CHAPTER - 6

JOINT PRICING, ADVERTISEMENT,
PRESERVATION TECHNOLOGY INVESTMENT
AND INVENTORY POLICIES FOR NON-
INSTANTANEOUS DETERIORATING ITEMS UNDER
TRADE CREDIT
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6.1 Introduction

In this chapter we extend the model developed in chapter 4 allowing
preservation technology investment. We assume the deterioration rate can be
reduced through investing in preservation technology, and the demand
depends on the price and frequency of advertisement. We simultaneously
optimize the preservation technology investment, selling price, frequency of
advertisement, and ordering policies for non-instantaneous deteriorating

items.

To obtain the optimal solution an iterative algorithm is provided, then
the proposed model is illustrated through numerical examples. The concavity
of the profit function w.r.t decision variables shown graphically. The
sensitivity analysis investigates the impact of each parameter on decision
policies. Preservation technology investment and credit period are beneficial
for the retailer, and can also earn more profit through advertisement. Value-
added food products, such as soft drinks, bottled fruit juice, packed fruits,
cake, bread, processed meat, etc., needs preservation technology also their
demand depends on the price as well as marketing. Profit maximization of
such items can be studied with the help of the model developed in this
chapter.

6.2 Assumptions
e The inventory system involves a single non-instantaneous
deteriorating item.
e Demand is a function of selling price and advertisement frequency. We
assume the demand function as (described by Kotler (1972). ) follows:
D(A,P) = A™aP?
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Where, m is the shape parameter (0 <m < 1), A (> 0) is the frequency

of advertisement, a(> 0) is the scaling factor, P is the selling price,

aD(A,P) 0D(A,P)

> 0 and

and. b(= 1) is the index of price elasticity. Since <

0, the demand function is a decreasing function of price (P) and
increasing function of the advertisement frequency(A4), this reflects a
real situation.

The lifetime (t) of the product follows three-parameter Weibull
distribution f(t) = aB(t — T,)Pte~*¢-Td’  where a (> 0)is the scale
parameter, § (> 0) is the shape parameter and T,; (= 0) (deterioration

free life) is the location parameter. The cumulative distribution

function is F(t) = f;d f®dt=1- e~4t-Td’ hence the deterioration

- f@® _ B-1
rate 1s—1_F(t)—aﬁ(t TP .

The deterioration rate can be reduced through investing in
preservation technology. The proportion of reduced deterioration rate
ism(&) =1—e ¢, where, n(=0) is the simulation coefficient
representing the percentage increase in m(¢) per dollar increase in €.
When é = 0, the reduced deterioration rate m(é) =0, and foré —

0, S;im m(&¢) = 1. But we set constraint0 <& < ¢&', where, ¢’ is the

maximum PT investment allowed.

Instantaneous replenishment and infinite replenishment rate.
Shortages are allowed and partially backlogged. The fraction of
unsatisfied demand backlogged is D(4, P)e~%T~9 for t € [Ty, T], where
backlogging parameter § is a positive constant and (T —t) is the
waiting time.

The supplier provides some credit period.

There is no salvage value or resale for the deteriorated items.
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6.3 Model Development

As shown in figure 1, initially the inventory system has I, units. During
the time interval [0, T;] there will be no deterioration and hence the inventory
level decrease in this period due to demand only. During the interval [Ty, T} ]
the inventory level decrease due to demand and as well as deterioration, but
in this period the deterioration rate will be reduced by investing in
preservation technology. At time T; the inventory reaches zero and the
demand will be partially backlogged during [T;,T]. If the supplier allows
credit period M units of the time to settle the account then the following three

cases are possible.
1) 0<M<T,
@ T, <M<T,
B T,<M<T

According to the above description, the differential equations representing

the inventory status within different time intervals given by the equations

(6.3.1-3).

dL(®) _ —D(A,P), O0<t<T,
dt (6.3.1)
r10) =—aBf(t—TP Y (1-m(®)) ,(t) —D(4,P), T;<t<T
dt (6.3.2)
dl5(t)

= —D(A,P)e 80, T,<t<T
dt (6.3.3)

Using the boundary conditions I;(0) = I,, 1,(T;) = 0 and I5(T;) = 0, we get the
solution of equation (6.3.1), (6.3.2) and (6.3.3) respectively as follows.

