
CHAPTER 1
INTRODUCTION

1.1 The need for non-Gaussian models :
In many practical problems, stationary time series

possessing the Markovian property arise in a natural way.
To be able to analyze such time series, we need to model
them by suitable stochastic processes which have the
Markovian property. Most of the traditional stochastic
models make the assumption of Gaussian marginals.
However many time series in practice exhibit non-Gaussian
marginals. Time series of rain fall data, runoff data of
rivers, wind velocity data, wind power data, economic 

are same
data etc. ^ the examples of this type. The standard 
technique in the modelling of such processes is to remove 
the skewness of data by making a suitable transformation, 
and fit a Gaussian model to the transformed data. This 
technique depends heavily on the assumption that a 
suitable transformation is available such that the 
transformed series is Gaussian. The most popular 
transformations are those introduced by Box and Cox 
(1964). However, based on the analysis of an economic 
data, Nelson (1976) found that the Box-Cox transformed 
series are nowhere near Gaussian. Furthermore, Weiss 
(1975) showed that if {Xt} is a stochastic process and 
f(-) is a one-to-one function, then Yt = f(Xt) is time- 
reversible if and only if {Xt} is time reversible. Thus a
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process which is not time-reversible can not be

transformed to a time-reversible Gaussian process.

As a consequence of such practical difficulties, in 

recent years there has been a growing interest for 

developing models for stationary processes with non- 

Gaussian marginals. In the next two Sections We mention 

few models that have been developed for modelling such 

time series. Models for continuous random phenomena are 

described in Section 1.2, whereas in Section 1.3, we 

describe models that have been developed for discrete 

phenomena.

1.2 Models for continuous random phenomenon 
1.2.1 Autoregressive Processes :

A stochastic process {X , n = 0, ±1, +2, ...} is
n

said to be an autoregressive process of order p, AR(p), 

if {e } is a sequence of independently and identically
n

distributed (iid) random variables (rvs), where

and real constants b ’s are such that b , b * 0.k O p
Autoregressive (AR) processes are found to be very 

useful for modelling many time series in practice.
t

Amongst AR processes, the first order processes, AR(1), 

deserve a special attention due to its simplicity in the 

first place. AR(1) processes are commonly represented in 

the form

p
..(1.2.1)

k=0

+ e . ...(1.2.2)
n
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The sequence of iid rvs {e } is frequently referredn
to as an innovation process.

By the very definition, AR(1) processes possess the 
stationary Markov property. For a process {X } withn
Stationary Markov property, if the distribution of X 
does not depend on n, then the process can be shown to be 
stationary in strict sense. Thus, every stationary AR(1) 
process is a strictly stationary Markov process.

It is evident that the stationary AR(1) processes 
can be useful for modelling the stationary Markovian time 
series. The important question in this context is "Can 
the process at (1.2.2) be stationary?". To answer this 
question, rewrite (1.2.2) as

Xn
m+1p xn-m-1'

k=0

In the above form, the last term represents the 
effect of the time before time point n-m. As m tends to 
infinity, this time becomes an "infinitely remote past" 
and in most of the situations it will have no influence. 
If we assume this to be the case, which perhaps always 
holds, then {X } must be a process satisfying then
limiting relation of the form

00

X = y p e ...(1.2.3)
n U n-k

k=Q

It is well-known that a stationary solution to 
(1.2.3) exists only if |p| < 1. Since X is a functionn-1
of only e , e , ..., it is independent of e .n-1 n-2 n
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Therefore the characteristic function (cf) <f> of X atX nn
(1 .2.2) satisfies

(s) = *x (ps) '
n n-1 n

Clearly, the stationary solution, in which the 
common cf of X ’s is <6 and the common cf of e ’s is 4> , 
must satisfy

0x(s) = 0x(ps) 4»e(s).
Thus, a necessary and sufficient condition for a 

distribution F to be a stationary solution of (1.2.2) is 
that the cf 4>f of F is representable as

0F(s) = £F(ps) ^(p)(s), ...(1.2.4)
for some cf d>(P)

