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Chapter -1 

 

INTRODUCTION 

1.  Introduction 
 

           The main Endeavour of any scientific method is to help human being 

towards its betterment, to this end and statistical studies have been continuously 

playing an important role.  

          Today the science of statistics is an indispensible part of any and every 

sphere of human activity and is extensively applied in framing polices and 

formulating decision in a large number of diversified fields Covering Natural, 

Economic, Physical, Social sciences and Life Sciences. According to Prof.  P.C 

Mahalnobis, “statistics is essentially an applied science. Its only justification lies in 

the help it can give in solving a problem.” 

 The formulation and growth of the theory of probability during 18
th

 and 19
th

 

centuries brought about a sharp and important changes in the basic premises of 

scientific thinking.  Scientific investigators during this period began to realize a 

close resemblance between the laws of uncertainties governing the outcome of 

games of chance and the laws of variations observed by them in apparently 

uncontrolled phenomena in their fields of study. This led astronomers, physicists, 

geneticists, engineers, agriculturists etc. to believe that a stochastic or probabilistic 

model (or approach) could possibly explain the variability of observations in fields 

of scientific inquiry, where such variations were unavoidable. 

 It became, however, apparent even as early as in nineteenth century that no 

matter how strongly one believed in the deterministic model, it was not possible to 

use them beyond limits. A stochastic model was clearly needed as a realistic basis 
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for explaining natural phenomenon characterized by inherent variability.  Neyman 

in Journal of American Statistical Association (1960) reaffirmed that „currently in 

the period of dynamic indeterminism in science, there is hardly a serious piece of 

research, which, if treated realistically does not involve operations on stochastic 

processes‟.  It was the growing complexity of physical sciences and later in 

biological and social sciences that inadequacy of deterministic models was realized 

and led to the gradual replacement of such models by stochastic models. 

 

1.1 STATISTICS AS A SCIENCE OF INDUCTIVE INFERENCE 

 As we have already remarked earlier statistics is concerned with collection 

of data and with their analysis and interpretation. The methods by which data are to 

be collected has given rise to different techniques and this itself has given a branch 

or area in statistics called sampling. Next comes the question as to what the data 

tell us. This answer depends not only on the data but also on the background 

knowledge of the situation or phenomenon; the latter is formalized in the 

assumptions under which the analysis enters. The process of inference involved in 

statistics is of an inductive nature – inferring from particular to the general or from 

sample to the population. It is here that the effectiveness of statistic lies which has 

evolved and is in a continuous process of evolving the scientific methodology 

based on the theory of probability to meet the challenging needs of such 

inferences. Thus the development in probability theory and statistical inference are 

to go hand in hand. Statistics today has become an indispensible tool in planning of 

experiments for any scientific inquiry and in drawing valid inferences on the basis 

of data that could be quantified. Instead of going into how the data are to be 

obtained, we would assume for our purpose that they are rather given and describe 

in brief some principal lines of approach of statistical analysis. 
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CONDITIONAL INFERENCE 

 One of the fundamental problems in statistics is that of specification of an 

appropriate model to represent the phenomenon under study and to make analysis. 

It is indeed obvious that the validity of statistical inference depends on the 

appropriateness of the model. In most applications the model is parametric and if it 

can be determined in advance from theoretical considerations, and statistical 

inferences can be drawn using classical theory. This is the view of late Prof. R. A. 

Fisher according to whom there is 1: 1 correspondence between the model and its 

analysis. 

 There are situations when we come across data that are collected from 

operational studies or a researcher feels that it is extremely unlikely that any 

particular specification will represent exactly the phenomenon under investigation. 

In the former, data are not taken from well designed experiments or surveys having 

a specific underlying frame work. In such cases data analysis cannot confine itself 

to a prescribed model and hence cannot be unique. We have to examine and 

discuss more or less the adequacy of any proposed framework before we build 

statistical theories on it. The main difficulty faced  by the statistician in analyzing 

data collected from operational studies is that he has first to evolve a model from 

the data, test its adequacy on it or a similar data and then to make final inferences. 