Li(t) = —D(A,P)t + I, (6.3.4)
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I,(t) = D(A,P) I(T1 —t)
N a(1—m(d))
B+1D
—(T - Td)(ﬁﬂ)}l

{(T, — T BV

X [1—a(1-m(®))(t—Ty)] (6.3.5)
1) = 2B [esr-0 _ o) (6.3.6)

Figure 6.3.1 Graphical representation of the inventory system

I(t)
A
Inventory level
— due to demand
F'y
‘ Inventory level due to
demand and deterioration
I, without preservation
\

Inventory level due to
demand and deterioration

/ with preservation

T >t

;

~ |Lost Sales

\\+

105



Using the condition I;(Ty) = 1,(T,)

a(1—m(d))

Iy =D(A,P)|T, + G+D)

(Ty — T)F+D (6.3.7)

The maximum amount of demand backlogged per cycle is obtained by

putting t = T in equation (6.3.6) and considering positive quantity.

D(A, P)
Iy = —F5—[1-e®"] (6.3.8)

Order quantity per cycle:
Q = IO + IB

a(1—m(d))

=D(A,P)|T
(4, P)|T, + B+1

(T, — ToP*?

1
+[1- e8]

(6.3.9)
Purchase cost:
PC=C-0Q (6.3.10)
Lost sale cost:
T
LSC =C, | [D(A,P) — D(A,P)e 3T9] dt
T,
1 e—S(T—Tl)
= CsD(A, P) IT —T; — 5 + 5 (6.3.11)
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Deterioration cost:

T
DC =Cy [IZ(Td) — f D(A, P) dtl

Tq

_ C4D(A, P)a(1 —m(¥))
B B+1

(T, — TP+

Holding cost:

HC = Cy, U dll(t) dt+f 112(t) dt]
0

Tq
2 -
= C,D(A, P) I%l + WQ(Q — Ty)P+?
_ 2(1 _ 2
4 B =m®) gy mO)

B+ DB +2) 2(B+1)?

Total sales revenue:

T1 T
SR=P lj D(A,P) dt-l-j D(A,P)e_S(T_t) dtl
0

T
1 -8(T-Ty)
= PD(4,P) [T1+g(1—e 1)]
Preservation technology investment:

PTI = (T, — Ty)¢

Advertisement cost:

AC = C,A
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(6.3.13)

(6.3.14)
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6.3.1Case1:0 <M <T,
Interest Charged:
IC, = CI [ [, () dt + fTle L(t) dt]

— M)? N a(l — m(E))
2 B+ 1

= CI.D(A, P) [(Tl (Tq — M)(Ty — T)P*?

N aB(1—m(®)

o?(1-m(®)* @)
B+DE+2) (T = To™

— B+2 _
(T, — Tg) 28+ 12 6317

Figure 6.3.2 Inventory level when 0 < M < T,
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Interest earned:

M
IE, = Plef D(A,P)t dt
0

_ PI,D(A,P)M?

. (6.3.18)

Total profit per unit time:

[SR—PC—-DC—LSC —HC—0C —PTI—-AC - IC; + IE{]

S| -

TPl(A,Tl,T,P,f) =
1 1 s
TP, (A T,T,P,¢) = T [PD(A, P) [T1 + 5 (1—e (T—Tl))]

a(l - m(f)) (

—CD(A, P) T+ 1

T +

1
T, — TP + 5 [1- e—S(T—Tﬂ]‘

_ CaD(4,P)a(1 - m(¥))
B+1

(Ty — Ty)P*?

1 e_S(T_Tl)

~CD(AP)|T =Ty =5+ —

T_12 N a(l - m(E))

—CyD(A,P) E P T4(T, — Tg)P*t
of(1—m(p) . @(1-m@®) e
w+1xﬁ+acn—mﬁz— 2@+ 1) (T, — T)*®

—Co = (T1 = T)§ — CA

(n—MV+aO—m®D(

T, — M)(T,; — T,)P+*?
> T+ 1 d )(Ty —Ty)

—CI.D(A, P)
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@?(1—m(®)” .
g(B + 1)2) (Ty = Tg)*P+D

aB(1 - m(®) .
N

| PLD(A, P)M?
z (6.3.19)

So, in this case, the objective is to maximize Z, = TP,(A,T,,T, P, ).

