
CHAPTER 3

MODELS FOR DISCRETE VARIATE TIME SERIES

3.1 INTRODUCTION :
Frequently in practice time series is observed on a 

discrete variate. Often such processes arise as 
aggregated point processes. For example, daily sales of a 
product, daily record of number of phone calls from an 
office, yearly record of fatal accidents etc. Modelling 
of such time series is important for the further analysis 
of such data. Many times the models originally developed 
for continuous variate time series are adopted in such 
situations as an approximation. However this may not be 
always possible. Also wherever possible, the approximate 
nature of models may lead to unsatisfactory results.

To overcome this difficulty, one should look for 
models specifically developed for discrete valued time 
series. There are very few models available for discrete 
variate processes in the early literature, especially 
before 80’s. Markov chains are extensively studied in the 
literature and they do provide models for discrete 
variate processes. However, Markov chains are over 
parameterized for practical applicability in a time 
series context. Jacobs and Lewis (1978 a, b), (1983) 
proposed the DARMA processes. These form a very general 
family of processes but they can not take advantage of
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the special structure of particular distributions.
Some simple models that are analytically more 

tractable are the INAR(1) models introduced independently 
by McKenzie (1985) and Al-Osh and Alzaid (1987). These 
models are similar in structure to AR(1) models. More 
about INAR models is discussed in Section 3.3. In Section 
3.4 we describe discrete analogue of MINAR process called 
discrete minification process introduced by Littlejohn 
(1992). The models mentioned above accommodate many well- 
known distributions as stationary marginals.

We investigate whether classical minification 
(MINAR) processes accommodate any discrete distributions 
and find that the answer is affirmative. We give 
necessary and sufficient conditions for a discrete 
distribution to be a marginal of a stationary MINAR 
process. Many well-known discrete distributions satisfy 
these conditions. A general theory is discussed in 
Section 3.5, whereas a geometric MINAR process is 
discussed at length in Section 3.6. It is interesting to 
observe that a search for similar models in the scheme of 
maxima does not lead to success. Hence we propose the 
discrete analogues of MAXAR (extremal) processes. Two 
different models are introduced, and we show that both 
the models accommodate well-known discrete distributions. 
This work is contained in Section 3.7 of the present 
Chapter.
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Before we describe the INAR processes, we describe 

in Section 3.2, a new function called alternative 

probability generating function. This function can be 

used in place of pgf while dealing with discrete 

distributions and its use, in our opinion, is more 

appealing than the use of pgf.

3.2 ALTERNATE PROBABILITY GENERATING FUNCTION :

Definition 3.2.1 : The alternate probability generating 

function of a nonnegative integer valued rv is defined as

P(s) = Q(1-s), 0 s s £ 2; ...(3.2.1) 

where Q(-) is the pgf of the random variable.

APGF determines the parent distribution uniquely, 

and it also enjoys all important properties of 

probability generating functions (pgf’s), suggesting that 

it can be used as an alternative to pgf. Generally it is 

considered convenient to work with pgf's while dealing 

with discrete distributions. However, it will be shown 

that the use of alternate pgf (APGF) is more appealing.

Bondesson (1979) has drawn attention to the use of 

such functions. The term alternate pgf was coined by 

McKenzie (1986). Following is an important 

characterization of APGF.
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Theorem 3.2.1 : A real valued function P(-) defined on
[0, 2] is an APGF of a probability distribution if and 
only if

(1) P is completely monotone on (0, 1), and 
(ii) P(0) = 1.

The result follows immediately from the definition 
of APGF and the similar characterization of pgf contained 
in Feller (1965, Lemma in VII.2).

In order to point out the analogy of APGF with 
Laplace transforms, we state below a well-known 
characterization of Laplace transforms. (See for example, 
Feller (1965) ).

Theorem 3.2.2 : A function L on (0, m) is the Laplace

transform of a probability distribution if and only if

(i) L is completely monotone.
(ii) L(0) = 1.

The analogy between the results of Theorem 3.2.1 and 
Theorem 3.2.2 is striking. Thus an important implication 
of Theorem 3.2.1 is that the Laplace transform of any 
nonnegative rv is an APGF of some nonnegative integer 
valued rv. For example, the Laplace transform of Gamma 
distribution is the APGF of Negative binomial 
dist ribution.

It would be interesting to find out what other pairs 
of distributions can be obtained in the above sense. In
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the next Theorem we answer this question in terms of 

compound distributions.

Theorem 3.2.3 : Let A be a nonnegative random variable 

having distribution F^(-) and Laplace transform L A(-)• 

Let the distribution of a rv X, conditional on A = A, be 

Poisson(A). Then the APGF of the unconditional 

distribution of X is L^(-).

Proof : Note that the APGF of the conditional 

distribution of X, conditional on A = X, is given by 

PxiA(s) = E{ (1 —s)x|A = A} = e"As 

Hence the APGF of the unconditional distribution of X is
03

Px(s) = J e"As dFA(A) = LA(s) 
o

This completes the proof ■

Remark 3.2.1: The result of Theorem 3.2.3 was pointed out 

by Professor S. Dasgupta in a personal communication ■

Remark 3.2.2 : It may be noted that every APGF need not 

be a Laplace transform, since there may be a function 

which is completely monotone on (0, 1) but not on (0, t») , 

as required by Laplace transforms. Consider for example 

P(s) = (1-s), which is an APGF but not a Laplace 

transform ■

Next we note an important property of APGF in 

connection with the thinning operator defined in Section 

1.3. If Px is an APGF of X then the APGF of p*X is given
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by

Po.x(s) = E((1 -s)P*x) = E(E{(1-s)p*X|X=m})

pn(1 -p)m~n P(X = m)l " l
n=0 m=

00

1 p<x = "■> i
f \

m {p(1-s)}n (1 ~p)m~"
m=0

oo

n=0

[ P(X = m) (1-ps)'

m=0

= Px(ps) 

Thus we have

Pp*x(s) = Px(ps) . ... (3.2.2)

This result is analogous to

Lpx(s) = Lx(ps),

where Lx and Lpx are Laplace transforms of rvs X and pX 

respectively.

Next, Recall the definition of discrete self- 

decomposable laws given in Section 1.3. This definition 

can be stated in terms of APGF by the identity

P(s) = P(ps) P (s),

where P is an APGF. Note that a similar identity in 
(P)

terms of cf’s defines classical self-decomposable laws.

The analogy observed above between APGFs and Laplace 

transforms clearly suggests that the use of APGF’s is 

more appealing than the use of pgf’s.

3.3 INTEGER VALUED AR PROCESSES (INAR) :

McKenzie (1985), (1986) suggested some simple models 

for discrete variate time series. These models are
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analogous to AR(1) processes for continuous variate time 
series. The model proposed by McKenzie is of the form

X„ = P*Xn_., + Yn ; n = 1,2..... ...(3.3.1)
where p € (0, 1), p* is a thinning operator described in 
Chapter 2, and {Yn} is a sequence of iid nonnegative 
integer valued random variables independent of X0.

Al-Osh and Alzaid (1987) also introduced the process 
with structure at (3.3.1). Their work came out 
independently of McKenzie (1985). Al-Osh and Alzaid 
referred to their model as integer valued AR (INAR) 

processes.
The INAR process is similar in structure to AR 

process defined at (1.2.2), except that INAR process uses 

the thinning operation p*X instead of scalar 
multiplication pX. The similarity between the processes 
does not end here. Recall from Section 1.2 that only 
self-decomposable distributions can be the marginal 
distributions of stationary AR process. Interestingly, it 
turns out that the class of marginal distributions for 
stationary INAR process is same as the class of discrete 
self-decomposable laws introduced by Steutel and Van Harn 
(1979).

