
CHAPTER 4
CHARACTERIZATIONS OF STOCHASTIC PROCESSES

4.1. Introduction :
It is very important to identify a proper stochastic 

model for the data at hand in order to utilize the 
statistical theory in an optimal manner. In classical 
setup, where data is assumed to be a realization of iid 
random variables, many characterization results are 
available (See Kagan et al.(1973) for an extensive 
treatment of this topic). Very few characterization 
results are available for time series models. 
Nevertheless, such results provide an aid in the process 
of model identification.

Weiss (1975), Chernick et al.(1988), Arnold and 
Hallet(1989) and Littlejohn (1992 a, b) have obtained 
some results in this direction.

Weiss (1975), Chernick et al (1988) and Littlejohn 
(1992 a, b) gave characterizations based on the time 

reversibility properties of the stochastic processes. 
Weiss (1975) showed that discrete time ARMA models are 
time reversible if and only if they are Gaussian. Here by

dtime reversibility we mean {X } = {X }. Sincen -n
transformation of a time-reversible process is time- 
reversible, an important implication of this result is 
that Gaussian models or their transformations can not be
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suitable for ARMA processes which are not time 
reversible.

Two processes {X } and {Y } are said to be mutually
n n

time reversible if {X } = {Y }. Chernick et al . (1988)
n -n

established that a stationary AR process and a stationary 
MINAR process are mutually time reversible if and only if 
the common marginal distribution is exponential. This 
result is mainly based on the following characterization 
result obtained by Daley (1989).

Lemma 4.1.1 : Let U and V be independent random variables 
such that min(U, V) and (U-V)+ are independent. Then one 
of the following statements holds.
(i) P(U s V) = 1
(ii) P(V = v < U) = 1 for some constant v.
(iii) U and V both have distributions on the same 

lattice with geometric tails.
(iv) U and V both have distributions on the same half 

line with exponential tails.
Here for real x, x+ = max (0, x).

Using the Lemma 4.1.1 Littlejohn (1992 a) proved an 
analogous result in the case of discrete processes. It is 
shown that a stationary INAR process defined by (3.3.1) 
and a stationary discrete minification process defined by 
(3.4.2) are mutually time reversible if and only if the 
common marginal distribution is Geometric.
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Arnold and Hal let (1989) gave a characterization of 
Pareto MINAR process in the class of stationary MINAR 
processes. This Characterization is based on the 
Markovian property of the level crossing process {Z (t)>

n
of Pareto MINAR process (See (4.4.10) for the definition 
of {Z (t)}) .

n
In this Chapter, we give several interesting 

characterization results based on the structural and 
distributional properties of various autoregressive 
processes. We show that the arguments similar to those 
made by Arnold and Hal let (1989), with less stringent 
regularity conditions, characterize the class of Semi- 
Pareto distributions. Semi-Pareto distribution is 
introduced by Pillai (1991). We will discuss more about 
it in Section 4.4.2. We give some more characterizations 
of Pareto AR process using various properties of the 
process. We also obtain the characterizations of EAR and 
geometric INAR processes on similar lines, exploiting the 
similarities in the structures of the three processes, 
namely, Pareto MINAR, exponential AR and geometric INAR. 
Characterizations of exponential MINAR, geometric MINAR 
and Poisson INAR processes are also obtained.

The Chapter is organized as follows. In Section 2 we 
give characterizations of AR processes with exponential 
marginals. Characterizations of AR processes with 
geometric marginals are given in Section 3, whereas in 
Section 4 we give characterizations of Pareto processes. 
A new AR process with Poisson marginals is proposed in
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Section 5 and a characterization for this process is also 

obtained.

4.2. Characterization of AR processes with exponential 
marginals :

4.2.1 A Characterization of exponential MINAR process:
It was shown in Chapter 1 that finding a stationary 

solution for MINAR processes given by
X = emi n(X Y ) ...(4.2.1)n n-1 n

is equivalent to finding a solution of the minimum
problem considered by Arnold and Isaacson (1976). This
fact enable us to give a characterization of exponential 
MINAR process of Tavares(1980), which is an immediate 
consequence of the following characterization of
exponential distribution given by Arnold and Isaacson 
(1976):

Theorem 4.2.1 (Theorem 3.1 in Arnold and Isaacson (1976)) 

Let X and Y be nondegenerate non-negative

independent random variables satisfying

min(X, Y) = pX = (1-p) Y
for some p e (0, 1). Let F be the distribution function

of X and assume that F has a right derivative at zero.
Then F must be an exponential distribution.

As a consequence of this result, we have a 
characterization of exponential MINAR process proposed by 
Tavares’ (1980) minification process.
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Theorem 4.2.2 [Kalamkar (1995)]
Let {X} be a stationary MINAR process given by

n
(4.2.1) with marginal distribution F. Let G be the common 
distribution of innovation process. If F(x) = G(x/(e-1)) 
and F has a right derivative at zero then {X } is an

n

exponential MINAR process.
Proof : Let X and Y be the independent rvs with

xdistributions F and G respectively. Since F(x) = ---)e-1
we have

P(X as x) = P( (0-1 )Y a x) .
Taking e = 1/p, we have pX = (1-p)Y. Further, the 

stationarity of {Xn} implies that min(X, Y) = pX. Then 
from Theorem 4.2.1, it follows that X must be an 
exponential rv. ■

Remark 4.2.1 : Since min(X, Y) = X/e is equivalent to 
min(x“,Ya) == Xa/0a for nonnegative random variables X, Y 

and every real a > 0, it follows that whenever the
distribution F of X belongs to F (introduced in Section 
3.5), the distribution of Xa belongs to F0Ot (See Lewis 

and McKenzie (1991) for a detailed treatment of 
transformations of MINAR processes). Since a one-to-one 
transformation of a stationary process is stationary, 
this further implies that from Theorem 4.2.2 one can get 
a characterization of Wei bull MINAR process (See Sim 
(1986) for the discussion of Weibull MINAR process).
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Corollary 4.2.1 : Let {Xn> be a stationary MINAR process 
with parameter a. If distributions F and G satisfy F(x) = 
G(ax/b); where aa+ba = 1 for some « > 0, then (Xn) must

p(x)
be a Wei bun process provided lim ---- > 0.

x-»+ xa

4.2.2 A Characterization of EAR(1) process :

Consider an AR process given by

pXn-1 with probability p

pX + Y with probability p (= 1-p)n—1 n
, n = 1, 2,

(4.2.2)
where p e (0, 1) and {Y } is a sequence of iid

n
nonnegative rvs, independent of nonnegative rv Xq, with 
common distribution function G.