Thus the inferences drawn are always conditional. The decision to use conditional 

or unconditional inference has to be made by the experimenter (researcher) before 

the experiment and may be based on his prior knowledge obtained from his own 

experience and / or of other workers in that field. If the decision is to use 

unconditional inference, then available inference procedures (Classical or 

Bayesian) may be used. However, if the decision is to use conditional inference; 
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then the research worker has to base his inferences on the specification evolved 

through the data and then to go for final inference. 

 Examples and need of such inference procedures are abound. They occur in 

econometrics, regression analysis, ANOVA models, outliers, and other branches of 

statistics. In all these cases, uncertainties exist and one has to resolve them before 

making final inferences; hence they were given the name testi-testing, testi-mating 

and testi-predicting by Bancroft (1975). For testimating a new name „testimator‟ 

has been proposed by Sclove, Morris and Radhakrishnan (1972). In all such cases, 

where we use conditional inference it is important that the effect of preliminary 

test(s) on subsequent inference should always be taken into account. This aspect 

was often neglected by applied statisticians. 

 Suppose we are interested in the estimation of 𝜃 in f(x ; 𝜃) when a random 

sample of size n say ( nxxx .......,, 21 ) is available, f is completely known say for 𝜃 and 

in addition either a guess of 𝜃 say 𝜃0  or an interval   𝜃1, 𝜃2  both known, is given 

in which 𝜃 is assumed to lie. This priori information is sometimes available from 

past experience or similar studies and we are interested in estimators of 𝜃 which 

behave nicely in the neighbourhood of 𝜃0  (or in an interval). However, we do not 

assume any distribution of 𝜃 but wish to utilize the information about 𝜃. 

CLASSICAL INFERENCE  

In this type of inference the data are assumed to be repeated values on random 

variables which, we postulated to follow a joint probability distribution p 

belonging to some known class P. Frequently, the distributions are indexed by a 

parameter   (say) taking values in a set  , so that  }/{  PP . The aim of 

statistical analysis is to specify a plausible value of   in terms of a statistic 

),.......,( 1 nxxtt 
 where t is supposed to be measurable. But there is no unique 
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method for the specification of  t, though various methods for choosing  t  have 

been proposed in the literature. This is the problem of point estimation of   as 

enunciated by Fisher  about 1920s.  If  instead of giving a single value of  „t‟ as, an 

estimate  of  , we determine a set of values for which we can plausibly assert that 

it does or does not contain   , we call this estimation by confidence sets or 

hypothesis testing.  It was fist formulated by Jerzy Neyman in his 1937 paper and 

later developed by Wolfwitz, Stein, Hodges, Guttman and others.  It was remarked 

by them that in some sense estimation by confidence sets or methods may be more 

meaningful.  

 In contrast to point estimation in which we try to find out a plausible value 

of the parameter on the basis of the information provided by the sample 

observations, in statistical hypothesis testing we are to choose between two 

possible actions regarding the hypothesized value(s) of the parameter. i.e., to 

decide that the distribution is a particular member of a family which is known 

except for the parameters. In the context of testing of hypothesis these two actions 

are called acceptance or rejection of the hypothesis. 

1.2 BAYESIAN INFERENCE 

 

In Bayesian approach the parameter is assumed to be random variable with 

an a priori density function, this distribution expresses the state of knowledge or 

ignorance about   before  the sample data are analyzed. Given the probability 

model, the prior distribution and the data set ( nxxx .......,, 21 ), Bayes theorem is used 

to calculate the posterior probability density function  DP /  of  , where D 

denotes the prior and sample information and on the basis of posterior distribution 

inferences about   are drawn. Thus the Bayesian method of reasoning seems rather 

deductive. 
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Bayesian inference is an especially important consideration in those areas of 

application where the sample data may be either expensive or difficult to obtain, 

such as reliability and life testing experiments. 

PRIOR DISTRIBUTION : 

The prior distribution g(𝜃) on the parameter space  𝝮  is specified before 

data became available and is modified using the data to determine a posterior 

distribution, which is the conditional distribution of 𝜃 given the observations say

nxx ,.......,1 . The other difficulties in Bayesian analysis are :(i) There is no 

convincing definition of optimality, (ii) The optimal procedure depend heavily oon 

the assumed nature of probability model. 