While constructing the INAR models McKenzie (1986) 

exploited the fact that the thinning operator p*, in case 
of discrete distributions, plays a role analogous to the 
scalar multiplication for continuous distributions, and 
that APGF of Negative binomial distribution and Laplace
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transform of Gamma distribution have same algebraic form. 

This similarity makes the construction of Negative 

binomial INAR process completely parallel to the 

construction of Gamma AR process (GAR(1)) of Gaver and 

Lewis (1980). Using the same technique McKenzie (1986) 

further gave the analogues of exponential MA process 

EMA(1), exponential ARMA process EARMA(p, q), a new 

exponential AR process NEAR(1) of Lawrence and Lewis 

(1977, 1980 and 1981), and the Gamma beta AR(1) process 

GBAR(1) of Lewis (1982). In all these analogues the Gamma 

variables are replaced by Negative binomial ones and the 

operation of scalar multiplication by the thinning 

operation.

A!-Osh and Alzaid (1987) presented INAR process with 

Poisson and geometric marginals. The autocorrelation 

structure of INAR processes is similar to that of AR 

processes as noted by McKenzie (1986) and Al-Osh and 

Alzaid (1987). Al-zaid and Al-Osh (1990) also proposed an 

INAR(p) process which is an obvious generalization of 

INAR(1) process and is given by

X — ct *X + a. *X +..,+ ec*X + Y ;
n 1 n-1 2 n-2 p n-p n

where {Y } is a sequence of iid nonnegative integer
n

valued random variables, Y being independent of (X ,
n n-1

P

X , X ) , and a. e (0, 1 ) such t hat V a, < 1 .
n-2 n-p i Li i

i=1

The models of above type can be useful for a 

counting process {Xn} in which a specific realization is
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attributed not only to the immediate past but also to 

previous realizations of the process.

It was noted by Alzaid and Al-Osh that the 

similarity between AR(p) and INAR(p) processes does not 

go beyond the representation of the process. It is shown 

that the autocorrelation function of the INAR(p) process 

is similar to that of the standard ARMA(p, p-1) process 

rather than to AR(p) process.

Al-Osh and Aly (1992) proposed an AR model with 

Negative binomial marginals. This process is a discrete 

analogue of the Gamma AR model of Sim (1990). The process 

is defined by

Xn — oc © Xn_t + .

Here a. e (0, 1) and the operator a© is defined as
N(X)

a © X = £ w, ,

i=0

where

a(i) W, are iid Geom (------) random variables, Wa = 0,
1+0C

(ii) For each fixed nonnegative integer value x of X, 

N(x) is a B(x, A) random variable, A = <xp and 

0sps1 , and

oc(iii) e_ are iid NB(------ , v) random variables with > 0,
1 +a

and e„ is independent of a © Xn_v

a(1-p)
If X has NB (---------------- , v) distribution, then the

o 1+«(1-p)

process is stationary, whereas for the arbitrary rv Xq,
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a(1-p)
NB(---------------- , v) is the limiting distribution of X as n

1+oc(1-p) n

tends to infinity.

It was shown that the properties analogous to the 

Gamma process of Sim (1990) are possessed by the above 

process. In particular, the autocorrelation of lag j is 

given by p. = p*, p1 = P being the autocorrelation of lag 

1, and that the process is time reversible with both 

forward and backward regression being linear.

3.4 A DISCRETE MINIFICATION PROCESS :

A brief introduction to Minification processes was 

given in Section 1.2.2. A Minification process is defined 

by

Xn = e min (Xn_.,, Yn) ; n a 1 , ...(3.4.1) 

where e > 1, and {Yn} is a sequence of iid random 

variables independent of X0.

Minification processes were introduced by Tavares 

(1980) and studied later by Sim(1986), Chernick et al . 

(1988), Yeh et al . (1988) and Lewis and McKenzie (1991). 

All these authors considered minification processes with 

continuous marginals.

Littlejohn (1992) introduced a discrete analogue of 

minification process, and called it a discrete 

minification process. This process is defined by

Xn = p\ min (Xn_1, Yn) ; ... (3.4.2) 

where pe (0, 1), {Yn} is a sequence of iid random 

variables with a common distribution G defined on IN0.
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Here p\ represents an operation on nonnegative 

integer valued random variable which replaces the 

operation of scalar division by p for continuous random 

variables.

Recalling the operation of p*, note that 

conditional distribution of p*X conditional on X is 

given by

P(p * X = n IX = m) = m
n

(I-P)-" nP .

for n = 0, 1, ...,m;m=0, 1, ...

Using Bayes' Theorem, distribution of X conditional 

on p * X is obtained as

P(X = n|p * X = m) =

(1-P)n P(X=n)

m (1-P)k P(x=k)
t .k=m

for n = m, m+1, ...

This leads to the definition of p\, in terms of the 

conditional distribution of p\Z given Z, as follows

P(p\Z = n|Z = m) =

for n = m, m+1,

r n
m 

v j

(1-p)" P(X=n)

l
k=m

c \k
m

J

m

(1-P)k P(x=k)

= 0, 1, ...

It is disturbing to note that the definition of p\Z 

operation depends on the probability distribution of X. 

This makes the definition of operator p\ confusing. Also 

p\ works as a left inverse of p* only when it is
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operated on p * X.
The necessary and sufficient condition for a 

distribution F to be the marginal of Littlejohn's process 
is that

P(X = x) P(p * X = x) 
s ..P(X 2: X) P(p * X 2: X)

It is shown that Binomial, Poisson and Negative 
binomial distributions belong to the class of stationary 
distributions of a discrete minification process.

The operator p\ can be represented as

P\Z
Z+r

z * la,
i=1

z + z.or p\Z - «_ .■ <-p

or p\Z = Z + B ,
when the distribution of X is taken as NB(r, p) or 
Poisson(A) or B(n, p) respectively, where G, are iid Geom
(1-q(1-p)) rvs, Zp is a Poisson((1 -p)A) rv and B is a

, P(1-p) .B(n - I, ------ ) rv.1-pp
It may be noted that in all the three cases the 

operator p\ turns out to be a particular form of
thickening operator T defined in Chapter 2.4

3.5 MINAR PROCESSES WITH DISCRETE MARGINALS :
To distinguish a minification process defined by

(3.4.1) from a discrete minification process defined by
(3.4.2) , only the former will be called a MINAR process. 
The constant ©will be called the parameter of the MINAR 
process. Having noted the introduction of discrete
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minification process by Littlejohn (1992) and the fact

that MINAR processes have been discussed only with

continuous marginals, following question arises.

"Is it that discrete distributions can not be the

marginals of a MINAR process ? "

To answer this question, we need to investigate the

necessary condition that the marginal distribution of a

stationary MINAR process must satisfy.

Let F_ be the class of all distributions F of X 0 o
such that {X } is a stationary MINAR process, with

n
parameter 0, e >1 . Let F = U F . and F = p F . Then it is0>1 ° 0>1 9

*
interesting to identify the classes F and F . Lewis and 

McKenzie (1991) have specified a necessary and sufficient 

condition for F to belong to F , namely thatB
F(0x)
---------- , say G (x) is a survival function, ...(3.5.1)
F(x)

where F(-) is the survival function of X. This condition 

follows immediately from the definition of MINAR process.

