

eigenvectors are real and orthonormal respectively. The phonon band structure  

  directly corresponds to density of states that gives the details of phonons in 

whole Brillouin zone (BZ).35 40 The information about the whole phonon spectrum can 
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be obtain by scanning of whole Brillouin-zone and it consists of -matrix 

diagonalization over the three-dimensional net of wave vector , at 

n1, n2, n3 = - N,., N. where  it includes Ni = (2N + 1)  points in Brillouin zone.40 The 

phonon density of states (DOS) is determined by summation over all the phonon 

states and is defined by.35,40,41 

                     (2.62) 

Where, D' is a normalization constant such that ; and g( )d  is the fraction 

of phonons with energies ranging from  to  + d p

q  in the discretized irreducible Brillouin zone, where dqp provides 

the weighting factor corresponding to the volume of pth mesh in q-space. The 

contribution of different atoms to phonon density of states (DOS) is known from the 

partial atomic density of states (PDOS) which provide essentially aids in 

understanding the atomic level contribution to the total phonon DOS and, can be 

defined as follows: 

 

                      (2.63) 

2.9 Dispersion Correction to Density Functional Theory 

The incorporation of van der Waals (vdW) interaction is necessary to understand the 

initial stage of physical absorption and chemical reaction which fails in case of DFT. 

Also, in case of confined materials, like layered 2D materials42 or 2D and 1D 
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heterostructures 43 45 it is mandatory to include the long range weak vdW interactions 

for accurate prediction of diverse properties like binding energy, electronic 

dispersion, excitonic properties, surface carrier trapping, adsorption energy, etc. As 

discussed in the earlier section that the approximations LDA and GGA fail to account 

long-range van der Waals (vdW) interaction,46 48 thereby suggesting to include the 

non-local exchange-correlation term in the solution of Khon-Sham equation 18. The 

vdW correction to total energy is given by 

  

 

          (2.64) 

Where,  is general Kohn Sham energy functional and the empirical vdW 

dispersion correction to the correlation functional  is given by 49 

 

                       (2.65) 

where   is global scaling factor which depends on the functionals, Nat is the total 

number of atoms,  defines the dispersion coefficient for atom pair ij, and Rij is 

interatomic distance. The damping function  is given by 

               

 

                      (2.66) 

where,  is the sum of atomic vdW radii.  and  are defined as:  
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                             (2.67) 

                                                 (2.68) 

The results are precisely tested on systems including elements up to xenon and large 

hydrocarbons with many hydrogen atoms showed. 

2.10 Optical Properties under Random Phase Approximation 

Apart from the spatial electronic dispersion curve, it is necessary to calculate the 

optical properties of the material for testing its applicability in the field of 

optoelectronics. Although, apart from being material specific, the electro-optic 

transport of any material is found to be approximation dependent.50 The reports 

suggest the widely used random phase approximation (RPA) 51,52 almost accounts the 

relevant parameters affecting the optical properties of the material and thus, is reliable 

for computing the frequency dependent ground-state optical transport properties of 

the materials ranging from bulk 50,53,54 to confined dimensions 55,56 and to the materials 

with complex geometry.57,58 The frequency dependent optical parameters such as 

complex di-electric function, refractive index, optical reflectivity, absorption co-

efficient, etc., can be computed under RPA.51,52 This approximation first provides the 

imaginary parts of the complex di-electric function, and then, from the Kremmer-

Kronig relations, the real part of the complex di-electric function can be derived. These 

two parameters then can be utilized for further computation of the remaining optical 

properties.  

For understanding the relation between the complex di-electric function with optical 

properties like reflectivity, loss function, absorption spectra, etc., let us consider the x-

z plane to be the plane of incidence with z-axis to be the surface normal, then the 
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reflectivity for light polarized parallel and perpendicular to the plane of incidence can 

be expressed as 

 

                                        (2.70) 

 

                                                 (2.71) 

Here, the  represents complex refractive index. In the case of NWs 

grown in z direction, the surface normal becomes parallel to the growth axis, and 

hence, , and , and within linear response regime, . 

The  is known as the frequency dependent complex di-electric function 

cab be further expressed as the combination of the real part /  and the 

imaginary part . 

 

                                            (2.72) 

As the two components and  are not independent of each-other within the 

linear response regime, they must obey Kramer-Kronig (KK) relations, 

 

                                    (2.73) 

 

                                   (2.74) 
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With  being the Cauchy principle value. The imaginary part of the complex di-

electric function can be computed using the relation,  

 

                 (2.75) 

m2 2, with  being the frequency and m is 

the effective mass of the electron. The , ,   and  are respectively the wave-

functions and energies of conduction band and valence band for specific point k. After 

computing the imaginary part of the di-electric function, one can easily compute the 

real part via KK relation (see equation (2.73) and (2.74)). The two components of the 

di-electric functions can be further utilized for evaluating the optical properties like 

refractive index, extinction co-efficient, loss function, absorption co-efficient, etc. 

