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4.1 INTRODUCTION 

An interesting and active area of research in inventory theory is that of 

mathematical modeling of inventory for deteriorating items. One of the basic 

assumptions of the traditional inventory models has been the "infinite shelf 

life" of products while in storage. i.e., a product once in stock remains 

unchanged and fully usable for satisfying future demand. However, many 

items are known to deteriorate over time, and hence do not have infinite shelf 

life. If the rate of deterioration or decay is low and negligible with respect to 

the cycle length, its effect can be safely ignored. However, in many situations 

this effect plays a significant role and its impact must be considered explicitly. 

For example, food stuffs, medicines, photographic film etc. Several inventory 

models have been proposed, by different authors, which consider the effect of 

deterioration on inventory management. 

Deteriorating items can be classified into two categories as discussed in 

section 1.1. The first category refers to the items that become decayed, 

damaged, evaporative, or expired through time, like meat, vegetables, fruit, 

medicine, flowers, film and so on; the other category refers to the items that 

lose part or total value over time for one or other reasons. For example, due 

to new technology or the introduction of alternatives, like computer chips, 

mobile phones, fashion and seasonal goods, or loss of relevance, as in case 

of newspapers, magazines and so on. Both the categories have the 

characteristic of limited life cycle. For the first category, the items have a short 

natural life cycle. After a certain period, the natural attributes of the items 

change and then items lose their useable value and hence economic value.  
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The second category of deteriorating items, also called value-deteriorating 

items, have a short market life cycle. After a period of popularity/ utility in the 

market, the items lose their original economic value due to the changes in 

consumer preference, product upgrading and other reasons. In both the 

categories, an item may be either completely lost or may yield a selvage 

value. In each case the items have limited shelf life, the length of which is 

random in most real life situations. 

In the present chapter, we focus on value-deteriorating items. Also we restrict 

to only those items for which customers typically demand only one item. 

There are large varieties of such items. Electronic gadgets, domestic 

appliances, vehicles and fashion goods are some examples of this type.  

 An inventory problem of deteriorating item was first studied by Whitin (1957). 

He studied the inventory problem for fashion items deteriorating at the end of 

the storage period. Most of the authors developed inventory models for the 

first category of deteriorating items.  Ghare and Schrader (1963) were among 

the first who discussed the usefulness of exponential distribution for modeling 

deterioration rate. More specifically, exponential distribution was proposed to 

model the distribution of “time to deteriorate” for modeling inventory of 

deteriorating items. Covert and Philip (1973) proposed a model for inventory 

that decay with deterioration modeled by Weibull distribution. Philip (1974), 

generalized this model by assuming a three-parameter Weibull distribution for 

‘time to deteriorate”. Tadikamalla (1978) considered a similar model assuming 

a gamma distribution for the deterioration time. Y.K.Shah (1977), generalized 

the models proposed in above mentioned papers by introducing a model for 
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deteriorating items where rate of deterioration can be modeled by any well 

behaved probability distribution.   It may be noted that all the work referenced 

above essentially involves modeling of inventory systems for deteriorating 

items of the first type.   

Modeling demand has also been one of the important aspects of developing 

inventory models. As noted above, It is well-recognized that demand is 

influenced by the inventory levels for various types of items such as fashion 

goods, home appliances, electronic gazettes etc. As inventory levels 

decrease, demands of the items also decrease. In practice, higher stock level 

for an item induces more consumers to buy it. Similarly, low stocks of certain 

goods might raise the perception that they are not fresh or not good. For 

example retail stores with higher level of stock will be able to offer more 

options to the customers thus pursuing them to come to their stores. Gupta 

and Vat (1986) were the first, as noted by Ruxian et al. (2010), who proposed 

an inventory model in which demand rate depends on stock. Baker and Urban 

(1988) presented an EOQ model for inventory-level-dependent demand 

pattern. Pal et al. (1993) extended the model of Baker and Urban for 

perishable products that deteriorate at a constant rate. Datta and Pal (1990) 

presented an inventory model in which the demand rate is dependent on the 

instantaneous inventory level until a given inventory level is achieved, after 

which the demand rate becomes constant. Urban (1992) presented a modified 

variant of the model of Datta and Pal. Padmanabham and Vat (1995) also 

proposed EOQ models for deteriorating items with stock dependent demand, 

with a purpose of maximizing profit.  
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Chang et al. (2010) presented models where demand rate depends not only 

on the on-display stock level but also on the selling price per unit as well as 

the amount of shelf display space. They assumed constant holding cost as 

well as the constant deterioration rate. Bhathavala & Rathod (2012) consider 

stock-level dependent demand rate and storage time dependent holding cost. 