The properties of the process defined at (1.2.2) 
will obviously depend upon the choice of p. The most 
desirable situation would be that can be represented 
in the form (1.2.4) for every p e (-1, 1). A cf 
satisfying this criterion is obviously sel f-decomposable 
(SD). The corresponding distribution is called SD 
distribution. Thus, a distribution F is a stationary 
solution to (1.2.2) for every p € (0, 1) if and only if F 
is SD. If however, we do not insist upon the stationarity 
for every p € (0, 1), then the class of stationary
distributions of AR(1) processes contains the set of SD 
distributions as a proper subset. For example, a mixture 
of two exponential distributions is not an SD law but it 
belongs to the class of stationary distributions of AR(1) 
processes (See Gaver and Lewis (1980)).
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Stationary AR(1) processes thus provide models for 
stationary Markovian time series with SD marginals, the 
class which includes many distributions which are non- 
Gaussian. It may be noted here that all SD distributions 
are absolutely continuous as shown by Fisz and 
Varadarajan (1963).

These ideas were exploited by Gaver and Lewis 
(1980), who appear to be the first to propose a non- 
Gaussian AR(1) process. The connection mentioned above 
between self-decomposable laws and stationary AR(1) 
process was also made for the first time by Gaver and 
Lewis (1980). This relation was pointed out by Prof. S.I. 
Resnick as acknowledged by the authors in their paper.

Gaver and Lewis (1980) proposed an exponential AR 
process EAR(1), which is defined by

pX with probability p
Xn pX + Y with probability (1-p)

...(1.2.5)
where ps (0, 1), {Y} is a sequence of iid rvs with

n
common distribution exponential(X) and Y is independent

n
of X for every n. Here exponential (A) stands for ann-1
exponential distribution with mean A.

Since the sequence {X , n = 0, ±1, ±2, ...} has its
n

starting point at infinitely remote past, it is strictly 
stationary with exponential(A) marginals. Also it can be 
easily verified that if Xq is distributed as 
exponential (A) then (X , n st 0} is strictly stationary.
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An important point to be noted here is that if the 
stationary distribution of an AR(1) process {X } given by

n
(1.2.2) is concentrated on IR+ = [0, oo) , then p must 

belong to [0, 1] for otherwise there can not exist an e
n

independent of X , such that pX + c is again
positive.

Using the fact that Gamma distribution is self- 
decomposable, Gaver and Lewis (1980) also proposed a 
Gamma AR process GAR(1).

As pointed out earlier, if we do not insist upon the 
stationarity of {X } for every p e (0, 1 ), then we can

n
have stationary AR(1) processes with non-self- 
decomposable marginals also; ofcourse such models admit 
only limited values of p. The mixed-exponential process 
MEAR(1) of Gaver and Lewis( 1980) is of this type, where 
the marginal distribution of the process is a mixture of 
two exponential distributions.

1.2.2 MINAR(1) process :
Tavares (1980) proposed a stationary Markovian

process with exponential marginals defined by
X = e min(X , Y ) , n 2:0, ... (1 .2.6)n n-1 n

where 0 > 1 is a constant and {Y } is a sequence of iid
n

rvs, independent of Xq, with common distribution
exponential(A(©-1 )) . Tavares (1980) showed that if Xq is 
distributed as exponential (A) then {X } defined above is

n
strictly stationary.

Because of its structure, the process defined by
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(1.2.6) Is generally referred to as a minification 

process. Also note that above structure is similar to 

that of an AR(1) process, with the operation of 

addition replaced by the minimization. thus a 

minification process may be called an AR(1) process in 

the scheme of minima. We will use the notation MINAR(1) 

for the processes with structure (1.2.6).

Remark 1.2.1 : MINAR process of order p, MINAR(p) can be 

defined by,

X min (ex , ex
1 n-1 2 n-2 .. ., exp vn-p z ),n

where e * 0 and {Z > is a sequence of iid rvs, Z being
p n n

independent of X , X , X for every n ■

Since a MINAR(1) process has the Markovian property, 

stationary MINAR(1) processes serve as another useful 

tool for modelling stationary Markovian time series.

Sim (1986) showed that the structure of MINAR(1) 

process also accommodates Weibull marginals. Yeh et al . 