Provided the conditions, and , we can define the complex 

index of refraction as follows: 

                                              (2.76) 

with  and  being the refractive index and the extinction co-efficient, 

respectively that can be further defined as,  

                                       (2.77) 

and 

                                     (2.78)  

These two functions were utilized for further computation of the reflectivity R and the 

absorption co-  
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                                   (2.79) 

                                              (2.80) 

,  and k being the wavelength and velocity of light and extinction co-efficient in 

which is the measure of energy lost by the semiconductor material subjected to motion 

of electrons inside the homogeneous medium. 

 

                                            (2.81) 

2.11 Thermoelectric Properties under Boltzmann Transport Equations 

The thermoelectric transport through the material is solely governed by the two 

famous effects; first being the Seebeck effect59 that accounts for the conversion of 

thermal energy to electrical energy via temperature gradient, and, the complementary 

effect known as the Peltier effect, which is also known as the reverse Seebeck effect 

due to its reverse working principle. For the computations of thermoelectric 

properties, semi-classical Boltzmann transport equations (BTE) for electrons and 

phonon need to be solved iteratively to calculate electronic and phonon contributions 

to the thermoelectric properties.60 The efficiency of any material to convert the thermal 

energy to electrical energy can be assessed by computing the figure of merit ZT of the 

material that can be expressed as under: 

                                       (2.82)                                

                              (2.83) 
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Here, S represents Seebeck co- is temperature 

e l are the electronic and lattice/phonon contributions to the thermal 

conductivity, respectively. The ZTe and ZT are respectively, the electronic and overall 

figure of merits of the material respectively. The electronic contributions to 

thermoelectric properties was computed by solving BTE utilizing BoltzTraP code61 

and the phonon contribution to the same is obtained by solving phonon Boltzmann 

transport equation (PBTE) considering the third order phonon scattering effects as 

implemented on ShengBTE code.62 The assessment of electronic contributions to the 

thermoelectric transport properties is done by extrapolating the electronic band 

energies using Fourier expansion.61 This was done considering the constant relaxation 

time approximation (CRTA), in which the Seebeck co-efficient of the system is 

independent of the scattering rates 63 but also has a limitation as it computes relaxation 

e. As 

far as phonon contribution to thermal conductivity is concerned, it is noteworthy, that 

the second order interatomic force constants that are usually computed under 

harmonic approximation does not account the anharmonicity of the material; 

therefore, to address this issue, the third order force constants are computed. To 

e, we have computed the 

by Bardeen and Shokley64 

(2.85)).   

                                 (2.84) 
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represents  the elastic constant of the system,  is Boltzmann co-efficient, T is 

temperature,  is the carrier effective mass and  represents the deformation 

potential constant. For computing the deformation potential E1, the unit cells need to 

get relaxed under the influence of external strain in the range of ± 3% with 0.5% step 

size and the respective valence band maxima (VBM)/conduction band minima (CBM) 

energies need to be computed for hole/electron dependent properties. The valence 

band maxima (EVBM)/conduction band minima (ECBM) energies are usually not exact, 

and hence need to be aligned properly for accurate prediction of the electronic 

dispersion dependent properties.64 Hence, together with EVBM or ECBM, it is necessary 

to compute the respective lowest energy eigen values (ECore) of the corresponding 

structures under the influence of external strain. To align the EVBM/ ECBM with respect 

to lowest energy level (ECore) can be achieved by taking the difference between 

EVBM/ECBM and ECore. This aligned energy eigen values when plotted with respect to 

applied strain, gives the value of the deformation potential by implementing the 

formula d(EVBM/CBM - ECore)/dv. Here, v 0 -V0; V 

and V0 being the volumes of unit cell under strained and equilibrium conditions, 

0 

VBM - ECore 0)) was extracted, defined 

here as deformation potential constant E1. After computing the magnitudes of Cii, and 

E1, the mobility  can be evaluated from Equation 2.84, and utilizing , we can 

compute the respective relaxation time  of the material which represents the time 

between the two successive collisions of electron and ions.  
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                                         (2.85) 

In case of inorganic semiconductors, the thermally activated electrons and holes play 

a key role in transport, and usually possess much higher coherent wavelengths than 

the lattice constant of the respective material with the magnitude lying close to the 

acoustic phonon mode at the center of the first Brillouin zone (BZ).65 Apart from the 

bulk materials, it is observed that on imposition of dimensional confinement, akin to 

the major transport and dynamics governing properties, the electron-acoustic phonon 

coupling achieves domination over other factors and governs the scattering 

mechanism.66,67 The deformation potential theory as proposed by Bardeen and 

Shockley64 has been proven to account dimension dependence of the carrier mobility 

68 71 that can be evaluated by the equations given below:  

      (2.86) 

     (2.87) 

The equations (2.86) and (2.87) under the deformation potential approximation can be 

utilized for evaluating the confinement dependent carrier mobilities and relaxation 

time and  independent computation of the thermoelectric properties of the relevant 

material can be done in more efficient way. 
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