Thus a necessary and sufficient condition for F to 

belong to F is that it satisfies (3.5.1) for some 0 > 1, 

whereas a necessary and sufficient condition for F to 

belong to F is that (3.5.1) holds for every e > 1. It is 

clear that F is same as the class of min-SD

distributions (See Definition 1.2.1). Also we will show 

that the class F contains F as a proper subset.

We prove in the following Theorem that min-SD 

distributions are necessarily continuous.
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$
THEOREM 3.5.1 : Suppose F e F . Then F mus t be con t inuous 

at every x > 0.

PROOF : If possible, let there exist a discontinuity

point xq > 0 of F, Then since F is a monotonically

decreasing function, it follows that

F(xq+) < F(xo~). ...(3.5.2)
*

Now, since F e F , for every e > 1 there exists a 

distribution such that,
fcr

F(9x) = F(x) Gfi(x).

Since G_ is a survival function, we have

G0(x+) a G0(xq-) V 6 > 1.

Then from (3.5.2) we get

F(x +) G /x +) < F(x -) G_ (x -),
0 O' o r 'o' O' 0 ' ’

which further implies that

F ((gxq)+) < F ((oxq)-) v 0 > 1.

Thus 0xq is a discontinuity point of F for every

e> 1. This implies that F is discontinuous at every

x > x . This contradicts the fact that a monotonic 
0

function can have at the most countable number of 

discontinuity points. Hence we conclude that F is 

continuous at every x > 0. ■

Thus the possibility of discrete distributions is 

ruled out for the class F . It will be shown that the 

class F contains most of the well-known discrete 

distribut ions.

All important distributions F have a support

S c IN . Before we obtain conditions for a distribution
F 0
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,^EHT4‘
F, with Sp c llo> to belong to F, we prove ap^^inportant 

result which shows that the parameter of

THEOREM 3.5.2

function such that F(x) < 1 for every real x. Suppose

distribution F has S c IN
F 0

Let F with Sp cl Q be a distritm%4&rf<l

F c IF for some o > 1 . Then o must be an integer. 
0

PROOF : Since F e F_, there exists a distribution
0

function G satisfying 
0

F(8X) = F(x) G0(x).

Since F (x) < 1 for all real x, it follows that

G„(x) < 1 for all real x; for otherwise, F(ex) becomes 
0

zero for some x (or that F(ex) becomes one for some x).

Let X and Y be independent random variables with 

distributions F and GQ respectively. Then since Y is 

unbounded, it follows that for r e S ,

P(min(X, Y) = r) a p(x = r, Y > r)

= P(X = r) P(Y > r)

> 0

or equivalently P(X = or) >0 V r e S .

Thus, the fact that x= 8r is an integer belonging

to S , V r e S implies that e = x /r is a rational
F F r

number.

Therefore let e be represented as Q = K/n, where K

and n are relatively prime. Then we have

nr = — x VreS. 
K r F

51

*'o
cf

a



Now since r is an integer, it follows that x is a
r

multiple of K; that is x is of the form x = Kx', where
r r r

x' is an integer, so that we have
r

r = nx' VreS. ...(3.5.3)

Thus every r in Sp is a multiple of n. Then it 

follows that x is also a multiple of n, and hence x' is
r r

also a multiple of n. Then from (3.5.3) we get

r = n2x" V r <= S
r r

By the repetition of this argument it follows that 

every integer in Sp is a multiple of n, n2,n3,.... This 

can happen only when n = 1. Hence we conclude that e must 

be an integer. ■

Following example shows that the condition F(x) < 1 

in above Theorem is necessary for the result.

Example 3.5.1: Let X be a random variable taking values 

1,2, . . . ,m. Let e > m be arbitrary. Consider a random 

variable Y, independent of X, such that

P( Y = j/0) = P(X = j) for j = 1........... m.

Since (m/0) < 1, the support of Y lies entirely to

the left of the support of X, so that min(X, Y) = Y with 

probability 1. Also from the definition of X it is clear
d d .

that Y = - X, so that we have min(X, Y) = 1 X ■
0 0

Henceforth, we will use the notation K, which is

more convenient for an integer valued parameter, in place 

of © in {X } defined at (3.4.1). It is clear that the
n

class F contains discrete as well as continuous
K
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distributions. We denote by F1 the class of all
K

distributions F, with S c IN , which belong to F . We’ F 0’ ° K

also use the notation F1* for the class F^.

If F belongs to f' then from (3.5.1) it is clear
K

that G (x) has jumps only at the points of the form m/K,
K

where m is a positive integer. It therefore looks more 

appropriate to express the process {X} at (3.4.1) as
n

X = min( KX , Y ) , n = 1,2......................... (3.5.4)
n n—1 n

for some integer K a 2.

With this new form, the necessary and sufficient 

condition for F to belong to F^ becomes,

G (x)
K

z—i—— is monotonically increasing for x ^ 0, 
F(x/K)

...(3.5.5)

where F(x) = P(X > x) is the discrete survival function 

of X. With this new expression, now G (x) has jumps only
K

at integer points. Next we give an alternative necessary 

and sufficient condition for F to belong to F1. Denote by
K

f(-) the probability mass function (pmf) of F. Now since 

G (x) has jumps only at integer points, (3.5.5) is
K

satisfied if and only if

g (m) = G (m-1) - G (m) a 0 for m = 1,2,...
K k K
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From (3.5.5) it can be easily verified that,

gK(m):

F(r)F(rK-1) - F(rK)F(r-(1/K))

F(r-(1/K)) F(r) 

F(r+(j/K)F(m-1)-F(m)F(r+(j-1)/K

;m = rK,
for r = 0, 1,...

That is,

9K(m)

F(r+(j-1)/K) F(r+(j/K))

F(r)F(rK-1) - F(rK)F(r-1)

;m=rK+j, r=0,1,. 
j = 1, 2......K-1

F(r-1) F(r)
; m = rK,

for r = 0, 1,..

f (m)
;m = rK+j, for r = 0, 1 
j = 1, 2, ...,K-1F(r)

... (3.5.6)

Above equation follows by observing that F(r-(1/K)) 

F(r-1) and F(r+(j/K)) = F(r+(j-1)/K) = F(r).

Thus g (m) a 0 i f and only ifK
F(rK-1) F(r-1)

for r = 0,1,
F (rK) F (r)

(3.5.7)
Subtracting 1 from both the sides, we get

f(rK) f(r)

or equivalently
F(rK) F(r)

f(rK) f(r)

That is,
F(rK)+f(rK) F(r)+f(r)

A(rK) s A(r) , for r = 0,1, . . . (3.5.7)'

where A(x)
P(X = x)
P(X a x) 

corresponding to F.

is a discrete hazard function
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Thus (3.5.7) ( or equivalently (3.5.7)' is a 
necessary and sufficient condition for F to belong to Ff.