Gaver and Lewi s (1980) showed that if the
distribution F of X0 i s same as G, and G is
exponential(A), then the process at (4,2.2) is
stationary. They called the process an EAR(1) process. In 
the next Theorem we show that in the class of stationary 
AR processes with structure (4.2.2), the condition F = G 
in fact characterizes the EAR process.

Theorem 4.2.3 [Sreehari and Kalamkar(1997)]
Let {X } be an AR process given by (4.2.2). JfF = G

n
and the process is stationary for every fixed p e (0, 1) 
then it must be an exponential process.
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Proof : Let L(s) = E(exp(~sX)) be the Laplace transform 

of F. From (4.2.2) it is clear that the Laplace transform 

of Xn is

LXn(s) = P LXn_.,(Ps) + P LXn_1(Ps) Lyn(s).

Now since (X } is stationary, and F = G, L(s) =
n

Ly (s) satisfies for every p e (0, 1),
n

L(s) = pL(ps) + p L(ps) L(s)

= L(ps) { p + p L(s) }.

1
Define H(s) = -------- - 1. Then H(s) satisfies

L(s)

H(ps) =pH(s), Vpe (0, 1], s > 0. ...(4.2.3)

Putting s = t/p in above, we get 

1 1
H(— t) = - H(t) V p e (0, 1], t > 0.

P P

Thus the equation (4.2.3) holds for all p, s > 0. 

Putting s = 1 in (4.2.3), we get H(p) = pH(1) V p > 0, 

or H(s) = cs , s > 0.

Here c = H(1) > 0, since H(-) must be monotonically 

increasing.

That is, L(s) = (1 + cs)-1 , s > 0,

which is the Laplace transform of an exponential 

distribution with mean c ■
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4.3. Characterizations of AR processes with geometric 

marginals:

4.3.1 A Characterization of geometric INAR process :

Consider an INAR process given by

r

p * Xn 1 with probabi1ity p

p * X + Y with probabi1 i ty p
n-1 n

n 1, 2,

...(4.3.1)

where pc (0, 1) and {Y } is a sequence of iid rvs,
n

independent of Xq, with common distribution function G.

McKenzie (1986) showed that if the distribution F of 

Xq is same as G, and G is Geom(e) , then the process at 

(4.3.1) is stationary. We show that in the class of 

stationary INAR processes with structure (4.3.1), the 

condition F = G in fact characterizes the geometric 

process.

Theorem 4.3.1 [Sreehari and Kalamkar (1997)]

Let {X } be an INAR process given by (4.3.1). If
n

F = G and the process is stationary for every fixed p e 

(0, 1) then it must be a geometric INAR process.

Proof : Let P(s) be the alternate pgf of F. Then, 

following the arguments of Theorem 4.2.3 with L(s) 

replaced by P(s), it is easily seen that P(s) is of the 

form

P(s) = ( 1 + cs) 1 , s € [0, 2], 

where c > 0 is a constant. Thus P is the alternate pgf of

98



a geometric distribution with mean c ■

Remark 4.3.1 : From Theorem 4.2.3 and Theorem 4.3.1 it
can be concluded that for an AR / INAR process {X } at

n
(4.2.2)/(4.3.1) any two of the following three statements 
imply the third.
(i) F is an exponential / geometric distribution.
(i i ) {X } is stationary.

n
(iii) F=G.

That (i), (ii) imply (iii) and (i), (iii) imply (ii) 
were proved by Gaver and Lewis (1980)/ McKenzie (1986). A 
similar result will be proved for a Min-geometrically 
stable processes in the Chapter 5 after we introduce Min- 
geometrically stable laws ■

4.3.2 Characterizations of geometric MINAR process :

MINAR processes with discrete marginals were 
introduced in Chapter 3, where we discussed a geometric 
MINAR process in detail. Recall the peculiar nature of 
the common distribution of innovation rvs for a geometric 
MINAR process, that these rvs do not take the values 
which are multiples of K, the parameter of the process. 
We now show that in the class of stationary MINAR 
processes with discrete marginals, above mentioned 
peculiarity is a characteristic of geometric MINAR 
process. Consider a stationary MINAR process given by 

X = min(KX , Y ), n = 1, 2, ...n n-1 n
for some integer K a 2. Recall that F is the class of

K
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all stationary distributions F of the MINAR process 

defined above, Ff is the class of all distribution in F„

whose support is a subset of io> and F1* = |j F^.

K2:2

THEOREM 4.3.2 [Kalamkar (1995)]

Let {X } be a stationary MINAR process defined above
n

r*
with marginal F e F . Let GK be the common distribution 

of the innovation rvs when the process has parameter K 

(K s 2). If Gk satisfies

GK(rK) = GK(rK~1) , r = 1,2............................(4.3.2)

for every K then F is a Geom+ distribution.

(The condition (4.3.2) means that for every K a 2 the 

corresponding innovation rvs do not take values which are 

multiples of K)

PROOF : Since F e F^ for every integer K i 2, using the 

expression (3.5.6) of pmf of G^, our hypothesis implies 

that

F(r) _ F(rK)

F(r-1) F(rK-1)
In particular, we have

F(1) = F(K)
F(0) F(K-1)

Subtracting both the sides from 1, we get

V K 2: 2, r a 1.

V K £ 2.

A(1) = X(K) = C, 

for some c e (0, 1], where 

function of F given by 

distribution F.

V K a 2 ...(4.3.3)

A(-) is the discrete hazard 

P(X=x)
= —T' X havi ng

P(Xsx)
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Let X be a rv having distribution F. We prove the

result by induction.