Subject to
(6.3.20)

—

andT; = 0,T >0,P >0, >0, Ais a positive integer (4 > 0).

When M > T, there are two possibilities either Ty <M <T,or Ty <M <T.

6.32Case2: T, <M<T,
Interest Charged:

Ty

IC, = CI, ] L(t) dt
M

= CI.D(A, P) lw

1- (f) +1 +1
—%(n — (T, — TP + (M = TP}

2a(1—m(¥)) N N
TG DG T W (T
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_ a2(1 — m(:i))2
2(B+1)2

(T, — TP+ — (M — Tp)P*)’ (6.3.21)

Figure 6.3.3 Inventory level when T, <M < T,
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Interest earned:

M
IE, = Plej D(A, P)t dt
0

_ PI,D(A, P)M?

> (6.3.22)

Total profit per unit time:

1
TPy(A,T;,T,P,§) = Z[SR — PC = DC — LSC — HC — OC — PTI — AC — IC; + IE;]
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1 1
TPZ(A' Tl; TP Pr E) = T [PD(A, P) [Tl + E (1 - e_S(T_Tl)):l

a(1—m(d)) (

—CD(4, P) 1

1
T, + T, — TP+t + 5 [1 _ e—S(T—Tl)]

_CaD(4, P)a(1 - m())
B+1

(T, — THP*!

1 e_S(T_Tl)

T
~C,D(A,P) % + —“(18 +ml@)
aB(1-m(3))

TB+DB+2)

Ta(Ty — T9)P*?

(T, — Tq)P*2

_ a?(1— m(E))2
2B+ 1)

(T, — Td)z(ﬁﬂ)]

—Co— (T1 —Ty)é¢ — C,A

—CI.D(A,P) (T, — M)°

1—
- a(ﬁ—:nl(f)) (T = M{(Ty = TP+ + (M — Ty)P*}
B 20((1 — m(E))
B+ 1D(B+2)

{(Ty = TF*2 — (M — Tq)P+2)

_ o?(1 - m(E))2

2B+ 1)2 {(Tl — TPt — (M- Td)B+1}2

PI1,D(A, P)M?
* 2 (6.3.23)
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So, in this case, the objective is to maximize Z, = TP,(A, T, T,P,¢).

Subject to M<T, —
T.<T
L (6.3.24)
C<P
§<¢'
andT; >0, T >0,P >0,¢ =0, Ais a positive integer (4 > 0).
6.3.3Case3: T, <M<T
Figure 6.3.4 Inventory level when T, <M <T
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Interest charged: In this case there is no interest charged

IC3 =0 (6.3.25)

Interest earned:
Ty L5
IE; = PI, U D(4,P)t dt + (M —Tl)f D(4,P) dtl
0 0

T
= PI,D(A,P)T,(M — 71) (6.3.26)

Total profit per unit time:

1
TPy(A,Ty,T,P,§) = =[SR = PC = DC ~ LSC — HC = OC = PTI = AC ~ IC; + IE;]

1 1
TP;(A,T,,T,P,§) = T [PD(A, P) [Tl + 3(1 - e—S(T—Tl))]

a@—m@D(

—CD(A,P)|T
(A4,P)|T, + B +1

1
T, — TP + 5 [1— e 8(T-T0)]

_CaD(4, P)a(1—m(¥))
B+1

(T, — TP

1 e—S(T—Tl)

~CDAP)|T =Ty =S+ ———

e
~C,D(A,P) % + —a(lﬁ +ml®)
, aB(1-m®)

B+DPE+2)

Ta(Ty — Tg)P*?

(T, — Tq)P*2
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B o?(1- m(E))2
2(B+1)?

(T, - Td)Z(BH)]
—Co = (T1 = T)§ — GA

T
—0+ PI,D(A, P)Ty(M — ?1)]

(6.3.27)
So, in this case, the objective is to maximize Z; = TP;(A, T, T,P,¢).
Subject to T,<M )
M<T
— (6.3.28)
C<P
§<¢ |

andT; >0,T >0,P >0, >0, Ais a positive integer (4 > 0).

