
 

Chapter 4 

 

Inferences on inliers in Lindley distribution 

 

 

4.1. Introduction 

 

While investigating the suitable models for inliers, it has come to our notice that, the 

failure time distribution (FTD) used for modeling the positive observations (lifetime 

greater than zero) itself can be mixture of distributions. Such mixtures can be a good 

model for describing the system characteristics of the failure mechanism. Towards 

this, in this chapter, we study a model based on Lindley distribution to study the 

occurrence of inliers. 

 

Lindley distribution is a mixture of exponential (𝜃) and gamma (2, 𝜃) 

distributions with mixing proportion 
𝜃

1+𝜃
 , and is proposed by Lindley (1958) in the 

context of Bayesian statistics as a counter example of fiducial statistics. A random 

variable 𝑋 is said to have the Lindley distribution with parameter 𝜃 if its probability 

density function (pdf) is defined as 

 

𝑓(𝑥; 𝜃) = {
𝜃2

1+𝜃
(1 + 𝑥) 𝑒−𝜃𝑥, 𝑥 > 0;   𝜃 > 0

0,                               𝑜. 𝑤.
   (4.1.1) 

 

The corresponding cumulative distribution function (CDF) is 

 

𝐹(𝑥; 𝜃) = {
1 − 𝑒−𝜃𝑥 [1 +

𝜃𝑥

1+𝜃
] , 𝑥 > 0;   𝜃 > 0

0,                                    𝑜. 𝑤.
   (4.1.2) 
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Ghitany et al. (2008) have discussed the various statistical properties of 

Lindley distribution and shown its applicability over the exponential distribution. They 

have found that the Lindley distribution performs better than the exponential model. 

One of the main reasons to consider the Lindley distribution over the exponential 

distribution is its time-dependent/increasing hazard rate. Since last decade, Lindley 

distribution has been widely used in different setup by many authors. Of course, 

Lindley is more flexible than exponential but exponential has some advantage over 

Lindley due to its simplicity.  

 

The rest of the chapter has been organized as follows. In Section 4.2, we 

present the Lindley’s inliers model and demonstrated its flexibility by showing the 

wide variety of shapes of the density, and survival functions. The estimation 

procedures, tests of hypothesis for the parameters are given in subsequent sections. 

The applicability of the model through practical example is given along with the 

simulation of parameter estimates in last two sections.  

 

 

4.2. The Lindley’s Inliers Model  

 

The instantaneous failure model given in (1.3.1) with FTD as Lindley distribution as 

given above is  

 

𝑔(𝑥; 𝑝, 𝜃) = {
1 − 𝑝,                           𝑥 = 0

𝑝
𝜃2

1+𝜃
(1 + 𝑥) 𝑒−𝜃𝑥,   𝑥 > 0 

    (4.2.1) 

 

The plot of 𝑔(𝑥) for various mixing proportions are presented in Figures 4.1. 

The Figure 4.2 shows the plot of survival function graphs for different value of .  
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4.3. Estimation  

 

The model in (4.2.1) has two parameters 𝑝 and 𝜃. To estimate the model parameters, 

maximum likelihood estimation and minimum variance unbiased estimation method 

is proposed. 

 

4.3.1. Maximum Likelihood Estimation 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 a random sample of size 𝑛 form 𝑔 ∈ 𝐺 given (4.2.1), then the 

likelihood function is 
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 𝐿(𝑝, 𝜃|𝑥) = ∏ (1 − 𝑝 )𝐼(𝑥𝑖) [𝑝
𝜃2

1+𝜃
(1 + 𝑥𝑖) 𝑒

−𝜃𝑥𝑖  ]
(1−𝐼(𝑥𝑖))

 𝑛
𝑖=1  

 

where  𝐼(𝑥𝑖) = {
1,      𝑖𝑓 𝑥𝑖 = 0  
0,      𝑜. 𝑤.

 

 

Let  𝑛 − 𝑟 = ∑ 𝐼(𝑥𝑖)
𝑛
𝑖=1  , where 𝑟 is number of observations greater than 0 and 𝑝 =

𝑃(𝑥 > 0). Then, 

 

𝐿(𝑝, 𝜃|𝑥) = (1 − 𝑝)(𝑛−𝑟) 𝑝𝑟  (
𝜃2

1 + 𝜃
)

𝑟

 ∏(1 + 𝑥𝑖)

𝑥𝑖>0

𝑒−𝜃∑ 𝑥𝑖𝑥𝑖>0    

 

The log-likelihood function is 

 

ln 𝐿 = (𝑛 − 𝑟) ln(1 − 𝑝 ) + 𝑟 ln 𝑝 + 𝑟 ln 𝜃2 − 𝑟 ln(1 + 𝜃) 

 

+ ∑ ln(1 + 𝑥𝑖)

𝑥𝑖>0  

− 𝜃 ∑ 𝑥𝑖
𝑥𝑖>0  

 

 

The likelihood estimates are obtained by solving the equations  

 

 
𝜕𝑙𝑛𝐿(𝑝,𝜃|𝑥)

𝜕𝑝
= −

(𝑛−𝑟)

1−𝑝
+

𝑟

𝑝
= 0     (4.3.1) 

and 

 
𝜕𝑙𝑛𝐿(𝑝,𝜃|𝑥)