Since A( 1) = c, we have

P(X = 1) = c.

Now suppose

P(X = m) = c (1-c)m~1 for m = 1,2,...x. 

Then from (4.3.3),

P(X = x+1) = c P( X > x)

x
= c (1 - cl (1-c)m“1 )

m=1

= c (1-c)x.

Thus by mathematical induction, it is proved that F is a 

Geotn+ distribution.

Remark 4.3.2 : In the statement of Theorem 4.3.2, it is 

necessary to assume that the condition at (4.3.2) is 

satisfied for every K. As a counter example of a non 

geometric distribution, where the condition is satisfied 

for K = 2, but not for every K, one may consider the 

example given in Remark 3.5.5 ■

The following Theorem also provides a

characterization of a geometric MINAR process based on a

structural relationship between the common distribution

of innovations and the stationary distribution of the

MINAR process. Recall that for a geometric MINAR process,

an innovation rv Y and X satisfy the relationship at
o
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(3.6.3), namely

THEOREM 4.3.3 [Kalamkar (1995)]

Let {X } be a stationary MINAR process with the
n

marginal distribution F e for some K a 2. If Y

satisfies relation at (3.6.3) and P(X = 1) = p > 0 then F
4.is Geom (p).

PROOF : Let X be a rv having distribution F. Then for

every positive integer x, X satisfies 

P(X = x) = P(min(KX, Y) = x)

= P(X = x/K) P(Y > x) + P(X > x/K) P(Y = x)

+ P(X = x/K) P(Y = x).

The last term is zero, because Y does not take 

values of the form rK and X takes only integer values. 

Thus we have,

P(X = x) = P(X = x/K) P(Y > x) +• P(X > x/K) P(Y = x) .

Suppose x is not a multiple of K, then we have 

for n = 0,1,... and r = 1,2,...,K-1,

P(X = nK+r) = P(X > n +(r/K)) P(Y = nK+r)

= P(X > n) P(X = n(K-1) + r). ...(4.3.4)

The last equality follows from (3.6.3), and the fact 

that X is integer valued. Next, when x is a multiple of 

K, we have

P(X = nK) = P(X = n) P(Y > nK)

= P(X = n) P(X > n(K-1)). ...(4.3.5)
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Using (4.3.4) and (4.3.5) we now prove that

P(X = r) = p(1-p)r 1 , r = 1,2,... (4.3.6)

by mathematical induction.

Note first that (4.3.6) holds for r = 1. Suppose 

(4.3.6) holds for r = 0, 1 , . . . , m.

Depending on whether m+1 is a multiple of K or not, 

we consider two cases.

Case (i) : m = sK+t; for some integer s 2: 0 and OstcK-l.

In this case m+1 is not a multiple of K. Therefore 

f rom (4.3.4),

P(X = m+1) = P(X = sK+t+1)

= P(X > s) P(X = s(K—1) + t+1)

= P (1-P)m-

Thus (4.3.6) is true for r = m+1.

Case (ii) : m = sK - 1; for some integer s > 0.

In this case m+1 will be a multiple of K, then from 

(4.3.5),

P(X = m+1) = P(X = sK)

= P(X = s) P(X > s(K-1))

= P (1-P)m-

Thus (4.3.6) is true for r = m+1 in this case also ■
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4.4 A Pareto MINAR process and related characterizations

4.4.1 A Pareto process
Yeh et al . (1988) proposed a MINAR process called

ARP(1) with Pareto marginals. The process is defined by

Xn

^n-l

min(/3-rX
n-1

with probability £
*

with probability js(=1-£)

...(4.4.1)
for p e (0, 1), where } is a sequence of iid random

n
variables, independent of Xq, with common distribution G, 
Xq distributed as F and y > 0. Yeh et al . (1988) showed
that if G is a Pareto distribution P(«r, y) (a special 
case of Pareto type III distribution ) and F = G then 
(X } at (4.4.1) is stationary with P(o% y) marginals.

n
Here P(<r, y) is a Pareto distribution whose survival 
function is given by

G(x) = [1 + (x/o0 f/:ar]“T, x a 0.

Yeh et al.(1988) investigated distributional 
properties of this process and also some inferential 
problems associated with the process. The process is 
useful in socio-economic studies due to the importance of 
Pareto distribution in that area.

It may be noted that the structure at (4.4.1) is a 
particular form of MINAR process. This form is obtained 
when the common distribution of innovations in a MINAR 
process assigns a positive mass at infinity. In our 
terminology we refer to the Pareto process defined above 
by MINARP(1). The important properties of MINARP process
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are mentioned below.

(1) The process is autoregressive.

(2) If X is distributed as P(<r, y) then {X } is a
0 n

stationary process with P(«r, y) marginals.

(3) If XQ is arbitrary and nonnegative then X^ converges 

in distribution to a P(cr, y) random variable.

(4) For every p e (0, 1 ],

y

1-q£ 

where N(p)

d w dl
max X = X =

k 00Sk£N(p) 1-q0
min X 

OSSkiSNCp)

is a geometric random variable,

p, q = 1-p.independent of X^’s, with P(N(p) = 0)

4.4.2 Semi-pareto processes

Pillai (1991) defined a Semi-Pareto distribution and 

proposed a MINAR process with Semi-Pareto marginal. 

Pillai(1991) also extended some of the results in Yeh et 

al.(1988) to the Semi-Pareto processes. The P(«r, y) 

distribution can be obtained as a particular form of 

Semi-Pareto distribution.

Pillai (1991) defined Semi Pareto distribution as 

follows :

Definition 4.4.1 : A rv X has a Semi-Pareto distribution 

SP(y, P) , 0 < p < 1, y > 0, if its survival function F(-) 

is of the form
F(x) = P(X > x) = ( 1 + *(x))~1, ...(4.4.2)

where $ satisfies the functional equation

^Oyx) = p #(x) V x a 0 ■ ... (4.4.3)
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1 /yIt is readily seen that when #(x) = (x/cr) ' 0, we get 
the Pareto distribution P(cr, y) . Pillai (1991) then 
proposed a Semi-Pareto process defined by the structure 
(4.4.1), where } is a sequence of iid randomn
variables, independent of XQ, with common distribution 
SP(r> 3)- Pillai showed that if Xo is distributed as 

SP(y, p) then {X } at (4.4.1) is stationary with SP(r, 3)n
marginals, and the process possesses the properties 
similar to those of MINARP process. These properties are
(1) The process is autoregressive.