The optimal order quantity corresponding to the optimal

solution (A%, T{,T*, P*, &%) is

a:(l - m(f*))

Q ( ) ) 1+ ﬁ‘l‘l

1 -
(T7 = Ta)P*! + < [1 - e T (6.3.29)

6.4 Solution Methodology

For fixed Ty, T, P, and ¢ the second order partial derivative of TP;(A,T;,T,P,§)

with respect to A gives,

0°TP; _m(m—1)D(A, P)
042 TA?

[P [T1 + %(1 — e—5<T—Tl>)]
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- T, — Ty)P+?
e_S(T_Tl)
—Cy lT —-T; — 3 + 5

2 B+l
aB(1 - m(®) .
tE DGy T

(1-m@)’

2@+ 2 T T*

X1  (i=123) (6.3.30)

— )2 -
Where, Xl — —CIC [(T1 ZM) + a(lﬁ:nl(f)) (Td _ M)(Tl _ Td)[3+1

af(1-m(¥)) _ B+2 «?(1-m(®)* 2(8+1) | o PleM?
+ (B+1D(B+2) (Tl Td) - 2(B+1)? (Tl - Td) + T

r-m?  a(1-m@)
X, = —C1.D(4,P) [B2 - LT, = M){(Ty — TP + (M — Ty)B+1)

2a(1-m(¥)) B+2 _ T \B+2
(B+1)(B+2){(T1 Ta) (M - Tg)P*2}

«?(1-m(®) 2 PI,M?
~ e (T — TP — (M- TyP+) ] +=

92TP;
Because of 0 <m <1, .

< 0. Therefore, TP;(A, T, T,P, &) is concave with

respect to A. So, the problem of finding the global optimal solution for the

frequency of advertisement (4%, reduces to find the local optimum solution.
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Concavity of the total profit function, with respect to other decision variables,
has been shown graphically by means of numerical examples in concavity
section. The variable A 1s a positive integer, we suggest the following

algorithm to find the optimal solution of the proposed inventory system.
Algorithm:

Step 1: Assign numerical values to all the parameters in appropriate units.
Step 2: Set A = 1.

Step 3: Compare M and T,;. If M < T; then go to step 4. Otherwise go to step
8.

Step 4: Find the optimal solution of TP, (T, T, P, £|A) subject to the constraints
in Eq. (6.3.20).

Then obtain the corresponding total profit TP, (4, T, T*, P*,&*) and go to next
step.
Step 5: Set A’ = A + 1 and repeat step 4 to get TP,(A",T;,T*, P*,&*) and go to
next step.

Step 6: If TP,(A',T;,T*,P*,&*) = TP,(A,T{,T*, P*,&") then set A = A" and go to
step 4.

Otherwise go to next step.

Step 7: Set the optimal solution (4*, T}, T*, P*,&*) = (A, T{,T*, P*,&*). Go to step
18.

Step 8: Find the optimal solution of TP,(T;,T, P, &|A) subject to the constraints
in Eq. (6.3.24).

Then obtain the corresponding total profit TP,(4,T;,T*, P*,&*) and go

to next step.

Step 9: Set A" = A + 1 and repeat step 8 to get TP,(A',T{,T*, P*,&") and goto

next step.
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Step 10: If TP,(A',T{,T*,P*,&*) = TP,(A,T;,T*, P*,&*) then set A = A" and go to
step 8.

Otherwise go to next step.
Step 11: Set the optimal solution (4%, T;,T*, P*,¢é*) = (A, T;,T*,P*,&") and go to
next step.
Step 12: Set A = 1.
Step 13: Find the optimal solution of TP;(T;,T,P,é|A) subject to the

constraints in Eq. (6.3.28).

Then obtain the corresponding total profit TP;(A4, Ty, T*, P*,¢é*) and go

to next step.

Step 14: Set A’ = A+ 1 and repeat step 13 to get TP;(A',T{,T*, P*,&*) and go

to next step.

Step 15: If TP;(A',T{,T*,P*,&*) = TP;(A, T, T", P*,&*) then set A = A" and go to
step 13.

Otherwise goto next step.
Step 16: Set the optimal solution (4%, T;,T*, P*,¢&*) = (A, T;,T*,P*,&") and go to
next step.

Step 17: If Max{TP;,TP;} = TP; then the solution obtained in step 11 is the

optimal.

If Max{TP;,TP;} = TP; then the solution obtained in step 16 is the

optimal.