𝜕𝜃
= 

2𝑟

𝜃
−

𝑟

1+𝜃
− ∑ 𝑥𝑖𝑥𝑖>0  

= 0.    (4.3.2) 

 

The estimator 𝑝̂𝑀𝐿𝐸 from equation (4.3.1) is 

 

𝑝̂𝑀𝐿𝐸 =
𝑟

𝑛
        (4.3.3) 
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and from (4.3.2), the we get the estimate of  as 

 

𝜃𝑀𝐿𝐸 =
𝑟 − ∑ 𝑥𝑖  𝑥𝑖>0  

+√(∑ 𝑥𝑖 𝑥𝑖>0  
)
2
+6 𝑟 ∑ 𝑥𝑖 𝑥𝑖>0  

+ 𝑟2

2∑ 𝑥𝑖 𝑥𝑖>0  
   (4.3.4) 

 

which is free from the parameter p.  

 

 

4.3.2. Asymptotic distribution of MLE 

 

For inlier prone Lindley distribution 𝑔(𝑥; 𝑝, 𝜃) as given in (4.2.1), 

 

𝜕𝑙𝑛 𝑔(𝑝, 𝜃|𝑥)

𝜕𝑝
=

{
 

 −
1

1 − 𝑝
,                   𝑥 = 0

1

 𝑝
,                              𝑥 > 0

 

and 

𝜕𝑙𝑛 𝑔(𝑝, 𝜃|𝑥)

𝜕𝜃
= { 

0,                                  𝑥 = 0
2

𝜃
−

1

1 + 𝜃
− 𝑥,          𝑥 > 0

 

 

One can verify that 𝐸 (
𝜕𝑙𝑛 𝑔(𝑝,𝜃|𝑥)

𝜕𝑝
) = 0 and  𝐸 (

𝜕𝑙𝑛 𝑔(𝑝,𝜃|𝑥)

𝜕𝜃
) = 0 . Also, 

 

𝜕2𝑙𝑛 𝑔(𝑝, 𝜃|𝑥)

𝜕𝑝2
=

{
 

 −
1

(1 − 𝑝)2
,             𝑥 = 0

−
1

𝑝2
,                         𝑥 > 0

 

 

𝜕2𝑙𝑛 𝑔(𝑝, 𝜃|𝑥)

𝜕𝜃2
= {

0,                                 𝑥 = 0

−
2

𝜃2
+

1

(1 + 𝜃)2
,    𝑥 > 0

 

and 
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𝜕2𝑙𝑛 𝑔(𝑝, 𝜃|𝑥)

𝜕𝑝 𝜕𝜃
= 0  ∀ 𝑥. 

 

Hence, the Fisher information’s are  

 

𝐼𝑝𝑝 = 𝐸 (−
𝜕2 𝑙𝑛 𝑔(𝑝, 𝜃|𝑥)

𝜕𝑝2
) =

1

𝑝(1 − 𝑝)
 

 

𝐼𝜃𝜃 = 𝐸 (−
𝜕2 𝑙𝑛 𝑔(𝑝,𝜃|𝑥)

𝜕𝜃2
) =

𝑝(2+4𝜃+𝑝2)

𝜃2 (1+𝜃)2
  

and 

𝐼𝑝𝜃 = 𝐸 (−
𝜕2𝑙𝑛 𝑔(𝑝,𝜃|𝑥)

𝜕𝑝 𝜕𝜃
) = 0. 

 

Therefore, the Fisher information matrix 𝐼𝑔(𝑝, 𝜃) is given by  

 

𝐼𝑔(𝑝, 𝜃) = [
𝐼𝑝𝑝 𝐼𝑝𝜃
𝐼𝜃𝑝 𝐼𝜃𝜃

] = [

1

𝑝(1−𝑝)
0

0
𝑝(2+4𝜃+𝑝2)

𝜃2 (1+𝜃)2

].   (4.3.5) 

 

The inverse matrix 𝐼𝑔
−1(𝑝, 𝜃) is given by 

 

𝐼𝑔
−1(𝑝, 𝜃) = [

𝑝(1 − 𝑝) 0

0
𝜃2 (1+𝜃)2

𝑝(2+4𝜃+𝑝2)

]. 

 

Using the standard result of MLE, we have asymptotic distribution of MLE as 

 

(𝑝̂𝑀𝐿𝐸 , 𝜃𝑀𝐿𝐸)
′~𝐴𝑁(2) [(𝑝, 𝜃)′,

1

𝑛
 𝐼𝑔
−1(𝑝, 𝜃) ].    (4.3.6) 

 

Using the estimated variances, one can also propose large sample tests for 𝑝 and 𝜃. 