Some other concepts used in Bayesian analysis stem from decision theory 

such as risk, Bayes risk, Minimax and Bayes rules etc. Since the Bayes risk of a 

decision rule depends on the choice of the prior distribution and is a real number, it 

is possible to order. The optimal choice then would be the one which minimizes 

the Bayes risk. How does one select a known density g(𝜃) to express uncertainty 

about 𝜃, is a problem which remains open and controversial? In many practical 

situations the statistician will possess some subjective apriori information 

concerning possible values of 𝜃. This information may often be summarized and 

made objective by the choice of a suitable prior distribution on the parameter 

space. It is perhaps the most difficult task in Bayesian analysis. Although a few 

guidelines have been given regarding the choice of a prior distribution; yet none 

seems satisfactory. Summarizing about the Bayes rules we may say that we are 

interested in them because of (i) they are admissible and (ii) form complete class. 

In Bayesian set-up the experimenter expresses his belief about the parameter 

by prior distribution and his misjudgment by a loss function. 
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Bayesian methods are now becoming widely accepted as a way to solve 

applied statistical problems in industries and government. Research groups in 

various disciplines like econometrics, education, law, archaeology, engineering, 

medical and life sciences are using Bayesian inferential methods to obtain 

optimum solutions to their problems. 

 

DIFFERENCE BETWEEN CLASSICAL AND BAYESIAN INFERENCE 

In simple language, the main difference between Bayesians and classical statistics 

is that the Bayesians treat the state of nature (e.g., the value of a parameter) as a 

random variable, whereas the classical way of looking at is that it‟s a fixed but 

unknown value, and that putting a probability distribution on it does not make 

sense. 

Bayesian methods provide alternatives that allow one to combine prior information 

about a population parameter with information contained in a sample to guide the 

statistical inference process. 

The classical estimation method originally proposed by Hamilton involves a two 

step procedure in which model parameters are estimated first (usually by maximum 

likelihood estimation), and inference on hidden states is subsequently drawn 

holding these parameter estimates fixed. 

Advances in computational capacity have more recently spurred a number of 

papers employing alternative, Bayesian estimation methods based on Monte-Carlo 

techniques. In contrast to classical methods these methods permit simultaneous 

inference on both the model parameters and hidden states. 
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1.3 VARIOUS TYPES OF LOSS FUNCTIONS 

Any decision-making situation consists a non-empty set Θ of possible states 

of nature, sometimes referred to as the parameter space and a non-empty set A of 

actions available to decision maker. Under these two situations, nature chooses a 

point 𝜃 in Θ and the decision maker without being informed of the choice of 

nature, chooses an action d in A. As a consequence, there may incur some loss 

which will depend on d and 𝜃. Thus, loss is a function of 𝜃 and d defined the 

product space Θ x A say L(𝜃,d).  The function L(.,.) is known as the loss function. 

In point estimation problems, the action space consists of the set of all 

possible values of 𝜃. Thus, it may be the whole parameter space or a subset of it. 

To ease the problem a sampling experiment is often conducted to collect the data. 

The data is considered to be an observation of the random variable x which is 

assumed to have a probability distribution f(x/𝜃), when the true state of nature is 𝜃. 

The decision maker chooses an estimate/ class of estimates 𝜃  as the value of the 

function of the random variable x say T(x) for the given observed value x i.e. 

𝜃 = 𝑇 𝑥 . The function T(.) is called the estimator and its value T(x) when x is 

observed is the estimate for 𝜃. Naturally, the loss L(𝜃,d) now reduces to L(𝜃,T(x)) 

which is a random variable and depends on the sample outcome. 

The basic problem of decision theory is  : Given a loss function L(𝜃,d), a 

decision d and the risk R(𝜃,d) which criterion should one choose for adopting d?  

The ideal solution would be to choose a d for which R(𝜃,d) is minimum for all 𝜃. 