Step 18: Compute the corresponding optimal order quantity Q* from Eq.
(6.3.29). Stop.
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While executing the above algorithm, for fixed A, we can obtain the

optimal solution which maximizes the total profit function with constraints

using software like MATLAB, MATHEMATICA, R, MATHCAD, etc.

For fixed value of the variable A the necessary and sufficient conditions to

maximize the total profit function TP,(T,, T, P,¢|A) are as follows:

=0;

OTP, JdTP, aTP dTP;
2 — O, 2 — 0' 2 — O, 2
T, aT ap an

r02TP; 0°TP; 9%TP; 92%TP;]
oT,2  ATyT OTyP  OTy&
a%Tp; 09%TP; 0d?TP; 0d°TP;
oTT, aT? aTP aTé
a?tp; 0%TP; 9%TP; 0%TP;
dPTy oPT oPp2 P&
a%Tp; 9%TP; 09%TP; 0d°TP;
L 98T, 0¢T o&P 0¢&2z |

Provided that the Hessian matrix H = 1s a negative

definite.

6.5 Examples
Example 1 (case 1): Consider the following parameter values in apropriate

unites.

T, = 0.15, M = 0.0822 (30 days), «a = 0.4, f =2, a = 500000, b =2, m = 0.04,
5§ =0.5, C=9%$10, Co = $300, C, = $80, C, = $1.5, C4 = $0.5, Cs =$8, I. =

0.12, I, = 0.09, &' =500, m(§) =1 — e "¢ wheren = 0.03.
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Since M < Ty, this is an example of case 1. For different values of A, maximiz
ing TP;(A,T;, T,P,§), subject toT; < T, C <P, § <& (using R programming) t
he solutions are given in Table 6.5.1.

Table 6.5.1 Optimal solutions of TP; for fixed A

A T, T P £ TP,

1 0.408688 0.531986 20.845830 41.652852 11181.30
2 0.447590 0.582849 20.938407 51.763384 11371.93
3 0.485023 0.631732 21.028218 60.037093 11438.98
4 0.520403 0.677869 21.113219 66.972334 11459.13
5 0.554201 0.721827 21.194088 72.935439 11455.83

6 0586336 0.763542 21.271640 78.148412 11439.17

From table 6.5.1 the optimal solution for which the total profit function is

maximum 1s
A" =4, Ty =0.520403, T* = 0.677869, P* = 21.113219, {* = 66.972334.

The corresponding optimal profit is TPy = 11459.13 and order quantity is Q* =

797.6083.

Example 2: Consider M = 0.274 (100 days) and other parameter values same

as in example-1.

Since M > T,, it may be of Case 2 or case 3. For different values of A,
maximizing TP,(A,T;,T,P,¢) and TP;(A, Ty, T,P, &) using R programming the

solutions are given in table 2 and table 3, respectively.
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Table 6.5.2 Optimal solutions of TP, for fixed A

T,

T

P

$

TP,

0.404514

0.444320

0.482101

0.517957

0.551772

0.584082

0.502004

0.554132

0.603645

0.650476

0.694642

0.736711

20.497432

20.589762

20.677882

20.762055

20.841378

20.917501

39.441632

49.634536

57.831019

64.642551

70.495671

75.515276

11445.25

11636.39

11701.90

11720.11

11714.84

11696.28

Table 6.5.3 Optimal solutions of TP, for fixed A

A T, T P ¢ TP;

1 0.27400 0.37837 20.24564 0.00001 11366.53
2 0.27400 0.39504 20.27316 0.00013 11506.83
3 0.27400 0.41169 20.30375 0.00037 11515.28
4 0.27400 0.42797 20.33603 0.00059 11472.89
5 0.27400 0.44387 20.37007 0.00005 11404.96

From table 6.5.2 and table 6.5.3, Max{TP;,TP;} = TP; = 11720.11. Hence this

1s an example of case 2, and the optimal solution is:
A" =4, Tf =0.517951, T* = 0.650476, P* = 20.762055, {* = 64.642551.
The corresponding optimal order quantity is Q* = 793.4279.

Example 3: Consider M = 0.5754 (210 days) and other parameter values same

as in example-1.