The approximate (1 − 𝛼)% confidence interval for 𝑝 and 𝜃 are respectively given by 
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𝑝̂𝑀𝐿𝐸 ± 𝑧𝛼 2⁄   √
𝑝𝑀𝐿𝐸(1−𝑝𝑀𝐿𝐸)

𝑛 
       (4.3.7) 

and 

𝜃𝑀𝐿𝐸 ± 𝑧𝛼 2⁄   √
𝜃̂𝑀𝐿𝐸
2 (1+𝜃̂𝑀𝐿𝐸)2

𝑛 𝑝𝑀𝐿𝐸 (2+4𝜃̂𝑀𝐿𝐸+𝜃̂𝑀𝐿𝐸
2 )

 .    (4.3.8) 

 

 

4.3.3. Uniformly Minimum Variance Unbiased Estimation 

 

Referring to section 1.5.5, with 𝑑=0, we obtain UMVUE of the mixture density in the 

following way: Writing (4.2.1), in the form of (1.5.9), we have 

 

 𝑔(𝑥; 𝑝, 𝜃) =
(1+𝑥)1−𝐼(𝑥) [𝑒−𝜃](1−𝐼(𝑥))𝑥 (

(1+𝜃)

𝜃2
 
(1−𝑝)

𝑝
)
𝐼(𝑥)

(
𝑝(1+𝜃)

𝜃2
)

    (4.3.9) 

 

    = (𝑎(𝑥))(1−𝐼(𝑥))
[ℎ(𝜃)]𝑑(𝑥)(1−𝐼(𝑥)) 

[
𝑔(𝜃)

𝑝
]

 [𝑔(𝜃) (
𝑝

 1−𝑝
)]
𝐼(𝑥)

 

 

where, 𝐼(𝑥) is as in (4.3.1), 𝑎(𝑥) = 1 + 𝑥, ℎ(𝜃) = 𝑒−𝜃, 𝑑(𝑥) = 𝑥, 𝑔(𝜃) =
1+𝜃

𝜃2
 and 

 𝑔(𝜃) = ∫ 𝑎(𝑥)[ℎ(𝜃)]𝑑(𝑥) 𝑑𝑥
𝑥>0

. The density in (4.3.9) so obtained is defined with 

respect to a measure 𝜇(𝑥)which is the sum of Lebesgue measure over (0,∞) and a 

singular measure at 0, is a well-known form of a two-parameter exponential family 

with natural parameters (𝜂1, 𝜂2) = (log (
(1+𝜃)

𝜃2
 
(1−𝑃)

𝑝
) ,  log(𝑒−𝜃)) generated by 

underlying indexing parameters (𝑝, 𝜃). Hence (𝐼(𝑥), (1 − 𝐼(𝑥))𝑥) is jointly minimal 

sufficient for (𝑝, 𝜃), as 𝐼(𝑥) and  (1 − 𝐼(𝑥))𝑥 do not satisfy any linear restriction.  

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be n independent random sample from mixture density 

(4.3.9) and if we denote 𝑧 = ∑ (1 − 𝐼(𝑥𝑖))𝑥𝑖
𝑛
𝑖=1 . Then Joint pdf of the sample is given 

by 
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𝑔(𝑥; 𝜃, 𝑝) = (
𝑛
𝑟
) 𝑝𝑟(1 − 𝑝)𝑛−𝑟  

1

(
𝑛
𝑟
)
∏ 𝑎(𝑥𝑖)𝑥𝑖>0

 
[𝑒−𝜃]𝑧

(
1+𝜃

𝜃2
)
𝑟  (4.3.10) 

 

       = 𝑃(𝑛 − 𝑅 = 𝑛 − 𝑟) 𝑔(𝑧; 𝜃 |(𝑛 − 𝑟). 

 

Therefore, by Neyman’s factorization theorem (𝑛 − 𝑅, 𝑍) are jointly sufficient 

for (𝑝, 𝜃).  Also, 𝑛 − 𝑅 is binomial which is the same as that of 𝑅 with parameter 

(𝑛, 𝑝), and is a complete family. The conditional pdf of variable (𝑍|𝑅 = 𝑟, 𝑟 > 0) is 

 

𝑔(𝑧; 𝜃|𝑟) =

{
 

 (∑
(𝑟)𝑢
(𝑟)𝑢

𝑟

𝑢=0

𝑧𝑟+𝑢−1

(𝑟 − 1)! 𝑢!
)

[𝑒−𝜃]
𝑧

(
1 + 𝜃
𝜃2

)
𝑟

 

, 𝑧 > 0

1,                                                            𝑧 = 0

 

 

where,  (𝑟)𝑢 = 𝑟(𝑟 − 1)… (𝑟 − 𝑢 + 1) and (𝑟)𝑢 = 𝑟(𝑟 + 1)… (𝑟 + 𝑢 − 1). Here 

𝑔(𝑧; 𝜃|𝑟) depends only on 𝜃, and belongs to complete family. Hence (𝑛 − 𝑅, 𝑍) are 

jointly complete sufficient for (𝑝, 𝜃). The joint distribution of (𝑛 − 𝑅, 𝑍) can be 

written as 

 

 𝑔(𝑧; 𝜃, 𝑝) = {
𝐵(𝑧, 𝑟, 𝑛)

[𝑒−𝜃]
𝑧
(
1−𝑝

𝑝
 
1+𝜃

𝜃2
)
𝑛−𝑟

 

(
1+𝜃

𝜃2𝑝
)
𝑛 , 𝑧 > 0

(1 − 𝑝)𝑛,                                  𝑧 = 0

   (4.3.11) 

where 

 

 𝐵(𝑧, 𝑟, 𝑛) = {
1,                       𝑧 = 0;  𝑟 = 0

(
𝑛
𝑟
)𝐵(𝑧|𝑟),     𝑧 > 0;  𝑟 = 1,2, … , 𝑛

   (4.3.12) 

and 

 𝐵(𝑧|𝑟) =
1

(𝑟−1)!
∑

(𝑟)𝑢

(𝑟)𝑢
𝑟
𝑢=0

𝑧𝑟+𝑢−1

𝑢!
.  