(2) If X is distributed as SPfy, p) then {X } is a0 n
stationary process with SPfy, 3) marginals.

(3) If X is arbitrary and nonnegative then X converges0 n
in distribution to an SP(y, p) random variable.

(4) For p = p2/(1 +p+p2),

y
1-d3 max XkOSk=SN 1-q0

-y
mi n Xk
02=k:£N

where N is a geometric random variable, independent 
of X^’s, with P(N(p) = 0) = p, q = 1-p.

Before we give further results, it is necessary to
point out and clarify some ambiguities in the above
mentioned development of Semi-Pareto distribution/

process. Fi rst note that SP(r, 3) is not one
distribution, as it appears from the definition, but is a 
family of distributions. To clarify this point, note that 
there exist more than one function #(-) which satisfy 

(4.4.3) for the same pair (y, p) ( Such an example is
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given in observation (c) following the Definition 4.4.2). 
All the distributions corresponding to these 0’s 
constitute the family SP(y, p). To make this point 
clearer from the definition itself, we propose to 
reformulate the definition as follows :

Definition 4.4.2 : A distribution F is said to belong to 
a Semi Pareto family SP(y, p) , 0 < p < 1, > 0, if its
survival function is given by (4.4.2)-(4.4.3). ■

A specific member of this family will be denoted by 

SP(r, P, 0), where 0 is to be specified explicitly and 
SP(r, P) may be described as SP(y, p) = { F I F is given 
by (4.4.2) - (4.4.3)}. We now make some observations on 
the SP(y, p) family.

(a) 0(p yx) = p 10(x) V x i 0 <=> 0 satisfies (4.4.3).

(b) For every integer m (including negative integers),
0Omyx) = pm 0(x) V x a 0.

In particular, the inclusion SP(y, p) c SP(y, pm) can 

be shown to be proper for m > 1.
(c) If distribution of X belongs to SP(y, p) then 

distribution of (1/X) also belongs to SP(y, p). More 
precisely, X is distributed as SP(y,p,0) if and only 
if (1/X) is distributed as SP(y, p, 0), where 0(x) = 
1/(0(1/x)) .

(d) Distribution of X belongs to SP(1, p) if and only if 
the distribution of Xy belongs to SP(y, p).
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(e) A distribution in SP(3f, 0) family need not be 
continuous. Consider for example, the distribution F 
that corresponds to ^(x) given by

4Kx) = 0n ; 0n s x =s 0n~1, n= 0, ±1, ±2, ... 

Clearly ^(x) is a step function, and # satisfies 
(4.4.3) with y = 1. Thus F is discrete distribution 
belonging to Semi-Pareto family.

In the light of the improved definition of Semi- 
Pareto distribution, it should be noted that in the 
results obtained by Pillai (1991), it is not sufficient 
just to replace the phrase "SP(y, 0) distribution" by 
"SP(y, 0) family". Instead the phrase "SP(y-, 0)
distribution” should be replaced by "SP(y, 0, $)
distribution”.

In the next Theorem we give an important 
characterization of Pareto distribution in the Semi- 
Pareto family of distributions. Let c be the class of all 
continuous distributions.

Theorem 4.4.1 :

SP(r, 0^ n SP(y, 02)n C = {P(«r, y) I «r > 0>, 
log 01

provided------ is irrational.log 02

1Proof : Let F be expressed as F(x) = ------ , then <A( •)1+*(x)
satisfies for i = 1, 2

^(0^x) = 0.flKx) , x a o ...(4.4.4)
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Let vKt) = ^(et)e t real. Then we have for c. =

ylog p.; i = 1,2,
^(t+c ) = £(et+Ci)e"(t+c<)/3r

= *(etp*)e‘"t^y0~1

= ^(et)e using (4.4.4)

= 0(t).

Since <p( -) is continuous, 0(-) is also a continuous

function with periods c and c , where c/c is
1 2 12

irrational. This implies that if/( -) is a constant 

function. That is
^(x) = ^(ex)e x/,y = c for all x real,

1 /’XThis implies $(x) = cx ' 0 V x real

This completes the proof.*

Theorem 4.4.2 Intersection of all SP(ar, p) families for 

various values of p in (0, 1) is a Pareto family 

{P(o-, y) |<r > 0} .

Proof : Suppose F e ?2 = SP(y,p). Define $ = 1/F - 1,

ospsi
then 4> satisfies for given y > 0,

^(pyx) = p ^(x) V x 2 0, p e [0, 1].

Property (a) mentioned earlier implies that 

*(P*x) = p $(x) V x at 0, p a 0,

Taking x= 1 , we get 4»{py) = p #(1) for all p ar 0, or 

^(x) = (x/o-)1^3f v x a 0,

where er = ^(1)_y. Thus ? c ?i. The converse can be 

readily verified from the definition of the Pareto 

distribution P(«r,y). ■
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Remark 4.4.1 : It may be noted that unlike in Theorem
4.4.1, the continuity of distributions is not assumed in 
Theorem 4.4.2. With the additional assumption of 
continuity, Theorem 4.4.2 would be a corollary of Theorem 
4.4.1 ■

Remark 4.4.2 : The distinction between a Pareto and Semi- 
Pareto distributions is that P(er, y) satisfies (4.4.3) 
for every 0 < 3 < 1, whereas SP(y, R, satisfies
(4.4.3) only for a specific R appearing in the parameter 
list (and integer powers of it) ■

Remark 4.4.3 : In the light of property (d) mentioned
above, one can restrict the theoretical discussion of
Pareto/ Semi-Pareto processes to the case y = 1. All 
results in the case of y * 1 can be derived from this 
special case. However, we discuss the results for general 
y ■
4.4.3 A NECESSARY AND SUFFICIENT CONDITION FOR 

ST ATIONARITY

We refer to the Semi-Pareto process of Pillai (1991) 
by MINARSP(1) (Pillai called it ARSP(1)). It may be noted 
that MINARP process of Yeh et al.(1988) is a particular 
form of MINARSP process.