121



Since M > Ty, it may be of Case 2 or case 3. For different values of A,
maximizing TP,(A,T,,T,P,¢) and TP;(A, T,,T,P,¢) using R programming the

solutions are given in table 6.5.4 and table 6.5.5, respectively.

Table 6.5.4 Optimal solutions of TP, for fixed A
A T, T P & TP,

1 057540 0.63009 20.36286 75.52380 11898.79
2 0.57540 0.63984 20.36447 76.45455 12125.58
3 0.57540 0.64982 20.36628 76.98144 12212.27
4 0.57540 0.65980 20.37008 77.34903 12241.56
S5 0.57540 0.66967 20.37460 77.64469 12239.78

6 0.57540 0.67948 20.38069 77.85076 12218.73

Table 6.5.5 Optimal solutions of TP; for fixed A

A T, T P £ TP,

1 0.49403 0.57540 20.20258 61.74271 11956.51
2 0.49425 0.57540 20.20106 62.67526 12173.23
3 0.49443 0.57540 20.20139 63.26522 12246.93
4 0.49816 0.58050 20.20966 64.33542 12261.01
5 0.52703 0.62042 20.27567 69.78885 12247.32

6 0.55429 0.65813 20.33728 74.51923 12220.14

From table 6.5.4 and table 6.5.5, Max{TP;,TP;} = TP; = 12261.01. Hence this

1s an example of case 3, and the optimal solution is:
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A" =4, Tf =0.49816, T* = 0.58050, P* = 20.20966, ¢* = 64.33542.
The corresponding optimal order quantity is Q* = 750.0605.

6.6 Concavity and Optimality

For example 2 of the above section, the total profit is plotted against each
variable fixing other variables in Figure 6.6.1 to 6.6.5. From these figures, it
is obvious that the total profit function TP, is concave with respect to each
variable. Figures. 6.6.6-6.6.11 also reveals that the total profit functions

TP,,TP, and TP; are concave functions.
Fixing A = 4 in example 2, for the solution

(Ty,T* P*, €) = (0.517957,0.650476,20.762055, 64.642551)  the gradient

1s (—0.275,0.032,0.0005,0.0002), which is close to zero.

Hessian matrix is

—22442.947579  16548.77 111.29610614 3.0198145

y = | 16548.774027  —16548.45 28.37785091 —0.00033836 .
109.5509 28.37785 —58.9697889 —0.054512286 |’
3.019814 —0.0003384 —0.05451229 —0.01697277

The eigenvalues of H are —0.01542,—55.54260,—268.98330,—-36304.99.
Therefore, the Hessian matrix is negative definite, and hence the solution is

global maximum.
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Figure 6.6.1 Concavity of the total profit function TP,(A, Ty, T, P, §) (example 2) with
respect to A when other variables are fixed.
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Figure 6.6. 2 Concavity of the total profit function TP, (A, T;, T, P, ) (example 2) with
respect to T; when other variables are fixed.
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Figure 6.6.3 Concavity of the total profit function TP, (A, T,, T, P, §) (example 2) with

respect to T when other variables are fixed.
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Figure 6.6.4 Concavity of the total profit function TP,(A, T, T, P, &) (example 2) with

respect to P when other variables are fixed.
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Figure 6.6.5 Concavity of the total profit function TP, (A, T,, T, P, §) (example 2) with

respect to € when other variables are fixed.
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Figure 6.6.6 Concavity of TP; (Example-1) w.r.t T and P.
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gure 6.6.7 Concavity of TP, (Example-1) w.rt T and &.
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Figure 6.6.8 Concavity of TP, (Example-2) w.r.tT and P.
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Figure 6.6.9 Concavity of TP, (Example-2) w.r.t T and ¢.
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Figure 6.6.10 Concavity of TP; (Example-3) w.r.t T and P.
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Figure 6.6.11 Concavity of TP (Example-3) w.r.t T and €.
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6.7 Sensitivity Analysis

Table 6.7.1 Computational results for different values of T,; and M.