 

Here 𝐵(𝑧, 𝑟, 𝑛) is such that  
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(1 − 𝑝)𝑛 + ∑ ∫ 𝐵(𝑧, 𝑟, 𝑛)
𝑧>0

𝑛
𝑟=1

[𝑒−𝜃]
𝑧
(
1−𝑝

𝑝
 
1+𝜃

𝜃2
)
𝑛−𝑟

 

(
1+𝜃

𝜃2𝑝
)
𝑛 𝑑𝑧=1. 

 

Again, using Lemma 1.5.1, the UMVUEs of parametric function 𝜙(𝑝, 𝜃) exists 

if and only if 𝜙(𝑝, 𝜃)  can be expressed in the form 

 

𝜙(𝑝, 𝜃) = α(0,0, n)(𝑝)𝑛 + ∑ ∫ 𝛼(𝑧, 𝑟, 𝑛)
𝑧>0

𝑛
𝑟=1

[𝑒−𝜃]
𝑧
(
1−𝑝

𝑝
 
1+𝜃

𝜃2
)
𝑛−𝑟

 

(
1+𝜃

𝜃2𝑝
)
𝑛 𝑑𝑧.  

 

Thus, using (1.5.15) the UMVUE of function 𝜙(𝑝, 𝜃) in 𝑔(𝑥; 𝑝, 𝜃) is given by 

 

 𝜓(𝑍, 𝑅, 𝑛) =
𝛼(𝑍,𝑅,𝑛)

𝐵(𝑍,𝑅,𝑛)
, 𝐵(𝑍, 𝑅, 𝑛) ≠ 0     (4.3.13) 

 

Like any other model, here also it is difficult to find an unbiased estimate for 

the parameter 𝜃 alone. Therefore, we obtain the UMVUE for parametric functions as 

in line with the theorems and corollary of section 1.5.5. 

 

Result 4.1. Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from (4.3.9). For 𝑚 ≤ 𝑛 and 

using Result 1.5.1, the UMVUE of (1 − 𝑝)𝑚 is 𝐺𝑚(𝑍, 𝑅, 𝑛) as given by (1.5.16). 

 

Result 4.2. If 𝑚 = 1 in Result 4.1, the UMVUE of (1 − 𝑝), the probability of 

observing ‘zero’ in mixture distribution given in (4.3.9) is given by  

 

𝐺1(𝑧, 𝑟, 𝑛) = {

𝑛 − 𝑟

𝑛
, 𝑟 > 0; 𝑧 > 0

1,                  𝑟 = 0; 𝑧 = 0
 

 

Result 4.3. For  𝑚 ≤
𝑛

2
 and using Result 1.5.2, the UMVUE of the variance of 

𝐺𝑚(𝑍, 𝑅, 𝑛) is given by (1.5.17). 

 



 

Inferences on inliers in Lindley distribution   122 

 

 

Result 4.4. For 𝑚 = 1 in Result 4.3, the UMVUE of the variance of UMVUE of 

(1 − 𝑝) is given by. 

 

𝑣𝑎𝑟 ̂[𝐺1(𝑧, 𝑟, 𝑛)] = {

𝑟(𝑛 − 𝑟)

𝑛2(𝑛 − 1)
, 𝑟 = 1, 2, … , (𝑛 − 1)

0,                          𝑜. 𝑤.

 

 

Result 4.5. For 𝑘 > 0 and using Result 1.5.3, the UMVUE of parametric function 

 

(1 − 𝑝)𝑛 + (
𝑝 𝜃2

1+𝜃
)
𝑘

[1 − (1 − 𝑝)𝑛−𝑘], 𝜃 > 0; 0 < 𝑝 < 1  

 

is obtained as 

 

 𝐻𝑘(𝑧, 𝑟, 𝑛) = {
(𝑟−1)𝑘(𝑟)𝑘

(𝑛)𝑘

∑
(𝑟−𝑘)𝑢
(𝑟−𝑘)𝑢

𝑧𝑢−𝑘

𝑢!
𝑟−𝑘
𝑢=0

∑
(𝑟)𝑢
(𝑟)𝑢

𝑧𝑢

𝑢!
𝑟
𝑢=0

, 𝑧 > 0;  𝑟 = 1,2, … , 𝑛

1,                                         𝑧 = 0;  𝑟 = 0

 

 

where (𝑟)𝑘 = 𝑟(𝑟 − 1)(𝑟 − 2)… (𝑟 − 𝑘 + 1) and 

(𝑟)𝑘 = 𝑟(𝑟 + 1)(𝑟 + 2)… (𝑟 + 𝑘 − 1).  

