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6.1 INTRODUCTION

The model presented in this chapter is an improvement of the model

presented in Chapter 5. In this model we assume that the price of an item is

reduced in response to some event that takes place randomly in time.   It is

generally observed in practice that when a new/ alternative product, with new

technology, is launched in the market, the price of the current product is

reduced. The time of the launch of new product is almost always random. In

this chapter, we present a model for this type of inventory system. The

products involved in such inventory systems can be categorized as value

deteriorating items for the reasons explained in previous chapters.

Generally in a market it is observed that a price reduction results in an

increase in demand.  In order to enhance the reduced demand of a product,

reduced due to the introduction of new models or new machines, a discounted

pricing policy is frequently adopted by the retailers. This policy is commonly

used in Mobile shops, electronic items, supermarkets, malls etc. As in

Chapter 5, price discounts are assume to result in increased demand and

thereby compensate for the reduced demand.

In the inventory model proposed in this chapter, we assume that the items are

sold at a discounted price after a random time point , the time at which

some event takes place, such as introduction of an alternative product. The

price discount is offered by the seller in order to maintain the demand rate.
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6.2 NOTATIONS

Following notations are used in this chapter.

: Lot size (initial inventory level)

: Cycle length.

: The random time after which the price reduction takes place.

α : Expected time at which  price reduction tack place  .

: Holding cost per unit per unit time before time T0.

: Holding cost per unit per unit time after time T0.

: Cost of inventory per unit.

: Number of customer arriving in unit time.

6.3 THE PROPOSED MODEL

Following are the basic assumptions of the proposed model.

1. Customer arrival process is Poisson with each customer having demand of

one unit.

2. Supply is instantaneous.

3. Reorder is placed as soon as inventory level reaches zero.

4. Holding cost is incurred only for the period during which the inventory items

are in the stock.
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Suppose inventory is maintained for a discrete item. The stock level is raised

to units in the beginning of a cycle. Items are sold at a regular price per

unit. At a random time the selling price is reduced to in response to some

event, such as introduction of an alternative product. The demand is assumed

to be Poisson and holding cost is incurred only for the period during which the

inventory items are in the stock. Since holding cost includes the cost of tied up

capital, reduction in the selling price leads to an increased holding cost. In the

following development, instead of directly using sale prices and , we use

the resultant holding costs and (> ) .

Determination of optimum inventory level

Initially at time = 0, the inventory level is raised to units. Suppose 1st

customer arrives at time 1, and demands for 1 unit. So at time 1, inventory

level reduces to ( − 1) units. Similarly, 2nd customer arrives at time 1 + 2,

and demands for 1 unit, at time 1+ 2, reducing inventory level to ( − 2) units,

and so on.

Initially the holding cost is per unit per unit time. At a random time , the

holding cost increases to per unit per unit time (as a consequence of

reduced selling price). Reorder is placed as soon as the inventory level

reaches to zero.

As the customer arrival process is Poisson, the inter-arrival times , , …
are identically and independently distributed (iid) exponential random

variables.

Since, the arrival rate of the arrival process is ,
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 ( ) , = 1,2, … .
We further assume that is a random variable with

 ( )
Let be the number of units sold up to time . In practice, two cases may

arise = ,, or < .  If < , then remaining − units will attract the

higher holding cost (due to reduced selling price). Here should be viewed

as a realized value of a r.v. .

In the proposed model, number of units sold is same as the number of

customers arrived. Here value of random variable X depends on . More

precisely, if there are no restrictions on the values of , we

have( | = ) ~ ( ⁄ )
That is,

( = | = ) = ⁄ ( )⁄! , = 1,2, ….
∴ ( = ) = ⁄ ( )⁄! ⁄∞

On evaluation of the gamma integral in above expression, we get

( = ) = ( + )
= ( + ) +
= (1 − + ) +
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= (1 − ) , where =
The last expression is that of the pmf of Geometric distribution.

However, since the initial stock level is , the number of units that are sold

will never exceed . Hence, follows truncated Geometric distribution,

truncated above at .

Further, the expected value of Cycle length = ∑ is given by

( ) =
At time + + …+ = , inventory level becomes zero. At this time

reorder is made and 2nd cycle starts.