Consider a MINAR stochastic process {X^} given by
(4.4.1), where {£ } is a sequence of iid rvs, independent

n
of X , with a common distribution G, and 0 s R =s 1. Let F o’
denote the distribution of Xq. The analogous MAXAR 
process can be defined as
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with probability 0
...(4.4.5)Yn

r
0TY

n-1
min(0yY , t* ) with probability 1-0

n-1 n

If the common distribution of tj ’s is SP(y, 0,
n

and Yq follows SP(y, 0, tf>) then it can be shown that the 
MAXAR process is stationary. Every result that holds for 
MINAR process given by (4.4.1) has an analogous result 
for MAXAR process given by (4.4.5), which can be proved 
by similar arguments. Hence hereafter we discuss only 
MINAR process.

Remark 4.4. 4 : While dealing wi th maximum process it is
convenient to work wi th F instead of F; In this
connection i t may be useful to observe that if F e
SP(y, 0) then F(x) is of the form (1 + #(x))~1 where $(x)

<v — Tsatisfies $(0®x) = 0 ^»(x) for every x 2 0 ■

Recall that MINAR process at (4.4.1) is a particular 
form of the MINAR process given by

X = min (p"1X , Z ) ...(4.4.6)
n n-1 n

where {Z^> is a sequence of iid rvs, independent of XQ,

having a common distribution H, and p e [0, 1).
1 /*If H has a positive mass 0 = p 0 concentrated at 

infinity then this process takes the form (4.4.1) with 

G = H/0. Recall that a necessary and sufficient condition 
for the process at (4.4.6) to be stationary with marginal
F is that F is a min-SD distribution. This requirement



can also be expressed as :

F(x)H(x) = ------ V X a 0. ...(4.4.7)
F(px)

It is known that if X has an arbitrary distribution0

and H satisfies (4.4.7) for some F, then X converges in
n

distribution to a rv X having distribution F. The 
condition (4.4.7) also implies that if the process at
(4.4.6) is stationary, then H is uniquely determined by 
the stationary distribution F and vice versa. From
(4.4.7) , it follows that a necessary and sufficient 
condition for MINAR process at (4.4.1) to be stationary 
is that

F(erx) - F(x) ~0G(x) = ------------- = P(Xs x i X > 0arx).
_ <v 0 0F(0yx)

...(4.4.8)

From these observations, it follows that
(i) a process at (4.4.6) is a MINARSP process with

SP(ar, 0, 4>) marginal if and only if H is an improper 
distribution given by H(x) = (1-0)G(x), where G =
SP(y, 0, <j>), and

(ii) For the process {X} defined at (4.4.1), X
n n

converges in distribution to a SP(y, 0, 4>) rv. if Xg 
has an arbitrary distribution and G = SP(y, 0, .

4.4.4 SOME CHARACTERIZATION RESULTS
Having noted that in both MINARP and MINARSP 

processes we have F = G, that is, common distribution of 
innovations is same as the stationary distribution of the
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process, it is of interest to answer the question "If 

F = G, is {X} at (4.4.1) necessarily stationary?". The
n

question is answered by the following Theorem which shows 
that the condition “F = G" characterizes the Semi-Pareto 
process in the class of stationary MINAR processes given 
by (4.4.1).

Theorem 4.4.3 : For the MINAR process given by (4.4.1), 
with F and G being the distribution of Xq and the common 
distribution of innovation rvs respectively, any two of 
the following statements imply the third.

(i) F = G.
(ii) {X } is stationary.

n
(iii) G belongs to SP(y, p) family.

Proof : Suppose (i) and (ii) hold. Then from (4.4.8), we 

get

Writing G(x) =
ff »(x)

1 + #(x)

£G(x) G(x)
G(pyx)

(1 + 0(x)) 1, we get

4>{x) - #(xpy)
1 + ^(x)

V x *: 0.

That is, tf>(x0y) = j3 ^(x) . Thus (iii) holds.
That (i) and (iii) imply (ii) is established in 

Section 4.4.3 and that (ii) and (iii) imply (i) follows 

from (4.4.8) ■
Yeh et al.(1988) also studied the behaviour of 

geometric minima and geometric maxima for MINARP process. 
Let N be a nonnegative integer valued rv independent of
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the MINAR process {X }. Define
n

T = min X n _ _ k0=5 k=£H
and M max X .N _ k (KSkSN

Yeh et al.(1988) proved that if {X } is a MINARP
n

process then for every p e (0, 1)

1-q£
r
MN(p) X

1-d £

~r
NCp)

. .(4.4.9)
when N(p) is geometric with P(N(p) = 0) 
proving this result the authors have 
crossing process {Z (t)} defined by

n

z„^ i f X > t,
nif X =£ t.
n

= p, q = 1-p. In 
used the level

. ..(4.4.10)
The authors used the argument that {Z (t)} is a

n
Markov chain for every fixed t > 0. That the level 
crossing process {Z (t)> forms a Markov chain for a fixed

n
t is not an obvious result and its proof uses the 
structure of Semi-Pareto family. This result is proved by 
Arnold and Hallet (1989) for MINARP process, where they 
also give a characterization of MINARP process, in the 
class of stationary minification processes defined at 
(4.4.6), based on the Markovian property of {Z (t)},

n
under the regularity condition

lim t“1/yH(t) = A > 0, 
t-»o

where H(t) is the common distribution of innovation rvs
Z .n

Latter Pillai (1991) proved that (4.4.9) holds for a 
MINARSP process also for an appropriate choice of p. It
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is interesting to observe that Pillai does not refer to 

Arnold and Hallet (1989), although he uses the argument 

that {Z (t)} possesses Markovian property for MINARSP
n

process also. Having noted the characterization of Pareto 

given by Arnold and Hallet, it appears that Pillai (1991) 

might have committed an error. However, as we show it in 

the next Theorem, with a weaker regularity condition than 

that assumed by Arnold and Hallet, similar arguments 

characterize the Semi-Pareto family of distributions.