 

Result 4.6. The UMVUE of the variance of 𝐻𝑘(𝑍, 𝑅, 𝑛), according to Result 1.5.4 is 

obtained as 

 

𝑣𝑎𝑟 ̂[𝐻𝑘(𝑧, 𝑟, 𝑛)]   

=

{
 
 

 
 

(
(𝑟 − 1)𝑘(𝑟)𝑘

(𝑛)𝑘

∑
(𝑟 − 𝑘)𝑢
(𝑟 − 𝑘)𝑢

 
𝑧𝑢−𝑘

𝑢!
𝑟−𝑘
𝑢=0

∑
(𝑟)𝑢
(𝑟)𝑢

 
𝑧𝑢

𝑢!
𝑟
𝑢=0

)

2

−
(𝑟 − 1)2𝑘(𝑟)2𝑘

(𝑛)2𝑘

∑
(𝑟 − 2𝑘)𝑢
(𝑟 − 2𝑘)𝑢

 
𝑧𝑢−2𝑘

𝑢!
𝑟−2𝑘
𝑢=0

∑
(𝑟)𝑢
(𝑟)𝑢

 
𝑧𝑢

𝑢!
𝑟
𝑢=0

, 𝑧 > 0; 𝑟 = 1, … , 𝑛   

0,                                                                                                                                                     𝑜. 𝑤.

 

 

Result 4.7. For fixed 𝑥, according to Result 1.5.5 the UMVUE of pdf 𝑔(𝑥; 𝑝, 𝜃) given 

in (4.3.9) is obtained as 
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𝜙𝑥(𝑧, 𝑟, 𝑛)

=

{
  
 

  
 𝑟(𝑟 − 1)

𝑛
(1 + 𝑥)(1 + 𝑥 𝑧⁄ )

𝑟−1
∑

(𝑟 − 1)𝑢
(𝑟 − 1)𝑢

𝑟−1
𝑢=0

(𝑧 − 𝑥)𝑢−1

𝑢!

∑
(𝑟)𝑢
(𝑟)𝑢

𝑟
𝑢=0

𝑧𝑢

𝑢! ,
, 𝑥 > 0; 𝑧 > 𝑥; 𝑟 = 1,2,… , 𝑛

𝑛 − 𝑟

𝑛
,                                                                                              𝑥 = 0; 𝑟 = 0,1, … , 𝑛 − 1  

0,                                                                                                       𝑜. 𝑤.

 

 

Result 4.8. For 𝑟 = 𝑛 that is when all the observations are coming from the pdf in 

(4.1.1), then the UMVUE of the density 𝑓(𝑥; 𝜃) is simplified as 

 

𝜙𝑥(𝑧, 𝑟, 𝑛)

=

{
 
 

 
 
(𝑛 − 1)(1 + 𝑥)(1 + 𝑥 𝑧⁄ )

𝑛−1
∑

(𝑛 − 1)𝑢
(𝑛 − 1)𝑢

𝑛−1
𝑢=0

(𝑧 − 𝑥)𝑢−1

𝑢!

∑
(𝑛)𝑢
(𝑛)𝑢

𝑟
𝑢=0

𝑧𝑢

𝑢! ,
, 𝑥 > 0; 𝑧 > 𝑥

0,                                                                                                      𝑜. 𝑤.                                                                                                   

 

 

Note: This result is matched with the result obtained by Maiti and Mukherjee (2016),  

 

Result 4.9. Using Result 1.5.6, the UMVUE of the variance of 𝜙𝑥(𝑍, 𝑅, 𝑛) obtained as  

 

𝑣𝑎𝑟̂[𝜙𝑥(𝑧, 𝑟, 𝑛)]  

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑟2(𝑟 + 1)2

𝑛2
(1 + 𝑥)2(1 − 𝑥 𝑧⁄ )

2(𝑟−1)
(∑

(𝑟 − 1)𝑢
(𝑟 − 1)𝑢

𝑟−1
𝑢=0

(𝑧 − 𝑥)𝑢−1

𝑢!
)
2

(∑
(𝑟)𝑢
(𝑟)𝑢

𝑟
𝑢=0

(𝑧)𝑢

𝑢!
)
2

−
𝑟(𝑟 − 1)2(𝑟 − 2)

𝑛(𝑛 − 1)
(1 − 𝑥)2(1 − 𝑥 𝑧⁄ )

2𝑟−3(
∑

(𝑟 − 1)𝑢
(𝑟 − 1)𝑢

𝑟−1
𝑢=0

(𝑧 − 𝑥)𝑢−1

𝑢!

∑
(𝑟)𝑢
(𝑟)𝑢

𝑟
𝑢=0

(𝑧)𝑢

𝑢!

)(
∑

(𝑟 − 2)𝑢
(𝑟 − 2)𝑢

𝑟−2
𝑢=0

(𝑧 − 2𝑥)𝑢−1

𝑢!

∑
(𝑟 − 1)𝑢
(𝑟 − 1)𝑢

𝑟
𝑢=0

(𝑧 − 𝑥)𝑢

𝑢!

) ,

                                                                                                                                          𝑥 > 0;  𝑧 > 2𝑥;  𝑟 = 2,3,… , 𝑛

𝑟2(𝑟 + 1)2

𝑛2
(1 + 𝑥)2(1 − 𝑥 𝑧⁄ )

2(𝑟−1)
(∑

(𝑟 − 1)𝑢
(𝑟 − 1)𝑢

𝑟−1
𝑢=0

(𝑧 − 𝑥)𝑢−1

𝑢!
)
2

(∑
(𝑟)𝑢
(𝑟)𝑢

𝑟
𝑢=0

(𝑧)𝑢

𝑢!
)
2 ,               𝑥 > 0; 𝑥 < 𝑧 < 2𝑥

𝑟(𝑛 − 𝑟)

𝑛2(𝑛 − 1)
,                                                                                                                      𝑥 = 0; 𝑟 = 0,1,… , 𝑛 − 1
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For 𝑟 = 𝑛 the above result reduce to the case of- Lindley distribution, with no inliers. 