In order to obtain the optimal order quantity, we minimize the expected total

inventory cost per unit time. The total inventory cost for one cycle is given by

Total cost = Ordering cost + Inventory cost + Holding cost

Ordering cost = …(6.3.1)
Cost of inventory = …(6.3.2)
Let x and t0 be the realized values of X and T0 respectively.

Before time , holding cost is per unit per unit time.

Therefore, the holding cost that incurs before time is

= ( + ( − 1) + ⋯+ ( − ( − 1)) + ( − )( − ) ) ; <( + ( − 1) + ⋯+ ( − ( − 1)) ; =
The holding cost that incurs after time , is



86

= ( − )( − ) + ( − ( + 1)) + ⋯ + ; <0 ; ; =
Here and are the arrival times of th and ( +1)th customers

respectively,

i.e. = ∑ and = +
Total holding cost = HC1+HC2

= ( + ( − 1) + ⋯+ ( − ( − 1)) + ( − )( − ) ) +( − )( − ) + ( − ( + 1)) + ⋯ + ; <( + ( − 1) +⋯+ − ( − 1) ; = … (6.3.3)
Total cost for one cycle is sum of ordering cost, inventory cost and holding

cost.

i.e. Total inventory cost = (6.3.1) + (6.3.2) + (6.3.3)

Thus, for the given values x and t0 of random variables X and T0, the total cost

per unit time is

( )
= ⎩⎪⎨
⎪⎧ 1 ( + ) + ( + ( − 1) + ⋯+ ( − ( − 1)) +( − )( − )) + ( − )( − ) +− ( + 1) + ⋯ + ; <1 ( + ) + ( + ( − 1) + ⋯+ − ( − 1) ; =

… (6.3.4)



87

Since TC(n) is a random variable, we minimize ( ( )) with respect to n for

obtaining the optimum  inventory level.

For = 1, = ~ ( ). Hence

1 = 1 ⁄∞

As explained in earlier chapters, note that the integral on the right hand side

of above diverges to ∞.

Thus = 1 can never be an optimal solution. We, therefore, assume that is

greater than 1.

( ) is computed as ( ) = ( ( ( )| = )) ,

Where ( ( )| = ) is computed as ( ( ( )| = , = ))
Now,

( ( )| = , = )
= ⎝⎜⎜
⎛
⎩⎪⎨
⎪⎧ 1 ( + ) + ( + ( − 1) + ⋯+ − ( − 1) +( − )( − )) + ( − )( − ) +( − ( + 1)) + ⋯ + ; <1 ( + ) + ( + ( − 1) + ⋯+ − ( − 1) ; = ⎠⎟⎟

⎞

Thus, we get
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( ( )| = )

=
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧( + ) 1 + + ( − 1) + ⋯+ − ( − 1) +( − ) ( − ) + ( − ) ( − )
+ − ( + 1) ( ) +⋯+ 2 + ; <
( + ) 1 + + ( − 1) + ( − 2) +∙∙∙ +(1) ; =

Since, ′ are identically distributed random variables, we have

( ( )| = )
=
⎩⎪⎪
⎨⎪
⎪⎧ ( + ) 1 + + ( − 1) + ( − 2) +∙∙∙ +( − ( − 1) +( − ) − + ( − ) − +

2 (( − ( + 1)) + ⋯+ 2 + 1) ; <( + ) 1 + + ( − 1) + ( − 2) +∙∙∙ +(1) ; =
...(6.3.5)

As per the model assumptions, we have1 = 1( − 1) , = 1

= , = + 1
Recall that,
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+ ( − 1) + ( − 2) +∙∙∙ +( − ( − 1)) = 2 ( + − ( − 1))
and,

( − ( + 1)) + ⋯+ 2 + 1) = − ( + 1)2 ( − ( + 1) + 1)
Therefore, ( ( )| = )
=
⎩⎪⎪⎨
⎪⎪⎧ +( − 1) + (2 − + 1)2 + ( − ) ( − 1) − +( − ) + 1 − ( − 1) + ( − − 1)( − )2 ; <+( − 1) + + 12 ; =

=
⎩⎪⎪⎨
⎪⎪⎧ +( − 1) − ( − 1) ( − ) + ( − 1) ( − ) + + 12 −
2 ( − ) − ( − )2 ; <+( − 1) + + 12 ; =