(1988) proposed a stationary MINAR(1) process with Pareto 

marginals, which they called an ARP(1) process. ARP(1) 

process is defined by

0_3rX , with probabi1 i ty p
X =

min(p-arX , Y ) with probability (1-0)
n-1 n

...(1.2.7)
where /3 e (0, 1) and y as 1 are constants and £ ’s,

n

independent of X , are iid rvs with Pareto distribution 

P(o’, y) , whose survival function is given by F(y) =
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, y * o.P(€ > y) = { 1 + (y/<r)1/y} 1
n

It is easy to verify that if X is distributed aso
PCs', y) then {X } defined above is a strictly stationaryn
process. It may be noted that the structure (1.2.7) is a 

particular form of the structure (1.2.6), when the common 

distribution of Y ’s assigns a positive mass at infinity.
n

An obvious question that arises is : "What is the

class of stationary distributions for MINAR(1) processes 

with structure given at (1.2.6) ?"

Under the assumption of stationarity, let the common 
distribution of X ’s be same as that of a rv X and the

n
common distribution of Y ’s be same as that of a rv Y.

n
Then X and Y must satisfy the stochastic equation

X = e min(X, Y). ...(1.2.8)

or equivalently,

min(X, Y) = pX ; p = 1/0.

Conversely, suppose X and Y be rvs satisfying 

equation (1.2.8). If XQ = X, and the common distribution 

of Y ”s is same as that of Y, then it can be proved by
n

mathematical induction that the MINAR(1) process defined 

by structure (1.2.6) is strictly stationary. Thus the 

problem of finding stationary distributions for MINAR(1) 

processes is same as that of solving the stochastic 

equation (1.2.8).

Arnold and Issacson (1976) considered the problem of 

solving equation (1.2.8) for nonnegative rvs X and Y. Let 

F and G denote the distributions of X and Y respectively.
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It was shown that for 0 < 0 < 1 , no nondegenerate
solution exists. For 0=1, the support of F should lie to
the left of the support of G (except for this F and G are
arbitrary). For 0 > 1, G must satisfy

F(x) G(x) = F(0x), ...(1.2.9)
where F and G are survival functions of rvs X and Y
respectively. Iterating above equation we find that

n

F(x) = F(x/en) |J G(x/©') vn and Vx > 0 i =1
Letting n —> 00, we get

00

F(x) = F(0) J| G(x/©') Vx i 0 i =1
This will be satisfied in the degenerate case where

F(x)=0, x i 0. Nontrivial solutions will arise if for
every x>0, the indicated infinite product converges. Or
alternatively if 

00

£ G(e_1x) < a. for some x > 0, ...(1.2.10)
1=1

and the corresponding F is given by
00F(x) = 1 - ajj ( 1- G(0_1 x) ) , ...(1.2.11)

i =1

where a e (0, 1] is an arbitrary constant. The case a =1 
refers to a distribution which is continuous at 0.

Remark 1.2.2 : If a < 1 , then we have P(X = 0) >0. Now 
for a MINAR( 1) process {X }, the event X= 0 requiresn 0
special attention. Observe from (1.2.9) that Y > 0 with 
probability 1. Therefore if Xq takes the value 0 then all
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subsequent X ’s will also be 0, whereas if X takes an 0
positive value then all subsequent X ’s will also take

n
positive values. This peculiarity suggests that a MINAR
process is more naturally defined with the marginals
having support (0, oo) rather than [0, oo) ■

The connection observed above between the Arnold and
Issacson’s work and the stationarity of MINAR(1)
processes was pointed out in Kalamkar (1995).This
relationship can be utilized in two ways (i) If we want
to know whether F can be the marginal distribution of a
stationary MINAR(1) process, we need to check whether for
some © > 1, G defined by (1.2.9) is a proper survival
function or not. If it is, then it is taken as the common
survival function of the innovation process, (ii) If we
know that G is the common distribution of the innovation
process, then check whether it satisfies (1.2.10) for
some © > 0. If it does and X follows the F in (1.2.11),o
then F is the stationary distribution of the MINAR(1)
process with scale parameter ©. If instead, Xq is an
arbitrary random variable then F is the limiting
distribution of X as n —> oo.

n

Remark 1.2.3 : The condition (1.2.10) is a necessary and 
sufficient condition for the convergence of infinite
product in (1.2.11). For some distributions it may be 
easier to establish the convergence of infinite product 
directly. For example, if G is an exponential
distribution with mean 1/©, then G(x) = exp(-ex) . This
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implies j| G(p'x) = exp(-ex Up') = exp(-exp/(1-p)) for
i=1

all x > 0. Thus the infinite product converges for all 

x > 0 ■

Note that (1.2.9) can be rewritten as

F(x) = F(px) G (x) , ...(1.2.12)
CP)

where G (x) = G(px) with p e (0, 1). It may be noted
(P>

that the equation (1.2.12) is similar to equation 

(1.2.4), Which defines self-decomposable distributions, 

except that cf’s are replaced by survival functions. We 

define the self-decomposable distributions in the scheme 

of minima (min-self-decomposable) as follows.

