List of Figures

Chapter 1

Fig. 1.1	Global energy systems transition, 1850–2150	3
Fig. 1.2	Interrelation of hydrogen energy systems	8
Fig. 1.3	Comparison of hydrogen storage densities of different	14
	hydrogen storage materials	
Fig. 1.4	The volume of 4 kg of hydrogen stored in different ways,	15
	relative to the size of a car	
Fig. 1.5	Classification of the solid state hydrogen storage material	19
Fig. 1.6	Structure of activated carbon	20
Fig. 1.7	Carbon nano-horn with hydrogen condensed at the end	22
	of conical tip: (a) Agglomerate to form nano-carbon	
	particles that exhibit rosette shape and (b) TEM image	
Fig. 1.8	Hydrogen absorption in a nano tube, with (a) Exterior	23
	and (b) Interior H ₂ coverage	
Fig. 1.9	Structure of a Zeolite	24
Fig. 1.10	Structure of MOF–5	25
Fig. 1.11	Classifications of metal hydride	26

Chapter 2

Fig. 2.1	Pictorial view of metal hydride	42
Fig. 2.2	Schematic Lennard – Jones potential energy diagram	43
Fig. 2.3	Schematic illustration of the different mechanisms	45
	involved in the formation of a metal hydride: (a)	
	Absorption mechanism and (b) Desorption mechanism	
Fig. 2.4	Structure of MgH ₂	51
Fig. 2.5	Mg–H phase diagram at 1 bar	52
Fig. 2.6	Schematic diagram of shrinking core model	68
Fig. 2.7	Schematic diagram showing the three-core spherical	68

71 74 83 83 83
83 83
83
83
83
85
85
87
88
89
91
93
94
99
99
100
105
106
106

Fig. 4.4	Kinetics curve of pure Mg at 303 °C charging and 365 °C	108
	discharging temperatures: (a) Without milling and (b)	
	With 40 h milling	
Fig. 4.5	SEM micrographs: (a) Pure Ni without milling and (b)	108
	Mg ₂ Ni alloy at 40 h milling	
Fig. 4.6	EDS spectra of Mg ₂ Ni alloy	109
Fig. 4.7	XRD spectra of Mg ₂ Ni alloy	110
Fig. 4.8	Reaction kinetics curve of Mg2Ni alloy: (a) Charging	111
	kinetics and (b) Discharging kinetics	
Fig. 4.9	SEM micrograph of Mg-Fe-Mn-Ni alloy composition	112
Fig. 4.10	EDS spectra of Mg–Fe–Mn–Ni alloy composition	112
Fig. 4.11	XRD spectra of Mg-Fe-Mn-Ni alloy composition: (a)	114
	Unhydrided alloy composition and (b) Hydrided alloy	
	composition	
Fig. 4.12	Reaction kinetics curve of Mg-Fe-Mn-Ni composition	115
	for different temperatures: (a) Charging kinetics and (b)	
	Discharging kinetics	
Fig. 4.13	SEM micrographs in secondary electron mode: (a) Pure	118
	V and optimized Mg-V-Ni composition (code MV2) at	
	different magnifications: (b) 650 X, (c) 1000 X and (d)	
	1500 X	
Fig. 4.14	SEM micrographs of the optimized Mg-V-Ni	119
	composition (code MV2), in back scattering mode at	
	different magnifications: (a) 250 X, (b) 500 X and (c)	
	1000 X	
Fig. 4.15	EDS spectra of synthesized Mg-V-Ni compositions: (a)	121
	MV1, (b) MV2 and (c) MV3	
Fig. 4.16	XRD spectra: (a) Unhydrided Mg-V-Ni compositions	123
	(40 h milled), (b) Unhydrided MV2 composition for	
	various milling times and (c) Hydrided composition of	