( ) = +( − 1) − − 1 ( − ) + − 1 ( − )
+ + 12 − 2 ( − ) − ( − )2 (1 − )1 − (1 − )
+ +( − 1) + + 12 (1 − )1 − (1 − )
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= +( − 1) (1 − )1 − (1 − ) + +( − 1) (1 − )1 − (1 − )
− − 1 ( − ) (1 − )1 − (1 − )
− − 1 ( − ) (1 − )1 − (1 − )
+ − 1 ( − ) (1 − )1 − (1 − )
+ − 1 ( − ) (1 − )1 − (1 − )
+ + 12 (1 − )1 − (1 − ) + + 12 (1 − )1 − (1 − )
+ + 12 (1 − )1 − (1 − ) − + 12 (1 − )1 − (1 − )
− 2 ( − ) (1 − )1 − (1 − ) − 2 ( − ) (1 − )1 − (1 − )
+ 2 ( − ) (1 − )1 − (1 − ) − 2 ( − ) (1 − )1 − (1 − )
− 2 ( − ) (1 − )1 − (1 − ) + 2 ( − ) (1 − )1 − (1 − )
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= +( − 1) (1 − )1 − (1 − ) − − 1 ( − ) (1 − )1 − (1 − )
+ − 1 ( − ) (1 − )1 − (1 − )
+ + 12 (1 − )1 − (1 − ) − 2 ( − ) (1 − )1 − (1 − )
− 2 ( − ) (1 − )1 − (1 − )

= +( − 1) − − 1 ( − ) + + 12
+ 1− 1 ( − ) (1 − )1 − (1 − ) − 12 (
− ) (1 − )1 − (1 − ) − 12 ( − ) (1 − )1 − (1 − )

… (6.3.6)
= +( − 1) − − 1 ( − ) + + 12
+ 1− 1 ( − ) ′ ( , ) − 12 ( − )( ′ ( , ) + ′ ( , ))

where ′ ( , ) and ′ ( , ) are the first two raw moments of the truncated

geometric distribution with parameter truncated above at .

As moments of truncated above Geometric distribution are not available in a

closed form, obtaining the formula of E(TC(n)) and hence that of the optimal

value of n in a closed form is difficult. Hence, we present an algorithm for the

calculation of optimal value of and the associated minimum cost.  An
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implementation of the same in C++ is presented in the appendix.  The

algorithm is described in the next section.

6.4 ALGORITHM

Step 1: Enter the value of , , , , , .

Step 2: Compute = .

Step 3: Set = 2 , (1) =
Step 4: Compute

= +( − 1)
= − 1 ( − )
= + 12

Step 5: Compute the value of ′ ( , ) as

1 = (1 − )1 − (1 − )
Step 6: Compute

= ( − )− 1 1
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Step 7: Compute the value of ′ ( , ) as

2 = (1 − )1 − (1 − )
Step 8: Compute

= −2 ( 1 + 2)
Step 9: Compute ( ) = − + + −
Step 10: If ( ) > ( ( − 1)) then out put the value of − 1 as the

optimal solution and stop.

Else set = + 1, and go to step 4.

6.5 AN ILLUSTRATIVE EXAMPLE

Suppose that demand for a product is 20 per month and customer arrival

process is a Poisson process with each customer having demand of one unit.

Holding cost per unit per unit time is Rs. 500 before time T0. Holding cost per

unit per unit time is Rs. 750 after time T0. Ordering cost is Rs.10000 per order.

Suppose shortages are not allowed and the purchasing cost per unit is

Rs.12000. Here we determine expected total cost and optimal quantity. Value

of  α = 3 months ..

This example is solved with the help of program develop in C++. (see

Appendix-F)
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C = 12000, C0 = 10000, C1 = 500, C2 = 750, α = 3, θ =0.05, 1 = 20

Using a C++ program presented in Appendix-F,

We get the optimal value of n= 32 with E(TC)= 261002.1 .

Figure 6.5

Expected total cost as a function of n when Sale Price varies at Random Time

The graph describes the relationship between expected total cost and initial

inventory level. As it can be observed, the curve for E(TC(n)) is a convex

function of n, with minimum cost achieved at n=32 units and after that it rises

again.
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