They assume that holding cost is a decreasing step function of the time spent 

in storage. 

The work presented in this chapter is an attempt to relate the stock level to 

the price of value deteriorating items. The general behavior of the buyer is to 

get attracted to those outlets where stock is well maintained. Nevertheless, 

from the seller’s point of view, as the stock of the said items depletes he tends 

to reduce price in order to maintain the demand, which may otherwise reduce. 

A real life example is that of apparels outlets. Buyers would first enter those 

outlets where more apparels varieties are displayed. However, low pricing is 

also known to attract the buyers.  Thus the effective demand is a function of 

the stock and price. The compromise factor plays a vital role at low stock 

outlets as satisfaction level is generally higher at lower prices.  

As noted earlier, models developed by most of the authors are essentially for 

the first category of deteriorating items. In this chapter, we present an 

inventory model for the value-deteriorating items. We also assume that, 

holding cost is incurred only for the period during which the inventory items 

are held in the stock - an implicit assumption usually made only in EOQ 

models. The demand is generated according to a Poisson process with each 

customer demanding only one unit. Due to our assumptions, the actual 
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holding cost is random and depends on the time points at which actual 

demands occur. Also the replenishment is assumed to be instantaneous and 

hence the new order is placed only when (and as soon as) inventory level 

reaches zero. This also results into the random cycle length.  

4.2. NOTATIONS  

  Following notations are used in this chapter.  

  ݊  : Lot size (initial inventory level) 

  ܶ  : Cycle length.   

  k : Critical inventory level, which when reached, the selling price is reduced. 

    .଴  : Ordering cost per orderܥ  

 .ଵ: holding cost per unit per unit time in the beginning of a cycleܥ  

        ଶ : holding cost per unit per unit time after inventory level reduces to kܥ  

units,C2 > C1 

  C : cost of inventory per unit.                                                                                              

    : Mean customer inter arrival time.(Equivalently, Customer arrival rate =  ଵ
ఏ
 ) 

4.3 THE PROPOSED MODEL 

 Following are the assumptions of the model. 

1. Customer arrival process is Poisson with each customer having demand of 

one unit. 
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 2. Supply is instantaneous. 

 3. Reorder is placed as soon as inventory level reaches zero. 

 4. Holding cost is incurred only for the period during which the inventory items 

are held in the stock. 

 

 Suppose inventory is maintained for a discrete item. The stock level is raised 

to n units in the beginning of a cycle.  Initially, the items are sold at price p1 

per unit. However, when inventory level reduces to k units, the units are sold 

at a reduced price p2 per unit. As holding cost includes the cost of tied up 

capital, reduction in the selling price leads to an increased holding cost. In the 

following development, instead of directly using sale prices p1 and p2, we use 

the resultant holding costs C1 and C2 (>C1).  

 Determination of optimum inventory level 

Initially at time  ݐ଴ = 0, the inventory level is raised to ݊ units. Suppose 1st 

customer arrives at time 1ݐ, and demand for 1 unit. So at time 1ݐ, inventory 

level reduces to (݊ − 1) units. Similarly, 2nd customer arrives at time 2ݐ + 1ݐ, 

and demand for 1 unit, so that at time 2ݐ +1ݐ, inventory level reduces to (݊ − 2) 

units, and so on.  

At time  ݐଵ + ଶݐ + ଷݐ + ⋯ +  ௡ି௞ , inventory level reduces to k units.  These kݐ

units are then sold at a reduced price, resulting in the increased holding cost 

C2. We further assume that as a result of this reduced sale price, the demand 

rate (i.e customer arrival rate) is maintained at the same level ଵ
ఏ
  as earlier. 
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As the customer arrival process is Poisson with arrival rate  ଵ
ఏ
   the inter-arrival 

times ݐଵ, ,ଶݐ ,ଷݐ …  ௡   are identically and independently distributed (iid)ݐ

exponential random variables with mean θ.  