K

Remark 3.5.1 : In case of continuous random variables
with df F and pdf f, the hazard function is defined as 

X(x) = lim P(x s X £ x+Sx | X a x) = f(x)/F(x).
SX40

If we just adopt later expression after replacing 
f(x) by P(X=x) for defining a discrete hazard function, 
then there will be a fallacy in the definition, as for
given X > x how can we have X = x ?. However the original
definition (in terms of limit) leads to the correct 
expression for discrete hazard functions ■

Remark 3.5.2 : When F satisfies (3.5.7), g (m) given byK
(3.5.6) is the probability mass function of the common
distribution of the innovation process for a stationary 
MINAR process at (3.5.4), with parameter K, whose 
marginal distribution is F ■

Remark 3.5.3: If F is an absolutely continuous
■fdistribution, with S c IR , then differentiating G_(x) inF 0

(3.5.1), we get a necessary and sufficient condition for
F to belong to F_ in terms of survival function as 0

G X(Gx) a A(x),
where A(x) is the hazard function of the distribution F. 
Lewis and McKenzie (1991) also obtained this condition 
using a different approach. This condition is analogous 
to the condition (3.5.7)' ■
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Remark 3.5.4 : If an absolutely continuous distribution

F, with S c R , belongs to F_ then the common pdf of the
F 0

corresponding innovation process is given by

ef(ey) F(y) - f(y) F(oy)
g(y) = -------------------- ------------------------------ ,

(F(y))2

where f(-) is the pdf of F. Above pdf is analogous to the 

pmf given by (3.5.6) ■

Remark 3.5.5 : It is necessary to distinguish between the 

classes Fr and Ff* because the latter is a proper
K

subclass of the former. To show this we give an example 

of a distribution F which belongs to F^ but does not

i *
belong to F

Let a. * R e (0,1). Consider a distribution F for

which

P(Xax)=-
(1-«) x—1

(1-3)r(1-cc)x-1"r

; x s 3

; 3 (2)r1 < x 25 3 (2)r, r=1
2,

It is easy to verify that 

r
3 ; x=3(2)r, r=0, 1, ...

A(x) = -
<x ; otherwise

Note that A(x) = A(2x) for x = 0,1,...

Thus from condition (3.5.7),; F belongs to F^. But 

since (3.5.7)* is not satisfied, for example, for K = 3,

i *F does not belong to F ■
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Next observe that (3.5.7) is satisfied for every 

K 2 2, whenever 

F(x-1)
------------ is a nondecreasing function of x, ...(3.5.8)

F(x)
or equivalently whenever

A(x) is a nondecreasing function of x ...(3.5.8)*

Thus (3.5.8) ( or (3.5.8)') becomes a sufficient

condition for F to belong to F1*. (3.5.8) (or (3.5.8)')

is generally easy to check as compared to (3.5.7) (or 

(3.5.7)').

Remark 3.5.6 Note that condition (3.5.8) is not

necessary for F to belong to F . To see this, consider

the distribution F defined by

,x-l

P(X 2 x) =

(1-a) ;x = 1,2

( 1 -oc) (1 -/3) ;x = 3
(1-cc)2(1-0)X~3 ;x = 4,5,

a < 0 e (0, 1).

Then we have A(1) = A(3) = oc, and A(x) = 0 for

x = 2,4,5.......... Clearly F satisfies the condition (3.5.7)'
! *

for K = 2,3,..., and hence belongs to F , without

satisfying (3.5.8)' (which is equivalent to (3.5.8)) ■

Theorem 3.5.3 : Let F be a probability distribution with 

SF c INq, and let f(x) be its pmf. If

f (x)
------------  is a nondecreasing function of x ...(3.5.9)
f (x-f-1)

then F e Ff*.
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Proof : Consider

Ef < k>

F(x-1) k=x

F (x)

E f(k>
k=x+1

oo f

k=x

f(k)
f(k+1)

f(k+1)

l f<k>
k=x+1

f(x) f(k)
z ------------ if ------------  is a nondecreasing function

f(x+1) f(k+1)

of k.

Thus the discrete hazard function A(-) corresponding to F 

satisfies A(x) ^ A(x+1) , which is a sufficient condition 

for F to belong to F1* ■

The sufficient condition (3.5.9) for (3.5.8)' to 

hold was inspired by the sufficient condition
a(x)

is nondecreasing in x
a(x+1)

for the power series distributions given by 

f(x;Q) = a(x)ex, x = 0, 1,...
The latter condition was suggested by Professor Y.S. 

Sathe, in a personal communication, The technique used by 

Professor Sathe is interesting and is shown below for 

obtaining the sufficient condition at (3.5.9).

Let X be a random variable with distribution F and

pmf f(x). Let Y be a random variable with pmf 

f(j)
P(Y=j) x, x+1.............

P(X2:X)

Since Y a x with probability one, it follows that 

whenever f(k)/f(k+1) is a nondecreasing function of k, we

have
f(Y) f(x)

f(Y+1) f(x+1)
with probability one. Hence,
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f(x+1) - Eff(Y+1)) - T f(j+1) f(j)f(x) " ( f(Y) ~ ^ f(j) P(Xax)
j=x

r, f(j+1) _ P(XiX+1 )
^ P(X2X) " P(Xax) 
j=x

f(x-M) f(x)Thus we have ----------  2: --------  .P(X 2 x+1) P(X 2 x)
That is, A(x) s A(x+1) and hence F € F1*.

Using the approach considered above (either ours or 
that of Professor Sathe), we get the following result.

Theorem 3.5.4 : Let F be a probability distribution with

S c N , and let f(x) be its pmf. If f 0 ' ' ^

f(r(K-1)+x)-----------  is a nonincreasing function of xf (x)
. . . (3.5.10)

for every nonnegative integer r, then F e Ff*.

Remark 3.5.7 : It may be noted that the conditions
(3.5.9) and (3.5.10) are considerably easier to check as 
compared to (3.5.8) and (3.5.7) respectively, although
(3.5.10) is not a necessary condition whereas (3.5.7) is. 
Replacing the roles of summation and pmf in above 
approach by integration and pdf respectively, we can 
obtain a condition that is sufficient for an absolutely 

continuous distribution F to belong to F_. The condition
Cr

is
f (xe)----- is a nonincreasing function of x,f (x)

where f is the pdf of F ( See Remark 3.5.3) ■
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Next we show that the Poisson and negative binomial
i *families belong to F .

Poisson distribution : Consider a Poisson (X)
f(x) x+1distribution. Then we have ------ = ---, which is anf(x+1) X

increasing function of x for VX > 0.

Thus condition (3.5.9) is satisfied. Hence it
i*follows that Poisson family belongs to F .

A more circuitous argument was made in Kalamkar 
(1995) to prove this fact while verifying (3.5.8)'. For 

completeness we discuss that proof.
Let s and t be nonnegative integers such that s 2: t.

Then

for all integers x 2 0.

so that (x+s)J 
s!

(x+t)! 
t! for all x 2 0.

Taking reciprocal and multiplying by 
followed by summation over x, we get

e"Xxx,

11s!

00 -X .x
~ 0 A
x=0 (x+s)1
00 —X . Xv e *

x=o (x-t-t) !
for all X > 0.
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00

s— t t IThat is, x

f(s) F(s—1)
or -------- 2 ------------  .f(t) F( t-1)

Thus (3.5.8)' is satisfied. This proves that the
. *

Poisson family belongs to F .

-A -X
S e____

x=s X!

00 — A , X^ e A
x=t x!

for all A > 0.

Negative binomial distribution :

Consider a negative binomial distribution with

probability mass function

P(X = X) = fxtr-1l pV
L r-1 >

x = 0,1,.. 
r positive integer,

0 < p < 1; q = 1-p. 

Then we have

f(x)
f(x+1)

x+r-1
r-1

r x+r
r-1

1

d
which is an increasing function of x

for every r and p. This follows from the fact that for 

all non negative integers a and b,

y
b

/
---------- is an increasing function of y ■

r \

y+a
b

.
It may be noted that both the examples considered 

here have support IN0. In Remark 1.2.2, we noted that the 

minification process is more naturally defined on (0, w)
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rather than on [0, <»). Then a question arises whether the 
examples given above are worth mentioning. This question 
is answered by the following Theorem.