T4 M | A" T T P* & Profit | Remark
0 |0.0822 | 4 |0.52732 | 0.68838 | 21.14265 | 85.99221 | 11423.10 | Case 2
0.2740 | 4 | 0.52403 | 0.66028 | 20.78973 | 87.41877 | 11680.12 | Case 2
0.5754 | 4 | 0.50343 | 0.58978 | 20.23549 | 88.52549 | 12215.83 | Case 3
0.15|0.0822 | 4 | 0.52047 | 0.67788 | 21.11303 | 66.94617 | 11459.13 | Case 1
0.2740 | 4 | 0.51792 | 0.65044 | 20.76162 | 64.67911 | 11720.11 | Case 2
0.5754 | 4 | 0.49821 | 0.58057 | 20.20924 | 64.35627 | 12261.01 | Case 3
0.25|0.0822 | 4 | 0.51990 | 0.67496 | 21.10296 | 47.52051 | 11481.69 | Case 1
0.2740 | 4 | 0.51667 | 0.64698 | 20.74995 | 43.67079 | 11743.74 | Case 2
0.5754 | 4 | 0.49709 | 0.57704 | 20.19649 | 41.74733 | 12287.45 | Case 3
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Table 6.7.1 reveals that when the supplier allows more credit period (M), the
retailer earns more profit. The model assumes non-instantaneous
deterioration, but it is also applicable for instantaneous deterioration case by
taking T; = 0. That means, the instantaneous deterioration case (i.e. T; = 0)
is a particular case of non-instantaneous deterioration case (i.e. T; > 0). Table

6.7.1 shows that instantaneous deteriorating items need more PT investment.

Table 6.7.2 shows the computational results obtained by increasing each

parameter of example 2 by -50%, -25%, +25% and +50%.

Table 6.7.2 Effect of different parameters on optimal results

Profit

Parameter | 4+ T T P* & Q (TP)

0.2 4 | 0.52097 | 0.65230 | 20.76806 | 42.07581 | 795.307 | 11733.21

0.3 4 | 0.51916 | 0.65120 | 20.76440 | 55.29689 | 794.177 | 11725.54

0.5 4 | 0.51690 | 0.64980 | 20.75966 | 71.88940 | 792.749 | 11715.91

0.6 4 | 0.51612 | 0.64935 | 20.75798 | 77.88195 | 792.295 | 11712.48

250000 | 3 | 0.68210 | 0.87806 | 21.19168 | 63.84241 | 507.077 | 5468.14

@ 1375000 | 3 | 0.55720 | 0.70601 | 20.86815 | 60.95053 | 631.712 | 8561.82

625000 | 5 | 0.49250 | 0.61469 | 20.69463 | 67.94421 | 952.102 | 14920.75

750000 | 6 | 0.47446 | 0.58948 | 20.64731 | 70.85396 | 1109.01 | 18153.84

0.02 | 2 | 0.44738 | 0.55834 | 20.59708 | 49.79629 | 664.563 | 11464.43

M1 003 | 3| 0.48480 | 0.60731 | 20.68446 | 57.96275 | 730.131 | 11563.96

0.05 | 6 | 0.57883 | 0.72965 | 20.90467 | 75.35319 | 907.505 | 11927.78

0.06 | 8 | 0.63112 | 0.79731 | 21.02671 | 83.63606 | 1014.445 | 12183.52

0.75 | 5 | 0.65764 | 0.77909 | 20.66534 | 85.27541 | 939.266 | 11943.92
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1.125 0.59874 | 0.73152 | 20.76080 | 77.47423 | 901.162 | 11822.16
1.875 0.481863 | 0.62289 | 20.82987 | 58.06043 | 753.859 | 11630.08

2.25 0.45156 | 0.60032 | 20.88911 | 51.91613 | 721.497 | 11548.88

150 0.40166 | 0.49776 | 20.48856 | 40.21037 | 617.479 | 11974.47

Co 225 0.48183 | 0.60314 | 20.67717 | 58.19567 | 742.163 | 11839.78
375 0.58422 | 0.73697 | 20.91817 | 75.28870 | 892.573 | 11610.07

450 0.61523 | 0.77744 | 20.99191 | 79.55606 | 934.532 | 11511.02

5 0.31135 | 0.39026 | 10.35501 | 36.54526 | 1934.094 | 24060.98

¢ 7.5 0.43904 | 0.55153 | 15.58236 | 59.68624 | 1205.604 | 15818.49
12.5 0.61271 | 0.77161 | 26.02568 | 71.32180 | 598.484 | 9270.85