That is, 

, (ߠ )݌ݔܧ ௜ ݐ ݅ = 1,2, … , ݊.   

Then the expected value of Cycle length  ܶ =   ௜  is given byݐߑ

(ܶ)ܧ =    ߠ݊

In order to obtain the optimal order quantity, we minimize the expected total 

inventory cost per unit time. The total inventory cost for one cycle is given by 

Total cost = Ordering cost + Inventory cost + Holding cost 

Ordering cost  = ଴ܥ                                                                                                 … (4.3.1)    

Cost of inventory   = …                                                                                        ܥ݊ (4.3.2)     

Total holding cost 

                            = ଵݐ݊)ଵܥ + (݊ − ଶݐ(1  + (݊ − ଷݐ(2 + ⋯ + (݇ + (௡ି௞ݐ(1

+ ௡ି(௞ିଵ)ݐଶ൫݇ܥ + ⋯ + ௡ିଵݐ2 + …                                      ௡൯ݐ  (4.3.3)   

                                                                                                                                                          

Total inventory cost = (4.3.1) + (4.3.2) + (4.3.3) 

Thus, the total cost per unit time as a function of initial inventory level ݊, is 

(݊)ܥܶ =
1
ܶ ൛ܥ଴ + ܥ݊ + ଵݐ݊)ଵܥ + (݊ − ଶݐ(1  + (݊ − ଷݐ(2 + ⋯ +  (݇ + (௡ି௞ݐ(1

+ ௡ି(௞ିଵ)ݐଶ൫݇ܥ + ⋯ + ௡ିଵݐ2  ௡൯ൟݐ +
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The expected total cost per unit time is 

൯(݊)ܥ൫ܶܧ = ଴ܥ) + ܧ(ܥ݊ ൬ 
1
ܶ

 ൰

+ ଵܥ ൜݊ ܧ ൬ 
ଵݐ

ܶ
 ൰ + (݊ − ܧ(1 ൬

ଶݐ

ܶ
൰ + ⋯ + (݇ + ܧ (1 ൬

௡ି௞ݐ

ܶ
 ൰ൠ

+ ଶܥ ൜݇ܧ ൬
௡ି(௞ିଵ)ݐ

ܶ
 ൰ +. . . ܧ2+ ൬

௡ିଵݐ

ܶ
 ൰ + ܧ ൬

௡ݐ

ܶ
 ൰ൠ 

         = 0ܥ) + ܧ (ܥ݊  ቆ 
1
ܶ ቇ + ܧ 1ܥ ൬ 

݅ݐ
ܶ ൰ ቆ

(݊ − ݇)(݊ + ݇ + 1)
2 ቇ

ܧ2ܥ + ൬ 
݅ݐ
ܶ ൰ ቆ

k(݇ + 1)
2 ቇ   

              

Now, ܧ( ௧೔ 
்

) can be computed as    

ܧ ቀ࢚࢏ 
்

ቁ = ܧ ൬ܧ ቀ࢚࢏
் 

| ܶ =  .ቁ൰, where inner expectation is conditional on T=tݐ

As we have already noted in Chapter 3, Appendix 3, the conditional 

distribution of   
௧೔
்

|ܶ =  is beta of Type-1 with parameters 1 and (n-1)  ݐ

respectively. 

Thus, we have  

   

ܧ ൬
 ࢏ݐ
ܶ ฬܶ = ൰ݐ =   

1
݊

    

     
Since this conditional expectation is independent of t, this, further, implies that  

      

ܧ ൬
 ࢏ݐ
ܶ

൰ =  
1
݊

                                                                                                                     … (4.3.4) 

                                                           

Also, when n > 1, for the Gamma random variable T, we have 
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ܧ  ൬
1
ܶ

൰ =
1

݊)ߠ −  1)
                                                                                                    … (4.3.5)    

                                                     

For n=1, T = t1~ Exp(). Hence 

ܧ ൬
1
ܶ

൰  =  
1
ߠ

 න ݁ି௧ ఏ⁄ ݐଵ݀ିݐ
∞

଴
 

This is a Gamma integral with α = 0. However Gamma integral converges if 

and only if α > 0. 