Definition 1.2.1 : A distribution F is called min-self-

decomposable (min--SD) if for every pc (0, D, i ts

survival function F can be represented in the form

(1.2.12), for some survival function G ■
(P)

Then it follows that F is the stationary

distribution of a MINAR(1) process for every p c (0, 1) 

if and only if F is min-SD. This observation is 

comparable with the observation made by Gaver and Lewis 

(1980) regarding SD laws and AR(1) processes. As will be 

shown in Chapter 3, the min-SD distributions are 

necessarily continuous. Thus only continuous 

distributions can be marginals of a stationary MINAR(1) 

process which admits all values of the autoregressive 

parameter p in interval (0, 1). If stationarity of the 

process is not insisted upon for every p e (0, 1), then
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the class of stationary distributions for MINAR(1) 

processes contains the class of min-SD laws as a proper 
subset.

It may be noted that this connection between 
minification processes and min-SD laws has not been 
pointed out earlier in the literature.
Remark 1.2.4 : Min-SD laws defined above are analogous to 
the Max-self-decomposable (max-SD) laws defined by 
Pancheva (1990)«

1.2.3 MAXAR(1) processes :
AR processes in the scheme of maxima can be defined 

in an analogous manner. The first order processes in this 
scheme will be denoted by MAXAR(1).

MAXAR(1) processes are introduced by Alpuim (1989), 
which are called extremal processes by the author. These 
processes take the form

X = p max (X , Y ) , ... (1 .2.13)
n n-1 n

where p e (0, 1) and {Y } is a sequence of iid rvs,
n

independent of Xq.
A necessary and sufficient condition for a 

distribution F to be the marginal distribution of a 
stationary MAXAR(1) process is that F satisfies

F(x) = F(x/p) G(x/p),
or F(x) = F(x/p) G (x) say, ...(1.2.14)
where G is a distribution function.(P)
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Note that the equation (1.2.14) is also similar to 

(1.2.4), the defining equation for SD laws, with cf's now 

replaced by distribution functions. Max-self-decomposable 

(max-SD) distributions are defined as follows.

Definition 1.2.2 : A distribution F is said to be max-SD

if for every pc (0, 1), F can be expressed in the form

(1.2.14) for some distribution function G ■
(P)

It is clear that F is the marginal distribution of a 

stationary MAXAR(1) process for every pc (0, 1) if and

only if F is max-SD. However, if stationarity of a 

process is not insisted upon for every pc (0, 1) then 

the class of stationary distributions for MAXAR(1) 

processes contains the class of max-SD laws as a proper 

subset.

Alpuim (1989) showed that the max-SD distributions 

are necessarily continuous. The proof given by Alpuim 

(1989) is different from our proof given in Chapter 3 for 

min-SD laws. However our arguments are relatively 

elementary. Generalized Pareto distribution specified by

F(x) = 1 - (1 -ax) 7/,<*\ 0 < x < 1/a, a > 0;

Frechet-type extreme value distribution

F(x) = exp(-(Sx) a), X > 0, a,S > 0;

and Pareto distribution P(a, r) are examples of max-SD 

distributions.
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1.2.4 AR( 1) processes with random coefficient :

AR processes with random autoregressive coefficient 

are also introduced in the literature for all the three 

schemes viz. addition, minimization and maximization. 

Such processes are frequently referred to as stochastic 

processes in random environment.

Lewis(1982) presented a gamma AR(1) process defined 

by

X = U X + Y ,
n n n-1 n

where {U } and {Y } are sequences of iid rvs, which are
n n

independent of each other and also independent of Xq. The 

common distribution of Y ’s is GaO~a, X) and the common
n

distribution of U 's is Befcc, 8-a). If X is distributed
n o

as Ga(8, X) then {X } defined above is a stationary
n

process.