 

Result 4.10. For fixed 𝑧 and 𝑟, using corollary 1.5.1 the UMVUE of the survival 

function 𝑆(𝑡) = 𝑃(𝑋 > 𝑡), 𝑡 ≥ 0 obtained as 

 

𝑆̂(𝑡) = ∫ 𝜙𝑥(𝑧, 𝑟, 𝑛)𝑥>𝑡
𝑑𝑥  

 

=

{
 

 𝑟(𝑟 − 1)

𝑛 ∑
(𝑟)𝑢
(𝑟)𝑢

𝑟
𝑢=0

𝑧𝑢

𝑢!

∑
(𝑟 − 1)𝑢
(𝑟 − 1)𝑢

𝑟−1

𝑢=0

1

𝑢!
 [(1 + 𝑧)

 (𝑧 − 𝑡)𝑟+𝑢−1

𝑟 + 𝑢 − 1
−
 (𝑧 − 𝑡)𝑟+𝑢

𝑟 + 𝑢
] , 𝑡 < 𝑧

0,                                                                                                                                𝑜. 𝑤.

  

 

Result 4.11. Using Result 1.5.7, the UMVUE of the variance of 𝑆̂(𝑡) obtained as  

 

𝑣𝑎𝑟̂[𝑆̂(𝑡)]`

=

{
 
 
 
 
 
 

 
 
 
 
 
 

 

[
 
 
 
 

𝑟(𝑟 − 1)

𝑛 ∑
(𝑟)𝑢
(𝑟)𝑢

𝑟
𝑢=0

𝑧𝑢

𝑢!

∑
(𝑟 − 1)𝑢
(𝑟 − 1)𝑢

𝑟−1

𝑢=0

1

𝑢!
 [(1 + 𝑧)

 (𝑧 − 𝑡)𝑟+𝑢−1

𝑟 + 𝑢 − 1
−
 (𝑧 − 𝑡)𝑟+𝑢

𝑟 + 𝑢
]

]
 
 
 
 
2

 

                                                                        − 
𝑟(𝑟 − 1)2(𝑟 − 2)

𝑛(𝑛 − 1)∑
(𝑟)𝑢
(𝑟)𝑢

𝑟
𝑢=0

𝑧𝑟+𝑢−1

𝑢!

𝑆∗,   𝑧 > 2𝑡;  𝑟 = 3,… , 𝑛 

 

[
 
 
 
 

𝑟(𝑟 − 1)

𝑛 ∑
(𝑟)𝑢
(𝑟)𝑢

𝑟
𝑢=0

𝑧𝑢

𝑢!

∑
(𝑟 − 1)𝑢
(𝑟 − 1)𝑢

𝑟−1

𝑢=0

1

𝑢!
 [(1 + 𝑧)

 (𝑧 − 𝑡)𝑟+𝑢−1

𝑟 + 𝑢 − 1
−
 (𝑧 − 𝑡)𝑟+𝑢

𝑟 + 𝑢
]

]
 
 
 
 
2

, 𝑡 < 𝑧 < 2𝑡; 𝑟 = 2,3, … , 𝑛

0,                                                                                                                                      𝑜. 𝑤.

 

 

where, 

 

𝑆∗ =∑
(𝑟 − 2)𝑢
(𝑟 − 2)𝑢

𝑟−2

𝑢=0

1

𝑢!
 
(𝑧 − 2𝑡)𝑟+𝑢−1

(𝑟 + 𝑢 − 2)
{(1 + 𝑡) [

1 + 𝑧 − 𝑡

𝑟 + 𝑢 − 1
−
𝑧 − 2𝑡

𝑟 + 𝑢
] +

𝑧 − 2𝑡

𝑟 + 𝑢 − 1
[
1 + 𝑧 − 𝑡

𝑟 + 𝑢
−

𝑧 − 2𝑡

𝑟 + 𝑢 + 1
]} 

 

For 𝑟 = 𝑛, both the above results reduce to the case of Lindley distribution, with no 

inliers. 
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4.4. Testing of hypothesis for parameters 

 

Since p is the mixing parameter and involve only the number of observations 

correspond to the positive part, the most powerful test for testing 𝐻0: 𝑝 = 1 against 

𝐻1: 𝑝 < 1 of size 𝛼 is similar to the one obtained in (1.6.1), with power function 

𝛽(𝑝) = 1 − (1 − 𝛼)𝑝𝑛. Whereas, the locally most powerful (LMP) test for 𝑝 of size 

𝛼 for testing 𝐻0: 𝑝 = 1 against 𝐻1: 𝑝 < 1 for 𝜃 known according to (1.6.2) is given by 

 

𝛷2(𝑥)= {

1, 𝑟 < 𝑝[𝑛+ (1−𝑝)𝑐𝛼]
𝛾, 𝑟 = 𝑝[𝑛+ (1−𝑝)𝑐𝛼] 
0, 𝑟 > 𝑝[𝑛+ (1−𝑝)𝑐𝛼]

 

 

where 𝑐𝛼 and 𝛾 are such that 𝐸𝐻0[𝛷2(𝑥)] = 𝛼. 