Thus, the integral on the right hand side of ܧ ቀଵ
்

ቁ above diverges to ∞. This in 

turn implies that E(TC(1)) =∞.  

Thus n =1 cannot be an optimal solution. We, therefore, assume that n is 

greater than 1 in the optimization process. 

From (4.3.4) and (4.3.5),                                                                                                   

((݊)ܥܶ)ܧ =  
଴ܥ + ܥ݊
݊)ߠ − 1)

+
݊)ଵܥ − ݇)(݊ + ݇ + 1)

2݊
+

݇)ଶ݇ܥ + 1)
2݊

                      … (4.3.6) 

                                               

݊)ܥܶ)ܧ + 1)) − ((݊)ܥܶ)ܧ =
ଵ(݊ଶܥ + ݊ + ݇ଶ + ݇)

2݊(݊ + 1)
−

݇)ଶ݇ܥ + 1)
2݊(݊ + 1)

−
଴ܥ + ܥ

݊)݊ߠ − 1)
 

 is an increasing function for all ݊.  Thus, the expected total cost ((݊)ܥܶ)ܧ is a 

convex function of ݊. This further implies that the cost function has unique 

minima.                                                           

This unique optimal solution is the integer value of ݊  that satisfies  

((݊)ܥܶ)ܧ ≤ ݊)ܥܶ)ܧ − 1)) as well as  

((݊)ܥܶ)ܧ ≤ ݊)ܥܶ)ܧ + 1)) 
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An optimal value of n is the one that minimizes ((݊)ܥܶ)ܧ. This is the smallest 

value of ݊  that satisfies  

൯(݊)ܥ൫ܶܧ  ≤ ݊)ܥ൫ܶܧ + 1)൯                                                                                                  

  

⇒
଴ܥ + ܥ݊

݊)ߠ  − 1)
+

݊)ଵܥ − ݇)(݊ + ݇ + 1)
2݊

+
݇)ଶ݇ܥ + 1)

2݊
  

≤  
଴ܥ + (݊ + ܥ(1

݊ߠ
+

݊)ଵܥ + 1 − ݇)(݊ + ݇ + 2)
2(݊ + 1)

+
݇)ଶ݇ܥ + 1)

2(݊ + 1)
 

 

⇒
଴ܥ + ܥ݊
݊)ߠ − 1)

−
଴ܥ + (݊ + ܥ(1

݊ߠ
 

≤  
݊)ଵܥ + 1 − ݇)(݊ + ݇ + 2)

2(݊ + 1)
+

݇)ଶ݇ܥ + 1)
2(݊ + 1)

− ( 
݊)ଵܥ − ݇)(݊ + ݇ + 1)

2݊
+

݇)ଶ݇ܥ + 1)
2݊

) 

 

⇒
଴ܥ)݊ + (ܥ݊ − (݊ − ଴ܥ)(1 + ܥ݊ + (ܥ

݊) ݊ߠ − 1)
 

≤  
1

2݊(݊ + 1)
݊)݊)ଵܥ} + 1 − ݇)(݊ + ݇ + 2) − (݊ + 1)(݊ − ݇)(݊

+ ݇ + 1)) + ݇)݇݊))ଶܥ + 1) − (݊ + 1)(݇(݇ + 1))} 

⇒
଴ܥ)݊ + (ܥ݊ − ଴ܥ)݊ + (ܥ݊ + ଴ܥ) + ܥ݊ + (ܥ

݊)ߠ − 1)
 

≤  
ଵ(݊ଶܥ + ݊ + ݇ଶ + ଶ(−݇ଶܥ + (݇ − ݇)

2(݊ + 1)
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⇒
଴ܥ)2 + (ܥ

ߠ
 ≤  

(݊ − ଵ(݊ଶܥ)(1 + ݊ + ݇ଶ + ݇) ଶ(݇ଶܥ − + ݇)
݊ + 1

                … (4.3.7) 

                          

Above inequality implies that the optimal value of ݊ is the smallest integer that 

satisfies 

଴ܥ)2 + (ܥ 
ߠ

  ≤
݊ − 1
݊ + 1

ଵ(݊ଶܥ) + ݊ + ݇ଶ + ݇) − ݇)ଶ݇ܥ + 1))  

 