Remark 1.2.5 : Note that the Gamma AR(1) process

described above is different from GAR(1) process of Gaver 

and Lewis (1980), which also is a stationary process 

having Gamma marginals ■

An AR(1) process in random environment with 

exponential marginals was proposed by Lawrence and 

Lewis(1981), which was called NEAR(1) process by the 

authors.

AR(1) processes with random coefficient in the 

scheme of maxima are studied by Alpuim and Athayde(1990). 

These processes are defined by

X = Z max(X , Y ) ,
n n n-1 n
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where {Z } and {Y } are sequences of iid rvs, independent
n n

of each other and also independent of Xq.
Alpuim and Athayde (1990) gave a criterion for a 

distribution to be the stationary distribution of such a 
process. It is shown that Be(«, /3) , GaO, 1) and P(1, 1) 
distributions are accommodated as stationary 
distributions for the process defined above.

1.2.5 Some more models :
Haslett (1979) used the following model to describe 

a solar thermal energy storage system.
Xn = max OX,,.,, + Yn) ,

where 0 < p < 1, and 0 < « s 1. This model was developed 
by Daley and Haslett (1982), Hooghiemstra and Keane 
(1985), and Hooghiemstra and Scheffer (1986).

Helland and Nil sen (1976) used the model 
Xn = max (Xn_.,- Zn, Yn)

to describe the water density in a still fjord as well as 
the other phenomena such as the utility of an industrial 
equipment.

1.3 MODELS FOR DISCRETE RANDOM PHENOMENON
The models described in Section 1.2 serve the 

purpose of modelling time series of continuous phenomena. 
Many time series in practice assume discrete values. 
Mainly these are counting processes. To model stationary 
time series of this type, we need stationary stochastic 
processes which can accommodate discrete distributions as
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marginals. Very few models of autoregressive nature have 

been proposed so far for this purpose as compared to the 

continuous case. Some models that have been proposed in 

the literature are described below.

1.3.1 Integer valued autoregressive processes : INAR(1)

We have noted earlier that only self-decomposable 

distributions are marginal distributions of stationary 

AR(1) processes. It is Well-known that all self- 

decomposable distributions are absolutely continuous. 

Therefore a different approach is required for finding 

the models for integer valued time series.

Steutel and Van Harn (1979) introduced the discrete 

analogue of self-decomposabi1ity.

Definition 1.3.1 : A distribution F concentrated on IN
o

with probability generating function (pgf) Q is called
F

discrete self-decomposable (DSD) if for every p <= (0, 1), 

Q can be expressed as

Q (s) = Q (1-p + Ps) Q (s) ; Is| ^ 1, ...(1.3.1)
F F <p)

where Q is a pgf ■
Cp)

In terms of rvs, X is said to be a DSD rv if for 

every p € (0, 1), we have

X = p*X + X ,
P

where X^ is a nonnegative integer valued rv, independent 

of X, and the operation p*X is defined as follows.
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...(1.3.2)

Definition 1.3.2 : For p € [0, 1],

x
p.x =1 B, ,

1=1

where X is a nonnegative integer valued rv and B.'s are 

iid B(1, p) rvs, independent of X ■

The operation p*X is called thinning of X. This 

thinning operation is frequently used in the study of 

point processes. See for example, Cox and Isham (1980).

Remark 1.3.1 : Whenever we write p*X^ and p*Xg, it is

implicitly understood that the thinning is performed 

independently on X1 and X2 ■

Using the Concepts discussed above, McKenzie (1985) 

and Al-Osh and Alzaid (1987) independently introduced the 

discrete analogue of an AR(1) process. This model was 

called INAR(1) by Al-Osh and Alzaid. INAR(1) process is 

defined by

X = p*X + Y . . .(1 .3.3)
n n~1 n

where p e (0, 1) and {Y } is a sequence of iid
n

nonnegative integer valued rvs, independent of a

nonnegative integer valued rv Xq.

A distribution F on is the marginal distribution

of a stationary INAR(1) process if and only if its pgf Qf

satisfies (1.3.1), where Q is the common pgf of rvs
(P)

Y . Clearly, a distribution F is the stationary
n

distribution of an INAR(1) process for every p e (0, 1) 

if and only if F is DSD. The class of stationary 

distributions of INAR(1) processes, in general, contains
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the DSD laws as a proper sub-class.