 

Similarly, the most powerful test for 𝐻0: 𝜃 = 𝜃0 against 𝐻1: 𝜃 = 𝜃1, (𝜃1 > 𝜃0) 

for 𝑝 known according to (1.6.3) is given by 

 

𝛷3(𝑥) =

{
 
 
 

 
 
 1, ∑ 𝑥𝑖

𝑥𝑖>0

> 
𝑐𝛼 + 2𝑟(log𝜃0 − log𝜃1) − 𝑟[log(1 + 𝜃0) − log(1 + 𝜃1)]

(𝜃0 − 𝜃1)

𝛾, ∑ 𝑥𝑖
𝑥𝑖>0

= 
𝑐𝛼 + 2𝑟(log𝜃0 − log𝜃1) − 𝑟[log(1 + 𝜃0) − log(1 + 𝜃1)]

(𝜃0 − 𝜃1)
   

0, ∑ 𝑥𝑖
𝑥𝑖>0

< 
𝑐𝛼 + 2𝑟(log𝜃0 − log𝜃1) − 𝑟[log(1 + 𝜃0) − log(1 + 𝜃1)]

(𝜃0 − 𝜃1)
   

 

 

where 𝑐𝛼 and 𝛾 are such that 𝐸𝐻0[𝛷3(𝑥)] = 𝛼.  

 

In a similar way, the LMP test of size 𝛼 for testing 𝐻0: 𝜃 ≤ 𝜃0 against 𝐻1: 𝜃 >

𝜃0 for 𝑝 known based on 𝑛 iid observations from the density 𝑔(𝑥; 𝑝, 𝜃) according to 

(1.6.4) is given by 
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𝛷4(𝑥) =

{
 
 
 

 
 
 1,       ∑ 𝑥𝑖

𝑥𝑖>0

< 
𝑟(2 + 𝜃0)

𝜃0(1 + 𝜃0)
− 𝑐𝛼

𝛾, ∑ 𝑥𝑖
𝑥𝑖>0

= 
𝑟(2 + 𝜃0)

𝜃0(1 + 𝜃0)
− 𝑐𝛼

0, ∑ 𝑥𝑖
𝑥𝑖>0

> 
𝑟(2 + 𝜃0)

𝜃0(1 + 𝜃0)
− 𝑐𝛼

 

where 𝑐𝛼 and 𝛾 are such that 𝐸𝐻0[𝛷4(𝑥)] = 𝛼. 

 

 

4.5. Simulation study 

 

A simulation study is conducted to check the performance of estimators of the 

parameters and parametric functions for various choices of inliers. Each estimate is 

based on a simulation of 1000 random samples of size 𝑛 = 50 with different choices 

of 𝑟. The value of 𝜃 = 0.5 is assumed for the target Lindley distribution. Table 4.1 

presents the various estimates of parameters along with their standard error of estimate 

which is shown in brackets. Note that the estimate of 𝑝 and is 𝜃 is comparable in all 

cases. It is also seen that the standard error is very small for every combination of 

(𝑛, 𝑟).  

 

Table 4.1. Summary of maximum likelihood estimates of the model 
(𝑛, 𝑟) Parameter Estimates(se) 95% confidence interval 

(50,15) 𝑝̂𝑀𝐿𝐸  0.30108 (0.06409) (0.17547, 0.42669) 

𝜃̂𝑀𝐿𝐸 0.52079 (0.09991) (0.32496, 0.71661) 

(50,25) 𝑝̂𝑀𝐿𝐸  0.49990 (0.07003) (0.36264, 0.63716) 

𝜃̂𝑀𝐿𝐸 0.51042 (0.07493) (0.36357, 0.65728) 

(50,40) 𝑝̂𝑀𝐿𝐸  0.80108 (0.05540) (0.69327, 0.91045) 

𝜃̂𝑀𝐿𝐸 0.50552 (0.05853) (0.39304, 0.62249) 

(50,50) 𝑝̂𝑀𝐿𝐸  1.00000 (0.01414) (0.97228, 1.0000) 

𝜃̂𝑀𝐿𝐸 0.50705 (0.05223) (0.40469, 0.60941) 

 

Table 4.2 presents the UMVU estimates of parametric functions and UMVUE 

of its variance for model for different values of 𝑘 and different combination of 𝑛 and 

𝑟. It may be observed from Table 4.2 that for each combination of 𝑛 and 𝑟, the UMVU 
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estimates are decreasing function of 𝑘. It is also noted that as the number of inliers 

decreases the UMVU estimate of the parametric function increases and UMVUE of 

the variance of the estimate decreases. 