Theorem 3.5.5 : If F concentrated on R+ belongs to F_,
8

for some O > 1 , then F , the distribution F when(a)
truncated below at a, also belongs to F_.0

Proof : Observe that

F (x)(a)v
F(x)
F(a)

V x a a.

so that
F .(ex)(a)

F, ,(X)Ca)
Hence F satisfies (a)

(3.5.1) and vice versa ■

F(ex)
F(x)
(3.5.1) whenever F satisfies

3.6. A GEOMETRIC MINAR PROCESS
In this Section we study the MINAR process with 

Geom+ marginals in detail.

3.6.1 THE PROCESS
We have seen in the previous Section that the

l *negative binomial family belongs to F ; the geometric 
distribution, which is a particular case of the negative

r #binomial, also belongs to F . Also it follows from 
Theorem 3.5.5 that the Geometric distribution 
conventrated on W, which we denote by Geom+(p), with pmf

P(X = x) = p(1-p)x 1 ; x=1.... ; 0 < p < 1.
1 *also belongs to F .
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The MINAR process at (3.5.4) with geometric 

marginals will be referred to as a geometric MINAR 

process. For the geometric MINAR process, with parameter 

K, the survival function of the innovation process is 

given by

G (x)K '

p(X > x> _ [x]-[x/K]
P(X > x/K) x st 0 and q = 1-p,

...(3.6.1)

where [x] denotes the largest integer not exceeding x.

Thus the geometric MINAR process with parameter K is 

given by

X = min( KX , Y )n n-1 n n = 1,2___ ... (3.6.2)

for some integer K a 2, Where {Y } is a sequence of iid
n

random variables, independent of X0, with the common 

distribution Gk specified by (3.6.1).
4.If Xq is distributed as Geom (p) then the process is

4.strictly stationary with Geom (p) marginals, whereas for 

an arbitrary random variable X , X converges in0 n
4.distribution to a Geom (p) random variable.

It can be shown that GK defined by (3.6.1) is in 

fact the distribution of a random variable Y where,

Y - X + [ K=T ] •■■(3-6*3)

and X is a Geom+(p) random variable. This can be shown as 

follows.
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Since X is integer valued, for r = 0, 1,...;

j=0, 1,..., if X > (K-1)r+j then X 2 (K—1)r+j + 1, which 

implies that
X-1 j
----  2; r + ----  .
K-1 K-1

That is, X + X-1
K-1

> rK+j.

Conversely, if X s (K-1)r+j then X < (K~1)r+j+1, which

implies that
X-1
k-T < r + 3

K-1

That is, X + X-1
K-1

rK+j .

Thus (X > (K-1)r + j)} ■ {X + X-1
KX1 > rK+j}. Therefore

P{X + X-1
_ > rK+j} = P{X > (K-1)r + j)}

_ q[K-1 ]r+j _ p(Y > rK+jj

This observation implies that in the case of a 

Geometric distribution on IN, Y does not take values of 

the form rK. This property of the innovation process in 

fact characterizes a geometric scale minification 

process, as will be shown in the Chapter 4.

The joint distribution of X and X is obtained inn n-1
the next subsection. The process is also simulated to 

study the behaviour of sample paths. The Simulation 

results are mentioned in Subsection 3.6.3.
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3.6.2 THE JOINT DISTRIBUTION OF X and X
n n-j

For the stationary MINAR processes defined at 
(3.4.1), Lewis and McKenzie (1991) obtained the 

expression for the joint distribution of contiguous terms 
X and X . Using their approach, the joint survival

n n-1

function for the process {X } defined at (3.6.2) is given
n

by
H (x, y; n, n-j, K) = P(X > x, X . > y)

n n-j

= P(X > x/K, Y > x, X > y)
n-1 n n-j

By repeating the use of (3.6.2) we get

H (x, y; n, n-j, K) = F(max{x/Kj, y}) G(x/Kj~1) . . . G(x)

_ F (max{x/KJ, y}) F (x)
F (x/Ki)

— Tx 7 +where F(x) = qL J is the survival function of Geom (p).

Remark 3.6.1 : It is interesting to note that

H (x, y; n, n--j, K) = H (x, y; n, n-1, K4);

so that the joint di stribution of X and
n

X
n-j

obtained by replacing K by K4 in the joint distribution 

of X and X . As a consequence, it is sufficient to
n n-1

study the joint distribution of X and X ■
n n—1

Next we find correlation function for the proposed 
geometric MINAR process. In the light of Remark 3.6.1, it 
is sufficient to obtain the correlation coefficient 
between X and X
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Using the joint survival function R, we can compute

00 CO

E(XnXn i) =[ [H(x, y; n, n-1 , K) .

x=0 y=0

oo Ky-1 oo oo

= I E H(x, y: n’ n-1 , K) + £ [ H(x,

y=0 x=0 y=0 x=Ky

oo Ky-1 _ _ oo oo
r r F(y)F(x) r - %

= E E —- - - - - + E E F(*>
y=0 x=0 F(X/K) y_0 x=Ky

= A + B , Say.

oa Ky-1

where A = jT F (y) £ qx

y=G x=0

oo oo

and B = £ £ F (x)

y=0 x=Ky

Denoting q by a, we find

Ky-1
£ qX-Cx/K]

x=0

K—1 2K-1

EqX + EqX" F
x=0 x=k

+
x

K—1 2K-2 Ky-y

■ EqX F E qX F. . . . * E qX
x=0 x=k-l x=CK-1)(y-l)

r K-1

EqX
x=0

( 1 + a + a2 + ... + ay 1)

y; n, n-1, K)

...(3.6.4)

Ky-1

=K(y-l)
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(1 - qoc) (t - ay)
Thus, A = [qy (1 . q) n - a)

y=0

(1 -q«)

(1 -q) (1 -«) 1-q 1-qa

Q/P2-

Further,
00 00 oo

B =E E «x = El ky

y=0 x=Ky y=o

1
P(1- qa)

Substituting the values of A and B in (3.6.4), we

get

q 1
E (X x ) = — +

n n~1 p2 P (1 -qa)

1
Also Recall that E(X ) = E(X ) = — and V(X ) =

n n-1 p n

v(x ) =
n~1

p
Thus the autocorrelation of Lag 1 is given by 

.if

p(1) = r = - fVV-1 q l
i ~q

From the Remark 3.6.1 it is clear that 

autocorrelation of Lag j is given by,

the

p(j) = r
X ,xn n- j

P

q j
1 - q”
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Note that the autocorrelation function is not
similar to that of the classical AR processes, unlike in 
the exponential process of Tavares (1980) or the non 
negative geometric process of Littlejohn (1992), where 
p(j) is same as p(1)j. The Geom+ process of Littlejohn 

does not have the similarity mentioned above, as We note 
in the next Section.

3.6.3 A SIMULATION STUDY
A simulation study of our Geom+ MINAR process and 

the discrete minification process of Littlejohn (1992)
Hrwith Geom marginals was carried out in order (i) to 

study the characteristics of the processes, and (ii) to 
investigate the discrimination power of sample paths. 