MV2

Fig. 4.17	Charging kinetics curve of MV2 composition for as	125
	blended and different milling times	
Fig. 4.18	Charging kinetics curve for different compositions	125
Fig. 4.19	Charging kinetics curve for different Mg–V–Ni	127
	compositions at different hydriding temperatures: (a)	
	MV1, (b) MV2 and (c) MV3	
Fig. 4.20	Discharging kinetics curve for different Mg-V-Ni	129
	compositions at different dehydriding temperatures: (a)	
	MV1, (b) MV2 and (c) MV3	
Fig. 4.21	Hydriding characterization of MV2 coded alloy	131
	composition using ideal and real gas equations: (a) H_2	
	absorption versus time and (b) Deviation in absorption	
	from ideal gas equation	
Fig. 4.22	Dehydriding characterization of MV2 coded alloy	132
	composition using ideal and real gas equations: (a) H_2	
	desorption versus time and (b) Deviation in desorption	
	from ideal gas equation	
Fig. 4.23	Model fit for experimental data using lumped first order	134
	kinetics model for the optimized MV2 coded	
	composition: (a) Charging kinetics and (b) Discharging	
	kinetics	
Fig. 4.24	Model fit for experimental data using different model for	135
-	the optimized MV2 coded composition: (a) Shrinking	
	core model and (b) Johnson-Mehl-Avrami model	
Fig. 4.25	Experimental and derived pressure ratio versus inverse	137
	temperature (using Van't Hoff equation) for optimized	
	MV2 composition	
Fig. 4.26	Electrical power absorbed during DSC test versus	137
	time/temperature plot for hydrided MV2 coded	

composition

	composition	
Fig. 4.27	SEM Micrographs: (a) Pure Palladium and synthesized	140
	Mg–Pd–Ni compositions: (b) MP1, (c) MP2 and (d) MP3	
Fig. 4.28	EDS spectra of different Mg-Pd-Ni compositions for 40	142
	h milled samples: (a) MP1, (b) MP2 and (c) MP3	
Fig. 4.29	XRD spectra of the different Mg-Pd-Ni compositions:	144
	(a) Unhydrided compositions and (b) Hydrided MP2	
	coded composition	
Fig. 4.30	Charging kinetics of the different Mg-Pd-Ni	145
	compositions	
Fig. 4.31	Charging kinetics of MP2 coded composition: (a)	146
	Different milling time and (b) Different Charging	
	Pressure	
Fig. 4.32	Charging kinetics of the different Mg-Pd-Ni	148
	compositions: (a) MP1, (b) MP2 and (c) MP3	
Fig. 4.33	Discharging Kinetics of the Different Mg-Pd-Ni	150
	Compositions: (a) MP1, (b) MP2 and (c) MP3	
Fig. 4.34	Hydriding characterization of MP2 coded alloy	151
	composition using ideal and real gas equations: (a) $\ensuremath{H_2}$	
	absorption versus time and (b) Deviation in absorption	
	from ideal gas equation	
Fig. 4.35	Dehydriding characterization of MP2 coded alloy	152
	composition using ideal and real gas equations: (a) $\ensuremath{H_2}$	

- desorption versus time and (b) Deviation in desorption from ideal gas equation Fig. 4.36 Model fits for experimental data using lumped first order 154 kinetics model for the optimized MP2 coded
- kinetics model for the optimized MP2 coded composition: (a) Charging kinetics and (b) Discharging kinetics
- Fig. 4.37 Model fits for experimental data using different models 156

for the optimized MP2 coded composition: (a) Shrinking core model and (b) Johnson–Mehl–Avrami model