Theorem 4.4.4 : Consider a stationary MINAR process

defined by (4.4.8) with the corresponding stationary 
distribution F. Let H be the common distribution of rvs 

Z . Assume that for some S > 0,n H (t)
lim ----  = S ... (4.4.11)t*0 F(t)

The level crossing processes {Z (t)} defined by
n

(4.4.10) are Markovian for every t if and only if F 

belongs to Semi-Pareto family.

Proof : The Markovian property of {Z (t)} can be proved
n

for MINARSP process using the arguments similar to those 

made by Arnold and Hallet (1989).

Conversely, suppose {Z (t)} is Markovian for every
n

t > 0, for a stationary MINAR process defined by (4.4.6). 

Then following the arguments of Arnold and Hallet, we get

H(t) 
F (t)

H(pt) 
F(pt) V t > 0.
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Denote
H(t)

F(t)

equation we get

by tff(t). Then on iteration of above

H(pnt)
0(t) = —------- V n £ 1

F(p t)

H(p"t)
This implies tft( t) = lim ------------ = 3 from (4.4.11)

rv*» F(pnt)

Thus, we have SF(t) = H(t).

Since stationarity of the process at (4.4.6) implies 

F(t) = F(pt)H(t), we have

F(t)
SF(t) = 1

or equivalently,
F (pt)

F(pt) =
F(t)

1 - 3F(t)

That is,

Hence

That is,

F(pt)
(1-a)F(t) 

1 - SF(t)

F(pt) = (1-S)F(t) 

F(pt) F(t)

^(pt) = (1-3) 0(t) ..(4.4.12)

where 0(t) = -------- .
F(t)

Note that, since F(t) = F(pt)H(t), we have 3 =

< 1 for some t. Therefore p = (1-3) € (0, 1). Since 

p and p are in (0, 1), there exists r > 0 such 

p = py. Then from (4.4.12), we have

0(j3yt) = p^(t).

H(t)
F(t)
both
that

Hence F belongs to Semi-Pareto family ■
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The choice of p ( p = £2/(1+£+£Z) ) made by Pillai 

(1991) for which (4.4.9) holds for Semi-Pareto process 

with SP(y, p, $) marginals reduces (4.4.9) to the 

following form

p2rU X = 
o

P~Z*1

In the light of property (b) of the Semi-Pareto 

family, a more general result stated below holds.

Theorem 4.4.5 : Let {X } be a MINARSP process. For every
R

positive integer m, there exists a geometric rv N(m) such 

that

pwZ M i X = p~mZ 1 , ...(4.4.13)

where P(N(m) = 0) = p is the solution of equation

(For m = 2 this result reduces to the result obtained by 

Pillai(1991)).

Proof : Let c > 0, and N be a Geom(p) rv, where p is a

P __solution of -------- = c. The survival function of c is
1-qp N

given by

H(x) = P(c“yTN > x) = P(Tn > cyx)

oa

= £ pqk P(X. > c^x; 0 s i s k). ...(4.4.14)

k=0

Now,

P(X > c^x; o s i s k) = P(Z (cyx)=1 , ..., Z (c^x) = 1),
i 0 k

where Z.(cyx) = 1{x>cyx}'
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P(A a A a...aA) say.0 1 k

= P(A )P(A |A ) ...P(A|AaA a...a A )010 k 0 1 k-1

= G(cyx) (0 + 0G(c3rx)}k.

Substituting in (4.4.14), we have 
pG(c*x)

H(x)
1-qO+|SG(cyx) }

That is,

1 1 - q0 1---- - 1 =--------------- q0
H(x) P G(cyx) P

■ - Dc“1( -- -
G(C®X)

= $(x), provided c is of the form 0*. 

(See property (b))
Thus it follows that

c yT = X when c is of the form 0B.
NO

In other words,

£ = X ,N(m) 0
where N(m) is a Geom(p) rv, and p is a solution of 
p

1-q/3 0

The first equality can be proved in a similar 
fashion by incorporating property (b) in the original 
proof of Pillai’s (1991) result ■

Remark 4.4.5 : The result of Yeh et a1.(1988) can also be 
stated as follows. Let {X > be a MINARP process. Then for

n
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every c e (0, 1) there exists geometric rv N(c) such that
Tf „ d „ d_ MN(c)

where P(N(c) = 0)
P

X c“y T (4.4.15)0 N(c)
p is the solution of equation

1 -QP c, q 1-p

Remark 4.4.6 ; The result (4.4.15) for MINARP process is 
obviously more general than the result (4.4.13) for 

MINARSP process, as (4.4.15) holds for every c <= (0, 1). 
This fact characterizes the Pareto distribution, as we 
prove it later in this Section ■

Recall that MINAR process at (4.4.1) is stationary 
with SP(y, p, <f>) marginals only when F = G is SP(y, £, 
$). If F = G is SP(a, c, <f>) , where c * 0, or a * y, then 
the process at (4.4.1) is not stationary. However it is 
interesting to note that the second equality in (4.4.15), 
with r replaced by a, still holds for this non-stationary 
process. This is shown in the next Theorem.

Theorem 4.4.6 : For a MINAR process of the form given at 

(4.4.1) . Suppose F = G is SP(a, C, 4>) , ol > 0, c e (0, 1), 
and let N be a geometric rv with P(N = 0) = p, where p is 
the solution of p/(1-q /3) = c. Then

-a T i x (4.4.16)NO '

Proof : Recall that q = 1-p and Zn(t) = I^x tj. The
n

survival function of c aT(i is given by
00

H(x) = P(c_ar > x) =T p qK P(X > cax, 0 s 3 K ).
N L s

K=0
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Now, using arguments in the proof of Theorem 4.4.5, 

P(X > cax, 0 s s s k ) = G(c°Sc) ( p + p G(cax) )K.
S

Thus we have,

H(x) =
p G(cax)

1 -q{/3 + p G(cax) }

or
1 - qp

H(x) P G(cax)
qp
P

c * 0(cax) = #(x)

Thus, H(x) = G(x)

1

V x st 0.