Littlejohn’s Geom process is defined as 
X = p\ min(X , Y ) , n = 1,2,.. .n n-1 n

where p e (0, 1), X follows Geom+(p). (Y } is a sequence
0 n

of iid random variables, independent of Xq, having

pp _Geom(----) distribution, where p = (1-p). The operation
1-pq

p\Z is defined as
zp\Z = SQ N. - I(Z > 0) ,

"f* _

where the N are iid Geom (1-pq) variates, and I(.) is an 
indicator random variable.

The joint pgf of X and X for this process isr> n-1
given by,

pp(1-pq)(s-1) s p(1—q(p+ps ))(p+ps )Q (s , s ) = ----------- !____ + _J---------- £_----
(1-s2q) (1 —s.jqp) (1-s2q) (1-s^ (p+ps2 ))
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and

corr

the correlation coefficient 

2
(X X )

n-1
P

p+pq '

between X and X
n n-1

is

(For details See the Appendix at the end of this

Chapter).

To make the sample paths of the two processes

comparable, the values of p were selected in such a way 

that the auto correlation of lag 1 was the same in both.

Sample runs of size 100 were carried out for various 

values of p and K (p in the case of Littlejohn’s

process). It was found in both the processes that a trend 

is apparent when K is small (p is high) and p is also 

small. An increase in either K or p results in reduced 

autocorrelation. The sample paths also show no clear 

trend in such cases. The simulated paths of our process 

are shown in Figure 1 (a, b and c) and that of

Littlejohn’s process (with p chosen appropriately) in 

Figure 2 (a, b and c) for p = 0.1 and K = 2, 3, 4

respectively. For small values of K (2 and 3 here) the 

trend is clear: the increases are geometric followed by a 

sharp fall in both the processes. This trend tends to be 

less apparent for higher values of K (4 here). The 

geometric increase is clearer in our process than in 

Littlejohn's process. This is because of the thickening 

applied to X , which is deterministic ( scalar 

multiplication ) in our process and probabilistic in
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(a) K=2, p-0.1

J
(b) K=3, p=0.1

0 10 20 30 40 50 60 70 80 90 100

(c) K=4, p-0.1

Figure 1 : Our Process
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(a) p = 0.1, p =0.5178

(b) p = 0.1, p =0.3535

0 10 20 30 40 50 60 70 80 90 100

(c) p = 0.1, p = 0.2694

Figure 2 : Littlejohn's Process
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Littlejohn’s process also tends to an lid sequence as p 
decreases. The sample runs appear to discriminate between 
the processes only when autocorrelations of lag 1 are not 
small (i.e., greater than about 0.4). Clear geometric
increases followed by a sharp fall seem characteristic of 
our process, while less clarity in the geometric 
increases seem characteristic of Littlejohn’s.

3.7 DISCRETE MAXIMUM PROCESSES
3.7.1 MAXIMUM PROCESS OF ALPUIM

Alpuim (1989) introduced an extremal process, which 
may be called a MAXAR(1) process in the present context. 
This process is given by

X = p max (X , , Y ) , n = 1 , 2,......... (3.7.1)n n— I n
for some p e (0, 1), where {Y } is a sequence of iid

n
random variables, independent of a nonnegative random 
variable X .

Let lp be the class of all distributions F of X0 for
which the process at (3.7.1) i s stationary for some

innovation process {Yn}. Let l*
= n lp

and L =
peco.D

jj Lp_ Alpuim (1989) showed that if F e L* then F can
p€(0,1)
not be discrete. However, an F belonging to L can be 
discrete. Using different arguments we have shown earlier 
in Section 3.5 that a similar result holds for 
minification processes also.
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It is of interest to know whether any well-known
discrete distribution belong to L, although it is not in
L*. To answer this question consider a random variable
X taking values {a, a+1..... b}, where a a 0 and b s ».
Then the distribution F of X belongs to L if and only if
there exist a random variable Y satisfying p max(X, Y) =
X. The distribution function G of Y is given by

P(X s px)G(x) = --------- V x a a. .,.(3.7.2)P(X s x)
Let x0 = a/p. Then from (3.7.2) it follows that 

P(Y < x0) = 0. Further, if F(x0) < 1 then (3.7.2) implies 
that G(x0) > G(x0+1), which is a contradiction. Thus
F(x0) = 1. Hence we conclude that max (X, Y) = Y with 
probability 1, in which case {Xn} is a sequence of iid 
random variables.

This shows that no well-known distribution belongs 
to L. This is contrary to the case of minification 
processes, for which the class of stationary
distributions contains well-known discrete distributions. 
Hence we do not further investigate the class of discrete 
distributions which may belong to l.

We propose two models which are the discrete 
versions of maximum process and call them discrete 
maximum process-I and discrete maximum process-II 
respectively. The class of stationary distributions is 
obtained for both the processes. It is shown that all the 
well-known distributions belong to the class of
stationary distributions for both the models.
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3.7.2 MAXIMUM PROCESS - I
A unified approach for constructing the stationary 

autoregressive models was discussed in Chapter 2. Using 
this approach we proceed to treat max (X, Y) as a 

thickening operator on X, which when used in conjuction 
with thinning operator p* would satisfy p*max(X, Y) = X. 
If such a rv Y exists then the process defined below, 
which we call the discrete maximum process-I, becomes 
stationary.

Xn = p * naxtVL Y„) , n = 1 , 2, . . . ... (3.7.3)

Remark 3.7.1 : It may be noted that max(X, Y) serves as a 

right inverse of p * in the same sense as p\ operator of 
Littlejohn (1992) is a left inverse of p*. Further max 
(X, Y) is an unambiguously defined thickening operation 

as compared to the operation p\X ■

Remark 3.7.2 : Littlejohn (1992, Page no. 86) commented 

that the operator p * does not have a right inverse. 
Possibly what he means is that p* does not have a right 
inverse for every value of p. Our result also supports 
this observation as our right inverse (that is max 
operator) also exists only for restricted values of p ■

Let Wp be the class of all distributions which can 
be marginals of a stationary discrete maximum process-I. 
We now determine the conditions that a distribution F 
must satisfy in order to belong to ip. Note that for an 
integer valued random variable Z, p*Z = X if and only if 
their probability generating functions (pgf's)are same.
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That is,

Qp#z(s) = Qx(s) for all s e [-1 , 1],

or equivalently

Qz(1-p+ps) = Qx(s) for all s e [-1, 1].

That is,

Qz(t) = Qx((t+p-1)/p) for all 1-2p s t < 1, 

or
00 00

l P(Z = k) tk = l P(X = k) ((t+p-D/p)\

k=0 k=0

The two power series agree on an interval in [0, 1] 

if and only if the coefficients of tk are same in both 

the series for all k a o (Ref. Theorem 8.5, Rudin

(1976)). That is

P(Z = k) = p' ((p-U/p)"-

n=k

P(X = n)

Q™((p-1)/p)

= --------------------------- = q say, for k = 0, 1 , . . . ;
ir Kk! pk

. . . (3.7.4)

where Qxk,(-) denotes the kth derivat ive of Qx(-). Thus 

p* 1 = X if and only if the distribution of Z is {9k}, 

where e is as defined in (3.7.4).
k

Remark 3.7.3 : A necessary and sufficient condition for 

the infinite series in the expression of P(Z=k) to be 

convergent is that p > 1/(1+ct) when Qx(s) exists for 

|s| < ct. Recall that a st 1 . ■
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Next we have to find a random variable Y such that

max(X,Y) = Z. Let F(-) be the distribution function of X

and G(*) be the distribution function of Y. Then we

require that for k = 0, 1, ...
k

F(k) G(k) = [ e. ...(3.7.5)

j=0
Thus a necessary and sufficient condition for F to 

belong to is that G defined by (3.7.5) is a

distribution function; in that case the common 

distribution of the associated innovation process is G.