The equality holds when the following cubic equation is satisfied 

݊ଷܥଵ + ݊ ൬ܥଵ(݇ଶ + ݇ − 1) − ݇)ଶ݇ܥ + 1) + 2
଴ܥ + ܥ

ߠ
൰ + ݇)ଶ݇ܥ + 1) − ݇)ଵ݇ܥ + 1)

− 2
଴ܥ + ܥ

ߠ
=  0 

 

Using the solution of cubic equation as given by Francois Viete (2006), we 

obtain solution of above cubic equation as  

 

 ݊௜ =  2 ∗ ට
݌−
3

∗  ) ݏ݋ܿ
1
3

ݏ݋ܿܿݎܽ ቌ
ݍ3
݌2

 ඨ
−3
݌

   ቍ  − ݅
ߨ2
3

 )     ,  ݅ = 0,1,2         … (4.3.8) 

 

݌  ݁ݎℎ݁ݓ =  
ቀ஼భ(௞మା௞ିଵ)ି஼మ௞(௞ାଵ)ିଶ಴బశ಴

ഇ ቁ 

஼భ
ݍ ,   =  

஼మ௞(௞ାଵ)ି஼భ௞(௞ାଵ)ିଶ಴బశ಴
ഇ  

஼భ
   

Since the value of arccosine is in the interval (0, ߨ), It follows that the 

argument of cosine at equation (4.3.8) is in the interval (– ߨ, 0) for i = 1 and 2. 

As a result n1 and n2 are always negative. Thus n0 is the only feasible solution 

of the cubic equation. 



58 
 

The optimal inventory level is, therefore,  

n* = අ 2 ∗ ට−݌
3 ∗ ݏ݋ܿ ൭1

3 arccos ൬3ݍ
݌2  ට−3

݌ ൰൱  ඉ  

 4.4 ALGORITHM  
 

Step 1: Enter the value of C, C1, C2, k, θ 

 

Step 2: Compute p and q using the following formula. 

݌ =  
ቀܥଵ(݇ଶ + ݇ − 1) − ݇)ଶ݇ܥ + 1) − 2 ଴ܥ + ܥ

ߠ ቁ 
ଵܥ

  

p is always negative because C2 > C1 and k2+k > k2+k-1 

ݍ =  
݇)ଶ݇ܥ + 1) − ݇)ଵ݇ܥ + 1) − 2 ଴ܥ + ܥ

ߠ  
ଵܥ

 

Step 3: Compute  ݏଵ = ටି௣
ଷ

  and ݏଶ = ටିଷ
௣

 

Step 4: Compute  ݀ଵ = ଷ௤
ଶ௣

 

Step 5: Compute ݉ଵ = ݀ଵ ∗  ଶݏ

Step 6: Compute  ݉ଶ = ଵ
ଷ

arccos (݉ଵ)  

Step 7: Compute ݊௜ = 2 ∗ ଵݏ ∗ ݅   ,(ଶ݉)ݏ݋ܿ = 0 

Step 8: Output  ݊ = ௜݊)݀݊ݑ݋ݎ  + 0.5) 
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4.5 AN ILLUSTRATIVE  EXAMPLE 

Suppose demand for a product is 20 per unit time and customer arrival 

process is a Poisson process with each customer having demand of one unit. 

Holding cost per unit per unit time is Rs. 500 before inventory level reduces to 

k =5 units. Holding cost increases to Rs. 750 when inventory level reduces to 

5 units. Ordering cost is Rs.7500 per order. Further, suppose that the 

purchasing cost per unit is Rs.10000. Here we determine expected total cost 

and optimal quantity. 

Here, 

C0=  7500 , C=10000, C1=500, C2=750,  θ =0.05., k=5. 

Different intermediate values are computed as 

p= -1416 

q= -1385 

s1= 21.7256 

s2= 0.0460287 

d1= 1.46716 

m1= 0.0675316 

m2= 0.501071 

n0 = 38.1096 

Thus, the optimal solution is  

 n*= 39 

with expected total cost = Rs. 219307 
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Figure 4.5 Expected total cost as a function of n when  

Sale Price varies with Stock Level 

                           

The above figure 4.5 indicates the relationship between expected total cost 

and initial inventory level. The curve is convex, indicating unique minima 

occurring at n = 39.  
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