 

Table 4.2. Summary of estimates of parametric functions and its estimate of the 

variance 

 

(𝑛, 𝑟) 

 

𝑘 
UMVUE of (1 − 𝑝)𝑛 + (

𝑝 𝜃2

1+𝜃
)
𝑘

[1 − (1 − 𝑝)𝑛−𝑘] 

(UMVUE of its variance) 

(50,15) 1 0.05033 (0.00040) 

2 0.00253 (4.830e-06) 

3 0.00013 (3.503e-08) 

(50,25) 1 0.08319 (0.00058) 

2 0.00694 (1.817e-05) 

3 0.00058 (3.557e-07) 

(50,40) 1 0.13395 (0.00078) 

2 0.01791 (5.938e-05) 

3 0.00239 (2.613e-06) 

(50,50) 1 0.16742 (0.00085) 

2 0.02796 (0.00010) 

3 0.00467 (6.802e-06) 

 

The UMVU estimate of probability density function and survival function for 

the above model for various combinations are shown in Table 4.3. The entries in 

brackets are the UMVUE of variances of estimates. 

 

Table 4.3. Summary of estimates of pdf and survival functions 
(𝑛, 𝑟) 𝑘 UMVUE of PDF UMVUE of survival 

function 

(50,15) 2 0.05545 (0.00224) 0.18435 (0.00226) 

4 0.03394 (0.00098) 0.09478 (0.00126) 

6 0.01745 (0.00030) 0.04473 (0.00056) 

8 0.00823 (7.626e-05) 0.02006 (0.00020) 

(50,25) 2 0.09192 (0.00588) 0.30668  (0.00299) 

4 0.05642 (0.00262) 0.15800 (0.00189) 

6 0.02908 (0.00077) 0.07471 (0.00089) 

8 0.01375 (0.00019) 0.03355 (0.00032) 

(50,40) 2 0.14768 (0.01478) 0.49108 (0.00294) 

4 0.09040 (0.00660) 0.25251 (0.00254) 

6 0.04647 (0.00191) 0.11921 (0.00130) 

8 0.02194 (0.00046) 0.05350 (0.00049) 

(50,50) 2 0.18440 (0.02282) 0.61175 (0.00218) 

4 0.11274 (0.01019) 0.31403 (0.00277) 

6 0.05786 (0.00293) 0.14793 (0.00153) 

8 0.02725 (0.00070) 0.06620 (0.00058) 
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Table 4.3 shows that as the value of 𝑘 increases, the estimate of the pdf and 

survival function decreases and UMVUE of the variance of the estimate become very 

small for every combination of 𝑛 and 𝑟. The UMVU estimates of the pdf and survival 

function increases as the number of inliers decreases. 

 

 

4.6. Data analysis  

 

Here we discuss two examples from Appendix. The first example is based on the 

dataset A.5 of SO2 concentration (𝜇𝑔 𝑚3⁄ ) in air for industrial area of Amritsar 

collected from 1 April 2017 to 30 April 2017 at 5:00 A.M. It is observed that SO2 

concentration in air is zero for three days of month April 2017, industrial area of 

Amritsar. The second example is based on dataset A.6 is on child’s age at death from 

the woman’s questionnaire of NFHS-3 for Gujarat state. There are 15 stillbirths (the 

death of a baby before or during the birth after 28 weeks of gestation) considered as 

observation 0. Both the example was fitted for Lindley’s inlier model. The density and 

survival plots along with the parameter estimates are presented below. 

 

 

Figure 4.3. pdf and survival function of SO2 concentration in air data (𝑝 

=0.9, 𝜃=0.2365) 
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Figure 4.4. pdf and survival function of NFHS-3 data (𝑝 =0.82759, 𝜃=0.01396)  

 

Figures 4.3 shows the density function and the survival function curve for 

dataset in A.5 and Figures 4.4 show the density function and the survival function 

curve for dataset in A.6. 

 

The summary of estimates of the model for some selected values of parameters 

of the above two examples is shown in Table 4.4. The entry in brackets is the UMVUE 

of standard error of the estimate.  

 

 Table 4.4. Summary of estimates of the models 

 

Estimator 

Estimates (SE) 

SO2 concentration in 

air data 

NFHS-3 data 

𝑝̂𝑀𝐿𝐸  & 𝑆𝐸(̂𝑝̂𝑀𝐿𝐸) 0.90000 (0.05477) 0.82759 (0.04050) 

MLE of  𝜃̂𝑀𝐿𝐸 & 𝑆𝐸(̂𝜃̂𝑀𝐿𝐸) 0.23650 (0.03248) 0.01396 (0.00116) 

95% CI for 𝑝 (0.79265, 1.00735) (0.74821, 0.90696) 

95% CI for 𝜃 (0.17284 0.30017) (0.01168, 0.01624) 

UMVUE of 𝑝(𝑥 = 0), 𝐺1(𝑧, 𝑟, 𝑛) 0.10000 (0.05571) 0.17241 (0.04073) 

UMVUE of parametric function, 𝐻1(𝑧, 𝑟, 𝑛)  0.11014 (0.02320) 0.00571 (0.00074) 

UMVUE of pdf 𝑥 = 2, 𝜙2(𝑧, 𝑟, 𝑛) 0.05991 (0.05909) 0.01689 (0.01385) 

UMVUE of survival function at time 𝑡, 𝑆̂(𝑡) 

𝑆̂(1) 
𝑆̂(2) 

𝑆̂(3) 

 

0.84850 (0.05389) 

0.77960 (0.05487) 

0.70248 (0.05870) 

 

0.05988 (0.01844) 

0.01422 (0.00650) 

0.00318 (0.00189) 

 