- Fig. 4.38 Experimental and derived pressure ratio versus inverse 157 temperature (using Van't Hoff Equation) for optimized MP2 composition
- Fig. 4.39 Electrical power absorbed during DSC test versus 157 time/temperature plot for optimized MP2 coded hydride composition
- Fig. 4.40 SEM micrographs: (a) Pure Zirconium and synthesized 160 Mg–Zr–Mn–Ni compositions: (b) MZ1, (c) MZ2 and (d) MZ3
- Fig. 4.41 EDS spectra of different Mg–Zr–Mn–Ni compositions 162 for 40 h milled: (a) MZ1, (b) MZ2 and (c) MZ3
- Fig. 4.42 XRD spectra: (a) Unhydrided Mg–Zr–Mn–Ni alloy 164 compositions and (b) Hydrided alloy coded MZ2
- Fig. 4.43 Charging kinetics curve of MZ2 coded composition for 165 different milling times
- Fig. 4.44 Charging kinetics curve for different Mg–Zr–Mn–Ni 166 compositions
- Fig. 4.45 Charging kinetics of the different Mg–Zr–Mn–Ni 167 compositions: (a) MZ1, (b) MZ2 and (c) MZ3
- Fig. 4.46 Absorption/desorption kinetics of MZ1 coded 168 composition
- Fig. 4.47 Discharging kinetics of the different Mg–Zr–Mn–Ni 169 compositions: (a) MZ1, (b) MZ2 and (c) MZ3
- Fig. 4.48 Hydriding characterization of MZ2 coded alloy 171 composition using ideal and real gas equations: (a) H₂
 absorption versus time and (b) Deviation in absorption from ideal gas equation
- Fig. 4.49 Dehydriding characterization of MZ2 coded alloy 172

composition using ideal and real gas equations: (a) H_2 desorption versus time and (b) Deviation in desorption from ideal gas equation

- Fig. 4.50 Model fit for experimental data using lumped first order 174 kinetics model for the optimized MZ2 coded composition: (a) Charging kinetics and (b) Discharging kinetics
- Fig. 4.51 Model fit for experimental data using different model for 175 the optimized MZ2 coded composition: (a) Shrinking core model and (b) Johnson–Mehl–Avrami model
- Fig. 4.52 Experimental and derived pressure ratio versus inverse 176 temperature (using Van't Hoff Equation) for optimized MZ2 composition
- Fig. 4.53 Electrical power absorbed during DSC test versus 177 time/temperature plot for optimized MZ2 coded hydride composition

Chapter 5

Fig. 5.1	SEM micrograph of (a) Pure Fe without milled (b) Pure	183
	Ti without milled and Fe-Ti-Ni composition (40 h	
	milled): (c) 500 X and (d) 1000 X	
Fig. 5.2	EDS spectra of Fe–Ti–Ni alloy composition	184
Fig. 5.3	XRD spectra of the synthesized Fe-Ti-Ni alloy	184
	composition	
Fig. 5.4	Kinetics curve of Fe-Ti-Ni composition: (a) Charging	186
	kinetics and (b) Discharging kinetics	
Fig. 5.5	SEM micrograph of V–Ti composition (40 h milled): (a)	188
	500 X and (b) 1000 X	
Fig. 5.6	EDS spectra of V-Ti alloy composition	188
Fig. 5.7	XRD spectra of the synthesized V-Ti alloy composition	189

Fig. 5.8	Kinetics curve of V-Ti composition: (a) Charging	190
	kinetics and (b) Discharging kinetics	
Fig. 5.9	SEM micrographs of V-Ni alloy after 15 h milling: (a)	192
	500 X and (b) 1000 X	
Fig. 5.10	EDS spectra of synthesized V-Ni alloy composition	193
Fig. 5.11	XRD spectra of the synthesized V-Ni alloy composition	194
Fig. 5.12	Kinetics curve of V-Ni composition: (a) Charging	195
	kinetics and (b) Discharging kinetics	
	Chapter 6	
Fig. 6.1	Volumetric comparison of various hydrogen storage	199
	media gaseous for 1 kg H_2 : (a) Gaseous storage at 150	
	kg/cm ² , (b) Low temperature based metal hydride and (c)	
	Mg based metal hydride	
Fig. 6.2	Fixed metal hydride bed for hydrogen storage	200
Fig. 6.3	Schematic diagram of the power system application of	201
	Mg based metal hydride	
Fig. 6.4	Application of hydride storage system to hydrogen fueled	204
	vehicles (supplemental heat case)	
Fig. 6.5	Application of hydride storage system to hydrogen fueled	205
	vehicles (non – supplemental heat case)	
Fig. 6.6	Basic concept of a heat pump	207
Fig. 6.7	Principles of a heat pump cycle (Van't Hoff plots on P-T	207
	relations)	
Fig. 6.8	Basic concept of a refrigerator	208
Fig. 6.9	Principles of a refrigeration cycle (Van't Hoff plots on P-	208
	T relations)	