McKenzie (1986) proposed a geometric INAR(1) 

process, which is a discrete analogue of EAR(1) process 

of Gaver and Lewis (1980). The geometric INAR(1) process 

is defined by

p*X with probability p
n—1

p» X + Z with probability (1-p)
n—1 n

...(1.3.4)
where {Z > is a sequence of iid rvs, independent of X ,

n 0

with common distribution Geom(p). If XQ is distributed as 

Geom(p) then the process defined above is strictly 

stationary.

Analogous to the GAR(1) process of Gaver and Lewis 

(1980), a negative binomial INAR(1) is also proposed by 

McKenzie (1986). A Poisson INAR(1) process was introduced 

by Alzaid and Al-Osh(1988).

Remark 1.3.2 : It is interesting to note that the 

structures of ARP(1) (or MINARP(1) in our terminology), 

EAR(1) and INAR(1) processes are similar. Also for all 

the three processes the common distribution of innovation 

rvs is same as the stationary marginal of the process. 

The observation of this similarity leads to another 

interesting study discussed in Chapter 5 ■

Remark 1.3.3 : The structure of INAR(1) process was 

generalized to obtain INAR(p) processes by Alzaid and Al- 

Osh (1990), whose structure is similar to the classical 

AR(p) processes with scalar multiplication replaced by

X =
n
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the thinning operation ■

1.3.2 Discrete Minification Processes :

Littlejohn (1992) introduced discrete minification

processes. For this purpose the author first defined a 

thickening operator p\ in such a way that it serves as a 

left-inverse when operated on p*X, for a nonnegative 

integer valued rv X. Then a rv Y is to be selected in 

such a way that min(X, Y) = p*X. Then a discrete 

minification process is defined by

X = p\min(X , Y), ...(1.3.5)
n n—1 n

where {Y^} is a sequence of iid rvs, independent of XQ,

whose common distribution is same as that of Y. If X =
o

X then the process {X} at (1.3.5) is strictly
II

stationary.

Littlejohn (1992) showed that geometric, negative

binomial, Poisson and binomial distributions are 

accommodated as stationary distributions of the above 

discrete minification process.

1.3.3 INAR(1) Processes with Random coefficient

In the definition of INAR(1) process, if we replace 

p by a rv with support on (0, 1), then the resultant

process is an INAR(1) process with random coefficient. 

More specifically such a process is defined by

X = U *X + Y , ...(1.3.6)
n n n-1 11

where {U } is a sequence of
n

iid rvs with support on

(0, 1) , {U } and {Y } are sequences of iid rvs,
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independent of each other and also of Xq. Here by U*X we 
mean that conditionally on (U=p) U*X is equal to p*X.

McKenzie (1986) proposed two INAR(1) processes in 

random environment with negative binomial and geometric 
marginals, which are discrete analogues of the gamma 
AR( 1) process of Lewis (1982) and NEAR(1) process of 
Lawrence and Lewis (1981) respectively.

Remark 1.3.4 : Throughout the thesis we are mainly 
concerned with autoregressive processes of order 1. 
Henceforth by notations AR, MINAR, MAXAR, INAR etc. 
wherever they appear, we mean AR(1), MINAR(1), MAXAR(1), 
INAR(1) respectively. For the processes with higher 

order, the order will be mentioned explicitly ■

1.4 PROBLEMS TAKEN UP IN THE THESIS
In the present thesis we take up mainly three types 

of problems.
First problem is that of constructing AR models for 

non-Gaussian time series. This includes models for 
discrete variate time series also.

Second problem is that of characterization of 
stochastic models, either by their distributional 
properties or structural properties. Such a study is 
important for the purpose of identification of 
appropriate models.

Lastly, we present analogues of geometrically stable 
laws, viz. discrete geometrically stable laws, max-

20



geometrically stable laws and min-stable geometrically 
stable laws. Analogues of geometric domain of attraction 
are also presented. The autoregressive processes with 
such marginals are also proposed.

Autoregressive Models
The need of stochastic models for non-Gaussian time 

series is already discussed in Section 1.1. We mainly 
concentrate on AR type models {Xn}, where the n^ term Xn 
is determined by (n-l)**1 term Xn_^ and a random factor. 

Various models that have already been proposed in the 
literature are summarized in Sections 1.2 and 1.3.