Remark 4,4.7 : Clearly if we take F = G = P(<r, y) in

above Theorem, then (4.4.16) holds for every c e (0, 1). 

In The light of property (b) of Semi-Pareto family, a 

more general result given below also holds.
c~maT i X ,
NO

where N is a Geom(p) rv and m is a positive integer ■

Next we show that (4.4.16), for a specific value of 

c, characterizes the Semi Pareto structure of MINAR 

process, whereas (4.4.16) for every c € (0, 1)

characterizes the Pareto structure of the MINAR process, 

when N is geometric.

Theorem 4.4.7 : Let {X } be a MINAR process of the form
n

given at (4.4.1) and let F = G. Suppose (4.4.16) holds 
for some c € (0, 1) and « > 0, where N = N(c) is the 
Geom(p) rv, and p is the solution of p/(1-q£) = c. Then F 

belongs to SP(a, c). Further if (4.4.16) holds for every 
c e (0, 1) then F must be a Pareto distribution.
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Proof : Proceeding as in Theorem 4.4.6 and using

(4.4.16), we have

P(c “T > x)
N(c)

pG(c“x)

1-q{ j3 + j§ G(cax)}
G(x) V X a 0,

That is, G must satisfy

L G(c°x) G(x)

Writing 0(x) for (1/G(x)} 

0(cax) = c 0(x) V x 2 0. 

Above result along with 

remaining proof ■

1 V x stO.

-1,0 must satisfy,

Theorem 4.4.2 completes the

Remark 4.4.8 ; The first equality alone in (4.4.15) for 

al 1 c e (0, 1) may not characterize the Semi-Pareto (and 

hence Pareto) structure of MINAR process even in the 

class of stationary processes.

Following corollary is a consequence of Theorem 

4.4.1 and Theorem 4.4.7.

Corollary 4.4.1 :Let {X } be a MINAR process of the form
n

given at (4.4.1) with F = G which is continuous. Suppose

c
-«
1 T

"1
d

C
2

d X
o

log ci
holds for some oc > 0 and c , c e (0, 1) such that ------------

12 log c2

fs irrational, where for i = 1, 2, N is a Geom(p ) rv,
i 1

and p is a solution of p/(1-q|3) = c . Then F must be
i i i i

Pareto.
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In the next Theorem we show that (4.4.16)

characterizes the geometric nature of N for a MINAR

process when F = G is Semi Pareto.

Theorem 4.4.8 : Let (X } be a MINAR process of the form
n

given at (4.4.1) with F = G = SP(a, c, <j>) which is 

continuous. Suppose (4.4.16) holds for a nonnegative 

integer valued rv N independent of (X } where P(N=0) = p
n

is the solution of p/(1-qg) = c. Then N must be 

geometric.

Proof : Proceeding as in Theorem 4.4.5, we obtain for all

X 2: 0,

P(c “Tn > x) =][ P(N=k) (g + g F(cax)}k F(c“x) = F(x) .

k=0

That is, the probability generating function (pgf) 

QN(s) of N satisfies,

00

F(x) 1+^(cax)
V x it 0,

— or —1where s = g + g(i + #(c x)) . Also we note that

1 + #(x)
s + cs - eg

c (s - g)

Therefore,

^c 1-c
because q(1-eg)(1-sq) 1 —eg
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1 -qSubstituting c = ---- , we get
1-q£

Q„(s) = (1-q)/(1-qs) V s € (3, 1].
N

Thus N has geometric distribution with parameter q 

(See Rudin (1976), Theorem 8.5) ■

Next we prove that first equality in (4.4.13) also 

characterizes the geometric nature of N(m) for MINARSP 

process.

Theorem 4.4.9 : Let (X } be a MINARSP process with
n

continuous SP(y, 0, <p) marginals. Suppose for positive 
integer m, and a nonnegative integer, valued rv N, 

independent of (X },
n

M - X , ...(4.4.17)N 0
holds, where P(N = 0) = p is the solution of p/(1 -q0) =0ra, 

q = 1-p. Then N must be geometric.

Proof : From (4.4.17), the distribution function of 3myMH 

satisfies for all x a 0,
P(X„ s x) = P(p”yM s x)

0 N
cor rwn , ,f0 + 0(0-m3rxhk #(3 myx)

= 1 P(N = k) ------- ----- ------- -----
k=0 + 0(0 m3fX)J 1 4- m3rx)

Writing s 

satisfy,

3 4- 0(0 myx) 

1 4- 4>(3-ffl3rx)

0(x) l4-^(3~wyx)
1+*(x) ^(3"myx)

the pgf Q (s) of N mustN
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Note that

#0_yx) = ---  , and #(x)
1-s

Therefore,

Qn(s) ff p
l-p1" -s(1-pm)

pm(s-p)
1-s

Using the relation —-—: = pra, we get
1-qp

Qn(s) = (1-q)/(1-qs) V s e [p, 1],
1-p" '

where q = ------ .
1-pm+1

Using the same argument as in the proof of Theorem 
4.4.8, it follows that N is geometric with parameter q ■

Remark 4.4.9 : Since Pareto distribution is a particular 
case of Semi-Pareto, Theorem 4.4.9 also applies to MINARP 

process ■

Remark 4.4.10 : From Theorems 4.4.8 and 4.4.9 we are able 
to characterize the geometric nature of N if either P_yTH 

or is distributionally equivalent to X for aN 0
MINARSP process. However if p“yT = pyMH for this process 

for some positive integer valued rv N, it may not follow 
that N is geometric ■

4.5. Characterization of an AR process with Poisson 
marginals

4.5.1 The new thickening operator 0° :

Using the unified approach of Chapter 2, we propose 
a new thickening operator e» to be used along with the
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thinning operator p* to construct a new AR model. To
have motivation for the new operator that we propose to
define, consider the following identity : 

x
p*X = £ B ,B’s are iid Bernoul 1 i (p).