First note that lim G(k) = ? Q. = 1, being the
k-»a> “ i

1=0

Taylor series expansion of Qx(t) about the point (p-1)/p, 

evaluated at t=1 . Thus the only requirement is that G 

given by (3.7.5) is monotonically nondecreasing.

G is nondecreasing if and only if for k = 1, 2, ...

k

F(k)

F(k—1)

l

1°,

or equivalently,

P(X = k) °k 

F(k-1 ) ~ k-1

le>

}=Q

(3.7.6)

Now F belongs to Mp if and only if there exists a rv 

Z such that p*Z = X, and a rv Y such that max(X, Y) = Z.
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For the existence of Z, a necessary and sufficient 

condition is that {9k} is a probability distribution, 

where ek is given by (3.7.4); and for the existence of Y, 

(3.7.6) is a necessary and sufficient condition. However, 

note that (3.7.6) can be satisfied only if all ek’s are 

nonnegative (for otherwise the condition is violated when 

ek changes its sign for the first time), hence ensuring 

the existence of Z. Thus (3.7.6), where ©k is defined at 

(3.7.4), is a necessary and sufficient condition for a 

distribution F to belong to «p. Further if (3.7.6) is 

satisfied then the common distribution of innovation 

random variables is G given by (3.7.5).

Next we show that Binomial, Poisson and Negative 

binomial distributions belong to Mp for appropriate 

choices of p e (0,1).

Binomial distribution :

For the binomial distribution B(n,p),

' \ n (P/p)k (1-p/p)n_k, p e [p, 1)

we have

Thus Z also follows binomial distribution B(n, p/p). 

Now consider for B(n, p) rv X

P(X=k) 
F(k-1)

Pk(1-P)n_k

k-1

x=0

PX(1-P)’
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n
k

k-1

x=0

k-x

which is 

Since p/p 

satisfied. 

Pp for p e

a monotonical 1y increasing function 

> p, it follows that condition 

Thus binomial distribution B(n, p) 

[p,1) .

of p. Now 

(3,7.6) is 

belongs to

Poisson distribution :

For the Poisson(A) distribution, we have ek = 
e~A/P(A/p)k
----------------------. Thus the variable Z also follows Poisson

kl
distribution Poisson(A/p). For Poisson(A) distribution it 

can be easily verified that P(X=k)/F(k-1) is a 

monotonical 1y increasing function of A. Since A/p > A, it 

follows that condition (3.7.6) is satisfied. Thus a 

Poisson distribution belongs to Mp for every p <= (0, 1).

Negative binomial distribution :

For the negative binomial distribution NB(r, p), 

with probability mass function

pr (1-P)k f k = 0, 1, ....P(X = k) k+r-1
k

it turns out that the variable Z follows negative

f-p
binomial distribution NB(r,

1-p+pp
-), whenever p e

2—P
1). Al SO

for

NB( r, P) i t can be
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I 1-pmonotonically decreasing function of p. Since ------- >1-p+pp
(1-p), it follows that the condition (3.7.6) is
satisfied, Thus a negative binomial distribution NB(r, p)

f-pbelongs to for p e (---, 1).
H 2-p

A NECESSARY CONDITION :

It is observed that the following condition is 
necessary for F to belong to IMp.

P(X=k) = 0 for some k^O implies P(X = k+1) =0 ...(3.7.7)

For if (3.7.7) is not satisfied then max (X, Y) 
takes value k+1 or more with positive probability and 
hence p*max(X, Y) takes value k with positive
probability. In that case p*max(X, Y) = X does not hold. 
Note however, that the condition (3.7.7) is not 
sufficient for F to belong to IMp. For example consider 
the distribution which gives equal mass 1/3 to each of 
the points in {0, 1, 2}. This distribution satisfies
(3.7.7) but it does not belong to Mp for any value of p 

P(X=0) ©1as ------ > — for all p in (0, 1) and the necessaryP(X=1) e2
condition (3.7.6) is not satisfied.

Remark 3.7.4 : Since geometric distribution with support 
M does not satisfy condition (3,7.7), it follows that it 
does not belong to Mp for any p e (0, 1) ■
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3.7.3 MAXIMUM PROCESS - II
Next we propose another structure which also may be 

called a discrete maximum process. Define a process {Xn} 
by

Xn = max (p * Xn_.,, Yn} , n = 1 , 2.............(3.7.8)
for p e (0, 1), where {Yn} is a sequence of iid random
variables, independent of X0, with a common distribution
G defined on a .o
Remark 3.7.5 ; Here the operation of taking maximum
serves as a left inverse of operation p*. Another left
inverse is an operator p\ appearing in Littlejohn’s
(1992) discrete minification process. This also shows the
non- uniqueness of left inverse of p* operator ■

For an integer valued random variable X the variable
p*max(X, Y) and max (p*X, Z) need not have the same
distribution for any choice of Y and Z, an example of
which will be provided later in this Section. Also when
they have the same distribution, the operations
themselves are different (that is p* is not distributive
over max operation). This makes it clear that the process
with structure (3.7.8) needs to be studied separately.

Let Mp be the class of all distributions which can
be marginals of a stationary process {Xn} defined by
(3.7.8). We now obtain a condition that is necessary and
sufficient for F to belong to Mp.

Let X be a random variable with a distribution F
having support IN . Then F belong to if and only if for o “

80



some nonnegative integer valued random variable Y, with 

distribution function G,

max(p * X, Y) = X;

that is, if and only if for x = 0, 1, ...

F(x) = G(x) l P(X = k) P(Zk * x),

k=0
...(3.7.9)

where Z0 = o and Zk is distributed as B(k, p) for k a 1 .

Thus a necessary and sufficient condition for F to 

belong to Up is that G(-) defined by equation (3.7.9) is 

a distribution function. In that case G may be taken as a 

common distribution of the innovation process {Yn}.

• First note that G(oo) = 1 and G(0) 2 0. Thus we only

require to ensure that G(x) defined by (3.7.9) is a 

nondecreasing function of x. That is, for x = 0, 1, ...

G(x) a G(x+1). ...(3.7.10)

We first prove the following lemma which is useful 

for further discussion but the result may be of 

independent interest.

Lemma 3.7.1 : Let {an} and {bn} be the sequences of

nonnegative real numbers. Define 
n n

An = [ lk * EL [ b*
and A„/Bn.

k=0 k=0

Then {cn} is monotonies 11y increasing whenever 
{ an/bn } is mono tonica7 7y increasing.
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Proof : Define A_t = B_., = 0. Since {an/bn} is
monotonically increasing, it follows that for fixed

nil,
an/bn - ak/bk 0 , k = 0, 1 , . . .n-1 .

That is, anbk - akbn ^ 0,

which further implies that
n-1
^ (®n^k — “ anBn-1 ~ ^n^n-1 “

k=0

Adding and subtracting An_1Bn_1, we get

(an + An-l)Bn~1 “ An-1 (bn + Bn-1 ) = AnBn^ - An_.,Bn & 0.