All the AR models that have been described in 
Sections 1.2 and 1.3 are seemingly of different 
structures. We look at the problem of constructing AR 
models for time series in a unified manner. As a result 
we propose a unified approach for constructing AR models. 
We define thinning and thickening operations on the rvs 
and show that all the processes described earlier can be 
obtained by the following general rule. ”(n+1)st member 

of the sequence {X } is obtained by, either thickening of
n

a thinned version of the nth member or, thinning of a 
thickened version of the nth member". We feel that such 

an approach obviously widens the vision, while looking 
for various stochastic models, and makes the construction 
process very simple. The unification proposed by us is 
limited only to the construction of models. Once a model 
is formed, the further analysis of it must be taken up
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separately for each model. We show that most of the known 
models can be constructed using our approach. New models, 
constructed using this approach, are proposed and some of 
them are studied in the thesis.

As we have already noted in Section 1.2, only min-SD 
laws can be the marginals of stationary MINAR processes, 
when stationary is required for every value of p in (0, 
1). Since only continuous laws are discussed so far in 
the literature of MINAR processes, a natural question 
that arises is whether discrete distributions are not 
admitted as stationary laws for MINAR processes. We 
investigate this question and show that min-SD laws are 
necessarily continuous. However, if stationarity for al1 
values of p in (0,1) is not insisted upon, then we can 
also accommodate laws that are not min-SD. A necessary 
and sufficient condition is obtained for a distribution 
on N0 to be a stationary distribution of a MINAR process. 
A Geometric MINAR process is studied in detail.

We mentioned earlier about a discrete minification 
process proposed by Littlejohn (1992). This process 
requires an operator p\, which serves as a left inverse 
of thinning operator p*. However, as we will see later in 
Chapter3, it turns out that the definition of p\ can not 
be given independently of the marginal distribution of 
the process. That is, for every marginal distribution, 
the definition of p\ is to be obtained afresh. This is 
rather strange and makes one uncomfortable. Generally one
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expects that the underlying mechanism of the process 
should be specified clearly. After that one would ask 
whether a specific distribution can be accommodated by 
the given process. In case of discrete minification 
process, it is not happening so. Instead the structure of 
the process is decided only after the marginal 
distribution is fixed.

Motivated by above considerations, and following the 
unified approach suggested by us, we define a thickening 
operator in an unambiguous manner and propose a new model 
based on it. A Poisson process with above structure is 
presented and studied.

As we noted earlier in Section 1.2.3, only max-SD 
laws can be the stationary laws of MAXAR processes. We 
investigate a similar question, as we did in case of a 
MINAR process, whether discrete laws can be accommodated 
by MAXAR processes if stationarity for al1 values of e is 
not insisted upon.

We show that a big class of discrete distributions, 
which contains most of the potentially useful 
distributions, is not accommodated by MAXAR processes. 
Thus it turns out that MAXAR process can not be used as a 
model for discrete time series. We propose a discrete 
version of MAXAR process, where we replace a scalar 
multiplication in the MAXAR process by a thinning 
operator p*, and call the new model a discrete maximum 
process. Two different versions of discrete maximum
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process are proposed. The conditions that must be 
satisfied by a stationary distribution of such process 
are also obtained. We show that both the models 
accommodate most of the well-known discrete 
distributions.
Characterizations of AR processes :

Characterization results are important in the 
process of identification of suitable stochastic models 
for the phenomenon under study. We consider the problem 
of characterizing AR processes based on their structural 
and distributional properties.

Some work in this direction is done by Chernick et 
al.(1988), Arnold and Hallett (1989) and Littlejohn 
(1992). We give characterizations of various processes 
such as EAR(1), exponential MINAR, Pareto MINAR, 

geometric MINAR, Semi-Pareto MINAR, geometric INAR and 
Poisson INAR based on various properties of these 

processes.

Analogues of geometric stabi1itv and related processes:
While studying the structures of various 

autoregressive processes, we observe a striking 
similarity between three autoregressive processes (See 
Remark 1.3.2). These are EAR(1) process of Gaver and 
Lewis(1980) defined at (1.2.5), ARP(1) process of Yeh et 
al. (1988) defined at (1.2.7) and geometric INAR process 
of McKenzie (1986) defined at (1.3.4).
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The structures of the three processes, with ARP(1)

process for y = 1, are exactly same except that they are
in three different schemes viz. addition with scalar
multiplication, minimization with scalar multiplication,
and addition with thinning. In all the three cases
marginals of the stationary processes are same as the
common marginals of corresponding innovation processes.
Also the Laplace transform L(-), survival function F(-),

*f"and alternate probability generating function 1 P(-) of 
respectively exponential distribution, Pareto 
distributions, and geometric distribution are given by

1L(s) = F(s) = P(s) = ----; s 2: 0
1+es

with e > 0.
The similarity among the three processes obviously 

demands further investigation. This investigation leads 
us to the development of analogues of geometrically 
stable laws. Geometrically stable laws are introduced by 
Klebanov et al . (1988) and further studied by Mohan et
al. (1993).