1=1
x x

= £ (1-C) = X - £ C. , C.’s are iid Bernoulli(p).
i=1 i=1

(Recall p = 1-p). Thus p*X = X-p*X. In other 

words, by performing an operation p* on X, we are, in 
effect, subtracting a thinned version of X (although not 
independent of X) from X. Hence it appears quite natural 
to add a thinned version of X to it as a thickening 
operator. This leads to the following definition of new 
thickening operator.

Definition 4.5.1 :
0oX = X + 0 * X ,1

where © «= (0, 1) and X1, independent of X, is distributed 
as X ■

The operator ©» has the following properties :

(a) o°(p * X) = p * (e°X) for every nonnegative integer 
valued rv X.

(b) E(©oX) = (1+©)E(X)
(c) If Qx(s) is the pgf of rv X, then pgf of ©°X is given 

by Qx(s) Qx(1-© + ©s).
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Let X be a nonnegative integer valued rv. Given 

pe (0, 1), suppose that there exists e e (0, 1) such

that 0o(p * X) = X. Then using the unified approach 

proposed in Chapter 2, the stationary process at (2.2.3) 

takes the form

X = e°(p * x ..), n = 1, 2, .
n n- I

i .e. c
X

= p * X +n-1
9 * Y , n = 1 ,

n

where {Y } is a sequence of independent rvs, independent
n

of XQ, whose common distribution is same as that of 

p*X. This further implies that e*Y will be
0 n

distributed as (p0) * Z , where {Z > is a sequence of
n n

independent rvs, independent of XQ, whose common 

distribution is same as that of Xq. Thus, the above 

mentioned stationary process can be expressed by 

X = p * X + (pe) * Z , n = 1, 2, ...
n n-1 n

If X is a rv with a finite mean, then Property (b) 

of operator e» implies that e must be equal to p/p. In 

that case our thickening operator is defined only when 

pe [0.5, 1), and the above stationary process takes the 

form

x = p.)( +p*z n = 1, 2,.......................(4.5.1)
n n-1 n

Note that the process at (4.5.1) is defined for all 

p e (0, 1) although to visualize i t as a consequence of 

our thickening operator e<>, p is required to belong to 

the restricted range [0.5, 1). This thickening operator

will be modified in Section 4.5.3 to permit all values of 

p in (0, 1). It may also be observed that this process is
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a particular form of INAR process with a specific 

representation for innovation rv.

4.5.2 A stationary process with poisson marginals and a 
characterization :

Suppose X is a Poisson(X) rv and let W = p*X + p *Z, 
where Z is a Poisson(A) rv and is independent of X. Then 

the pgf of W is given by,
Qw(s) = Qx(p + ps) Qx(p + ps)

= exp{ pA(s-1) + pX(s—1)}
= exp(A(s-1))
= Q„(s).

Thus, W is distributed as X. This implies that the 
process at (4.5.1) is a stationary process with Poisson 

marginals, when X is Poisson(A) and (Z } is a sequence0 n
of independent Poisson(A) rvs, independent of Xq. Since a 
thinned Poisson variable is again a Poisson variable, it 
follows that this process is same as the autoregressive 
process with Poisson marginals defined by Al-Osh and 
Alzaid (1987).

It, however, turns out that the Poisson is the only 
distribution which can be a stationary distribution of 
the INAR process expressed by (4.5.1). We thus have the 
following result.

Theorem 4.5.1 : [Sreehari and Kalamkar (1997]
Let {X } be an INAR process defined at (4.5.1). If

n
{X } is stationary for every p e (0, 1), then it must

n
have Poisson marginals.
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Proof : Since {X } is stationary, the rv X having the
n

common distribution of Xn’s satisfies
xMp,x + p*Z V p e (0, 1), 

where X and Z are iid rvs. But this implies that the
distribution of X is discrete stable (Steutel and Van 

Harn (1979) ) with exponent 1, which is Poisson.®

In view of the discussion following equation 
(4.5.1), it appears that the thickening operator e<> will 
work as an inverse of p* only when p a 1/2, However if 
we ignore this point at the stage of definition of e°, 
then we have seen that the process is well defined for
every p «= (0, 1). In order to overcome this difficulty,
we propose the following modification in our thickening 

operator.

4.5.3 Modified definition of thickening and a related 
stationary process :

Let e > 0 be an arbitrary real number, Choose an 
integer k such that (e/k) < 1, Then define e® as

k

0<>x = x + £ (e/k) * y ,
i=1

To have uniqueness of k in the definition, k may be 
chosen to be smallest positive integer such that 
(e/k) <1, It may be noted that the modified definition 
still satisfies properties (a) and (b) mentioned earlier, 
whereas the pgf of e<>X is given by
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, 0 < 9 i 1

Q0°X (s)

rQx(s) Qx(1-(1-s)0)) 

Qx(s){Qxd-d-s)e/k)}k 0 > 1

It can be easily verified that Poisson distribution 

satisfies

0o (P*x) M X

with the modified definition of operator o» also, where 

O = p/p. Consequently the stationary process at (2.2.3) 

takes the form

k
X = P * X + r (p/k) * Y , n=1,2, ... ...(4.5.2)

n n~1 Li n,!
1=1

where X is a Poisson (A) rv and Y ’s, independent of
0 n, i

XQ, are iid Poisson(A) rvs.

It may be noted again that the stationary process

is still defined properly when k = 1 and for every

pe (0, 1). In fact, the stationary process at (4.5.2) is

defined for an arbitrary positive integer k and for every

p e (0, 1). A necessary and sufficient condition for the

process at (4.5.2) to be stationary is that the pgf Qx of

X satisfies 
o

Qx(s) = Qx(p + ps) {Qx(1 - (1-s)p/k) }k. ...(4.5.3)

A Poisson distribution satisfies (4.5.3) for every 

pe (0, 1) and every positive integer k. Obviously, 

Poisson is the only distribution that satisfies (4.5.3), 

since equation (4.5.3) with k=1 characterizes the Poisson 

distribution.
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