Since n a 1 is arbitrary, it follows that {cn} is a 
monotonically increasing sequence. ■

Remark 3.7.6 : We believe that the result of above Lemma 
must be well-known. However, we proved it here for the 

ready reference ■

From the Lemma, a sufficient condition for F to 

belong to Mp is that

P(X=k)---------- is a nondecreasing function of k. ...(3.7.11)P (p*X = k)

or equivalently in terms of pgf of X,
Q^(k) (0)

------------  is a nondecreasing function of k,
pkQx(k> (1 -p)
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where Qx is the pgf of X and Qx<k>(s) denotes the kth 

derivative of Qx, evaluated at s.
Next we show that binomial, Poisson, negative 

binomial and the Georn* distribution belong to the class

V
Binomial distribution :

The pgf of the binomial distribution B(n, p) is

Q(s) = (1-p+ps)n. 
Hence we have

and

QCk)(s) - ——— (i-p+ps)n-k pk,
(n-k)!

Q(k)(0) = ( 1-P)n ( 1-PP }k
pkQ(k) (1 —p) 1-PP (1~P)p

Since (1-pp)/((1-p)p) > 1 for every p € (0, 1), it 
follows that condition (3.7.11) is satisfied. Thus the 
binomial distribution belongs to Mp for every p <= (0, 1). 
It may be recalled that binomial distribution does not 
belong to Wp for every value of p in (0, 1).

Poisson distribution :
The pgf of the Poisson(A) distribution is given by

Q(s) = e“'l{1~s).

Hence we have,

Q{fc)(0)
pkQ(k) £ -J _p)

e ^-(1 p)p k,

83



which is clearly an increasing function of k for every 

pe (0,1). Hence the Poisson distribution belongs to Mp 

for every pin (0, 1)

Negative binomial distribution :

The pgf of the negative binomial distribution 

NB(r, p) is given by

P r
q(s) = (--------) , where q = 1-p.

1 -qs

Hence we have

Q(*)(0)

pkQ0<>(1-p)

r P+qp 1,(P + qp) (-------)k.

Since (p+q p)/p > 1 for every p e (0, 1), the 

condition (3.7.11) is satisfied. Hence a negative

binomial distribution belongs to Mp for every p e (0, 1). 

Again it may be recalled that negative binomial

distribution does not belong to Mp for every value of p 

in (0, 1).

Geom+ distribution :

Consider a geometric distribution defined by the 

probability mass function P(X = x) = p (1-p)x~1 , x =1 ,

2,... The pgf of this distribution is given by 

Q(s) = ps/(1-qs).

Hence we have,

QCk)(0)

pkQ(k)(1-p)

0

(p+qp)(
P+qp)k

P

; k = 0 

; k = 1, 2,
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This is a strictly increasing function of x as 
(p+qp)/p > 1 for every p e (0, 1). Thus it follows that 

geometric distribution concentrated on N belongs to Mp 
for every p e (0, 1).

Remark 3.7.7 : It may be noted that the geometric 
distribution considered above does not belong to Mp for 
any value of p. This makes it clear that the two models 
proposed here are not equivalent.
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APPENDIX

Construction of Geom discrete minifieation process of 
Littlejohn :

The pmf of Geom (p) is
p(X=x) = p qX_1 ; x = 1, 2.....

where q = 1-p.
Note that the operation p\Z is defined by

(1_p)n p(X = n)
r n
m

P(p\Z = n|Z = m) =

n (1 ~p)k P(X = k)
k=m

It is clear that P(p\Z = 0 |Z=m) = 0 for all m, 
Consider for n=1, 2, ...

P(p\Z = n |Z = 0) =
(P)°pqn-f

k__k-1[ (p) pq 
k=1
(pq)n"T

][ (pq) k-1
k=1
(pq)n 1 (1-pq) (D

Thus conditionally on Z = 0, p\Z is distributed as
4. —Geom (1-pq).
Also for m = 1, 2, ...; n = m, m+1 , ...

P(p\Z = n |Z=m) = n
mV. J

. n-m,. m+1(pq) (1-pq) ...(2)
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Thus conditionally on Z = m, p\Z is distributed as 

m

/ t _m + £ , where N. are iid Geom(l-pq) rvs. Equations (1)

i =0
and (2) suggest that p\Z is defined as

Nq ; if Z = 0

P\Z
if Z > 0.

i=0

4- —where Nq is distributed as Geom (1-pq), 

distributed as Geom(l-pq) for i =0, 1, ... 

or equivalently,

and
N*

is

Z

p\Z = l N - I(Z > 0) ...(3)
i =0

where N are iid Geom*(1 -pq) variates.
i

Thus the Geotn+ discrete minification process is 

defined as

Xn = p\min(Xni, Yn) , n = 1, 2, .... 

where X is distributed as Geom+(p), {Y } is a sequence
0 n

ppof iid Geom(------- ), where p\Z is defined by (3).
1-pq

Joint distribution of X and X 4n n-1

First we evaluate the probability

P(X =x|X = y) = P(p\min(y,Y) = x) ;Y is innovation rv
n n-1

GO

= j^ P(p\fnin(y, k) = x) P(Y = k)

k=0
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y co
= [ P(p\k = x) P(Y = k) + P(p\y = x) l P(Y = k)
k=0 k=y+1

Case i : y s x
In this case the above conditional probability is given 

by

(pq) x-t pp + (pq)x~k (pp)p* + (pq) x-y y+1

k=t
Case ii : y > x

In this case the above conditional probability 

by

is given

(pq)x1 pp + (pq) x-k (pp)pk + 0

= (pq)x_T pp + pp ( (p + pq)x - (pq)x )
= pp ( (p + pq)x +(pq)x_1 (1-pq) )

The Joint pgf of X and X is given byn n-1

co GO

Q(si’ s2> = E s* p'x„=*■ x„-,=
x-1 y=t

00 00

= f s*T s* P(X= x| X = y)P(X = y)
Liu 2 n n-1 n-1
x—1 y=l

...(4)

The inner sum in (4) is equal to 
x

l sl p<v X' \-,= y)P(Xn-, =y=i
CO

+ T sy P(X = x| X = y)P(X = y)L 2 n n-1 n-1
y=x+1
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Substituting the conditional probability expressions from 

Case i and Case ii, after simplification above equals

(pq) x-1
PP2s

1-s q 
2

Substituting

f \
(p) p • + (pq+-ps2q)x-

— 2PP PP
4*--------------- ppp

1-s q
2

.

q(1-s2q)

.

q

.

in (4) we get after simplification

pp(1-pq)(s -1) s p(1-q(p+ps ))(p+ps )
Q(s s) = ------------------------1—— + —---------------------- 1—-------- *-

(1-s2q) (1~s1qp) (1-s2q) (1-s^(p+psz))

Autocorrelation :

Using this joint pgf, we get the following results.

1 q
E(X ) = E(X ) = -, V(X ) = V(X ) = -

n-1 n-t'

and

E(X X )
n n-1

p p + q

1-pq

Hence autocorrelation of lag 1 is given by

p p + q 1

Corr (X , X ) =
n n-1

1-pq

p+pq
after simplification.
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Making the sample paths comparable.
■f*

To make the sample paths of our Geom MINAR process
4.and Geom discrete minification process comparable, we 

choose the parameter p (in the latter process) in such a 
way that autocorrelation of lag 1 becomes equal for both.

That is to find p such that 
2 ^ Kp P q

p+pq q k

That is such that

p2q(1 -qK) - p(pq*+T) - pV = 0,

which is quadratic equation in p, having the solution

pq + 4(pq ) + 4q (1 —q )P
p = --------------- :----------------------

2q (1-qK)

It may be noted that the second solution of the quadratic 
equation is negative.
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