In particular we define analogues of geometrically 
stable and geometrically Semi-stable laws for the
discrete case as wel1 as in the scheme of maxima.
Analogues of geometric domain of attraction/ partial
attraction are also defined. Analogous results of those

1f Alternate probability generating function is defined 
in Section 3.2.
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in the classical case are established for both the
analogues. Similar concepts in the scheme of minima are 
completely parallel to those in the scheme of maxima.

The concepts developed above lead to the generalized 
versions of EAR(1), INAR(1) and ARP(1) processes.

1.5 ORGANIZATION OF THE THESIS :
In Chapter 2 we describe a unified approach for 

developing stationary first order autoregressive models. 
It will be shown that all the models described so far can 
be obtained through this approach by choosing appropriate 
pairs of thinning and thickening operators. Many new 
models arise due to this new approach. Some of these 
models are studied in Chapter 3.

Chapter 3 is concerned with the stationary 
autoregressive models for discrete valued phenomena. Four 
different models are presented and studied in this 
Chapter. The first model is MINAR (or minification 
process) described in Section 1.2.2. We show that 
stationary MINAR processes accommodate distributions on 
IN0 as marginals. A necessary and sufficient condition is 
obtained for a distribution F on IN0 to be the marginal of 
a stationary MINAR process. It is shown that Negative 
binomial and Poisson distributions satisfy this 
condition. A geometric MINAR process is studied in some 
detail. The innovation process of geometric MINAR process 
has an interesting structure, which in fact characterizes 
the geometric process (Two characterizations of geometric
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MINAR process are given in Chapter 4, which is devoted to 
the characterizations of autoregressive processes).

The remaining three models are suggested by the 
unified approach described in Chapter 2. In the light of 
first model mentioned above, in is natural for one to 
expect that MAXAR processes also accommodate 
distributions on Np. However, this is not true. We 
propose two models (second and third respectively) for 
discrete maximum processes. All important distributions 
can be the stationary distributions for these two models. 
The fourth model is based on a new thickening operator 
combined with the thinning operator p*. It is shown that 
only Poisson distribution can be accommodated by this 
model (this characterization is given in Chapter 4).

Chapter 4 deals with the characterizations of 
autoregressive processes based on their distributional 
and structural properties. Characterizations of geometric 
MINAR process, exponential MINAR process, EAR(1) process, 
geometric INAR process and a process with Poisson 
marginals are given. We also show that most of the 
properties of ARP(1) process characterize the process. 
Characterizations of Semi-Pareto processes (ARSP(1)) 
introduced by Pillai (1991) can be easily obtained from 
above characterizations by relaxing certain conditions.

In Chapter 5, we develop two different analogues of 
geometric stability viz. discrete analogue and analogue 
in the scheme of maxima. We consider a more general form
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of the structure of EAR(1) process and show that the 
class of stationary distributions of this new model is 
essentially the class of geometrically stable laws. The 
similarity in the structures of EAR(1), geometric INAR, 
and ARP(1) processes suggests similar generalizations in 
the other two cases also. Also this leads to the 
development of new concepts, namely, discrete geometric 
stability and max geometric stability. The corresponding 
Semi-stable laws are also introduced. Results analogous 
to the classical theory are obtained. Following the 
approach of Mohan et al . (1993) we also define geometric 
domains of discrete attraction/ partial attraction, whose 
limit laws are discrete geometrically stable/ Semi-stable 
laws. Similar discussion, in brief, is also made for the 
schemes of maxima and minima.

Lastly, we return to the development of 
autoregressive models. Enlightened by the new concepts 
mentioned above, we propose some new processes whose 
marginals are geometrically infinite divisible, 
geometrically stable, discrete geometrically stable and 
max/min geometrically stable laws.
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