Notations

A Linear constant; a pre-exponential factor Van-der-Waal's constants a, b Redlich and Kwong defined constants a_1, b_2 a, b, c Lattice parameters at% Atomic percent \mathbf{C} Coulomb $(C_{\alpha})_{\infty}$ Far-zone concentration of α in reactor °C Degree Celsius Centimeter cm d Plane separation D_{P} Diffusion coefficient through species βH_2 of α Ε Electric energy E_{a} Apparent activation energy E_{h} and E_{e} Energy diverted to burner and energy input to IC engine, respectively E_{c} Energy per mole of hydrogen, which is stored in the Mg based alloy composition E_{el} Electrical energy to load per one mole liberated from reactor E_m and E_X Energy of mechanical and exhaust energy input to Genset, respectively E_{r} Energy required to liberate one mole of hydrogen from reactor eV Electron volt F Faraday constant; degree of freedom Fe^{af}, Mg^{af}, Mn^{af}, Atomic fraction of Fe, Mg, Mn, Ni, Pd, Ti, V and Zr, Ni^{af}, Pd^{af}, Ti^{af}, V^{af} respectively and Zr^{af} Feaw, Mgaw, Mnaw, Atomic weight of Fe, Mg, Mn, Ni, Pd, Ti, V and Zr, Ni^{aw}, Pd^{aw}, Ti^{aw}, respectively V^{aw} and Zr^{aw} Fe^w, Mg^w, Mn^w, Weight of Fe, Mg, Mn, Ni, Pd, Ti, V and Zr, Ni^w, Pd^w, Ti^w, V^w respectively and Zr^{w} Gas g

Gram

gm

h – Hour

 $H_{(ch)}$ — Chemisorbed hydrogen $H_{(ph)}$ — Physisorbed hydrogen

H^O – Protium in crystalline lattice

HP – Horse Power

Ratio of specific heats (C_P/C_V); rate constant

K – Kelvin

 k_{α} – Convective transport coefficient of species α at $r = r_p$

kg – Kilogram kJ – Kilo Joule

K_P – Equilibrium constant of the hydriding reaction

 k_r - Reaction rate constant at $\beta/\beta H_2$ interface

kV - Kilo Volt

kWh – Kilo-Watt hour l – Liter; liquid

Metal; mass of synthesized alloy composition
 Mass of absorbed or desorbed hydrogen; meter

mA – Micro-ampere

 M_{β} — Molecular weight of species β

 M_c % — Mass percent hydrogen during absorption M_d % — Mass percent hydrogen during desorption

meV – Milli electron Volt

 MH_x — Metal Hydride (α -phase) MH_y — Metal Hydride (β -phase)

min – Minute
MJ – Mega Joule
mm – Micro-meter

mol – Mole

MPa – Mega Pascal MW – Mega Watt

n – Number of moles; Avrami exponent; integer value

N – Number of chemical species

n₁ - Number of moles in a reaction chamber before

charging / discharging

n₂ – Number of moles in a reaction chamber after charging

/ discharging

nm – Nano-meter

P Pressure P_1 Initial pressure P_2 Final pressure Equilibrium pressure; plateau pressure P_{H2} Equilibrium pressure at t=0 P_{O} Radius r R Gas constant Coefficient of correlation for charging Coefficient of correlation for discharging Mean radius of spherical powdered phase of reactant r_p Solid; second S \$ US dollar Wall thickness; time; crystallite size / grain size t Dimensionless time T Temperature T_1 Room temperature T_2 Charging / discharging temperature T_{H} High temperature source T_{L} Low temperature source T_{M} Medium temperature source V Volume; cell voltage / potential V_1 , V_2 , V_3 and V_4 Different valve numbers Volume of reaction chamber V_a without reactor connected Volume of connected pipelines between valves V2 and $V_{\mathfrak{p}}$ V_3 Volume of connected pipeline between valve V₃ and V_{pr} rector V_R Volume of reservoir $V_{\rm r}$ Volume of reactor wt% Weight percent X Magnification \hat{X} Expectation value of variable X

XV

Electron efficiency

X - rays

x, y X_1, X_2

 X_H - Fraction of hydrogen into metal \hat{Y} - Expectation value of variable y Z - Valency

Greek Symbols

Å – Angstrom

Solid solution of H₂; fraction reacted of H₂; ramp rate

 α_c – Charging reaction constant

 $\hat{\alpha}_c, \hat{\beta}_c$ Estimated values of the constants for charging kinetics

 α_d — Discharging reaction constant

 $\hat{\alpha}_d$, $\hat{\beta}_d$ - Estimated values of the constants for discharging

kinetics

 $\alpha(r_0)$ – Interstitial sites in the α -phase

 $\alpha(r_{\beta})$ — Interstitial site in the α -phase at the α/β interface β — Metal hydride phase; full width at half maximum

 $1/\beta_c$ — Charging time constant $1/\beta_d$ — Discharging time constant

 β_M - Full width at half maximum of XRD peak

 $\beta(r_0)$ – Interstitial sites in the β -phase

 $\beta(r_{\alpha})$ — Metal/gas interface of the spherical particles

 β_S - Full width at half maximum of XRD peak of standard

material

Δ – Path difference

 ΔG° ; ΔG — Gibbs free energy — Specific enthalpy

 ΔH ; ΔH_0 – Standard enthalpy of formation ΔP – Pressure drop; differential power

ΔQ – Net heat liberated

 ΔS ; ΔS_0 – Standard entropy of formation

 $\Delta \overline{S}_{p_{condo}}$ – Pseudo specific entropy

 η_S – Efficiency of system

λ – Wavelength of X–ray

 π – Number of phases

 Φ_1 - Ratio of the external diffusion resistance and diffusion

resistance in product layer

 Φ_2 - Ratio of the diffusion resistance in product layer and

reaction resistance at solid/gas interface

 ρ_{β} — Density of species β

 σ_{YY} - Principal stress

 θ – Angle of diffraction \overline{V} – Molar specific volume

ω – Acentric factor

 χ^t_{β} — Hydrogen converted mass fraction of β at time t

Subscripts

a – Activation; reaction chamber without reactor

af – Atomic fraction

aq – Aqueous

aw – Atomic weight

b – Burner

c – Charging; composition

ch – Chemisorption d – Discharging

e – Energy input to IC engine el – Electrical energy to load

∞ – Far infinitive zone

H – High; fraction of hydrogen

L – Low P – Particle

p – Pipeline between valves V₂ and V₃; powdered phase

ph – Physisorption

pr – Pipeline between valves V₃ and reactor

M – Maximum; medium
m – Mechanical energy

r – Reactor R – Reservoir

S – Standard sample; system

W – Weight X – Exhaust