15 0.69879 | 0.88247 | 31.31551 | 75.56844 | 472.4117 | 7642.91

40 0.52758 | 0.66271 | 20.78385 | 67.36174 | 833.112 | 12077.96

Ca 60 0.53193 | 0.66859 | 20.79472 | 67.54914 | 826.066 | 11867.07
100 0.51149 | 0.64218 | 20.74734 | 63.14861 | 775.526 | 11605.57

120 0.53949 | 0.67883 | 20.81299 | 67.84697 | 814.262 | 11514.73

4 0.50438 | 0.66958 | 20.67533 | 62.47933 | 820.765 | 11759.94

Cs 6 0.51194 | 0.65895 | 20.72516 | 63.67690 | 805.455 | 11737.97
10 0.52284 | 0.64350 | 20.79060 | 65.41710 | 783.630 | 11705.29

12 0.52706 | 0.63785 | 20.81335 | 66.06682 | 775.718 | 11692.79

0.015 0.49302 | 0.62805 | 20.73864 | 74.02351 | 768.468 | 11692.58

M 100225 0.50904 | 0.64254 | 20.75396 | 71.29754 | 784.582 | 11709.08
0.0375 0.52357 | 0.65539 | 20.76800 | 58.45208 | 798.831 | 11727.91
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0.045 | 4 | 0.52747 | 0.65875 | 20.77182 | 53.20539 8 11733.73

Figure 6.7.1 Effect of a, Cy,, C,, C4, Cs, C; and n on total profit.
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Observations and managerial insights:

The total profit 1is less sensitive with the change in
parameters a, C4, and C;. An increment in a increase the deterioration rate
and increment in C,; increase the total deterioration cost but, preservation
technology investment reduce the deterioration rate (number of deteriorating
units) significantly, and hence profit is ineffective with the change in a and
C,;. Hence, retailers are suggested to invest in preservation technology to

reduce losses incurring due to deterioration. As the shortage cost C increases,
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our model decreases the shortage period (T* —T;) (see table 6.7.2), which

reduce lost sales and hence, profit is less effective with the change in C;.

Figure 6.7.2 Effect of a, m, and C on total profit
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CHANGE IN PARAMETER

Increment in different cost parameters Cj,C,, and C, results in a
decrement in total profit. In table 6.7.2, increment in holding cost (Cy)
decreases the optimal order cycle T* while increment in ordering cost (C,)
increases the optimal order cycle (T*). Hence, when the holding cost raises,
the retailer is suggested to decrease the order cycle, and when the ordering
cost rises, the retailer is suggested to increase the order cycle. As the
advertisement cost (C,) increase, the frequency of advertisement and total
profit decreases. To increase the total profit, the retailer is suggested to
increase the frequency of advertisement (A) when the advertisement cost (C,)

1s less.

As the value of ) increase, the total profit increases. Since the reduced

deterioration rate is (1 —m(¢)) = e™"¢, an increment in 7 will reduce the
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deterioration rate greatly, which results in a less preservation technology
investment and more profit. The retailer need to invest more in preservation

technology for smaller value of 7.

The total profit is very sensitive with the change in parameters a and C.
Increased value of the scale parameter (a) of the demand function will
increase the demand, and hence increase the total profit. As purchase cost (C)
increase, the optimal value of selling price (P*) drastically increases. But,
increased selling price (P*) decrease the demand, and hence the total profit is
decreasing drastically as C increases. As the shape parameter of demand (m)
increase the total profit increases. In figure 6.7.2, it seems that the profit is
less sensitive with the change in the parameter (m) this is due to assigning a
smaller value tom (m = 0.04). The profit will drastically increase for the

assignment of higher value to m.

6.8 Conclusion

In a competitive market environment, to get maximum revenue every
business organization has to optimize all the possible strategies. In this
chapter, our proposed model maximizes the total profit by optimizing the
pricing, marketing, preservation, and inventory ordering policies. The
preservation technology investment reduces faster deteriorations, which is
beneficial to businesses based on agricultural products, bakery products,
dairy products, and meat and fish products. The retailer can earn additional
profit by taking advantage of credit period. More preservation technology
investment is required for instantaneous deterioration case. So, the profit of
non-instantaneous deterioration case will be more than the profit of
Instantaneous deterioration case. When the cost of advertisement is low, the
retailer can earn more profit through increasing the frequency of

advertisement.

134