Unfortunately, this is not possible.  The decision theory as formulated and 

developed by Wald in a series of paper beginning in 1939 was an attempt to unify 

the statistical theories of estimation and testing of hypothesis which become 

especial cases now. 
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For point estimation a number by loss functions are available in the 

literature. These can be broadly classified into two groups, viz. symmetric and 

asymmetric. More generally we may have the idea of General Entropy Loss 

functions which includes Asymmetric Loss Function(ASL). Both types of loss 

functions have extensively been used in estimation problems. Among various 

symmetric loss functions (Berger (1985), Martz & Waller (1982)), the quadratic 

loss function or the squared error loss function (SELF) is very popular and widely 

used in Bayesian analysis. The main reason behind its popularity is that, it was 

used in estimation problems when unbiased estimators of parameter 𝜃 were being 

considered. A second reason is its relationship with classical least square theory. 

Finally the use of  „SELF‟ makes the calculation relatively straight forward and 

simple (mean of the posterior distribution).  A number of situations may arise in 

practice where „SELF‟ may be appropriately used, especially when under 

estimation and over estimation are of equal importance. 

Inspite of above mentioned justifications for „SELF‟ there may be practical 

situations when the real loss function may not be symmetric i.e. overestimation and 

underestimation are not equally penalized. Situations may exist when the 

overestimation may lead to more serious consequences than the underestimation or 

vice-versa. 

For example suppose that a producer produces some electronic device, wants 

to estimate the failure rate of his products. If his estimate is larger than the real 

value, he will have to incur additional resources to improve the technology to 

increase the reliability of his products. On the other hand if he underestimates the 

real value, he may lose customers and his market share may decrease because the 

real reliability of his products will now be less than the value he offers. In extreme 

cases, underestimating the failure rate may even cause the ruin. Hence, 



22 
 

underestimation of the failure rate will lead to worse consequences than 

overestimation. Similarly, overestimation (space shuttle challenger case  Ref: Basu 

and Ebrahimi (1991) ) may lead to worse consequences than underestimation. Due 

to these reasons and others, Berger (1985) points out that justification for „SELF‟ 

has a little merit.  In order to bring the statistical model nearer to practical 

situations, the use of asymmetric loss functions and General Entropy Loss 

Functions (GELF) is suggested. Varian (1975) in his applied study to real estate 

assessment introduced an Asymmetric Loss Function called LINEX (Linear 

Exponential), which rises approximately exponentially on one side of zero and 

approximately linearly on the other side of zero. This loss function was extensively 

used by Zellner (1986) in estimation of scalar parameter and prediction of a scalar 

random variable in Gaussian (normal) model. Use of LINEX function has been 

justified by Lindley (1968), Zellner and Geisel (1968), Canfield (1970), Smith 

(1980), Schabe (1986), Basu and Ebrahimi (1991), Pandey and Rai (1992), 

Srivastava & Rao (1992), Srivastava (1996), Srivastava and Kapasi (1999), 

Srivastava and Tank (2001), Srivastava and Tanna (2001) and others. 

1.4 ASYMMETRIC LOSS FUNCTIONS  

Various loss functions have been considered under the category of 

Asymmetric loss functions and some of them are described as below. 

LINEX LOSS FUNCTION 

The Linex loss function is an Asymmetric Loss Function, which was introduced by 

Klebanov (1972) and used by Varian (1975) in the context of real estate 

assessment. Zellner (1986) used it for estimation of a scalar parameter and 

prediction of a scalar random variable. Both Zellner (1986) and Varian (1975) have 
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discussed its behaviour and various applications. The linex loss function is defined 

as  1)ˆ())ˆ((exp),(   aaaL  , a ≠ 0 

For small values of a , 

2
2

)ˆ(
2

),(  
a

aL  

Thus, Linex is almost symmetric and not too different from a Squared Error Loss 

Function (SELF) and, therefore, Bayes estimates and predictions, based on linex 

loss, are quite near to those obtained from SELF. 

MODIFIED LINEX LOSS FUNCTION 

According to Basu and Ebrahimi (1991), when the parameter 𝜃 is a scale 

parameter, we may take 1)ˆ(   , where 𝜃  is an estimate of 𝜃. They define 

modified linex loss function as 

 L(∆) = b[ e
a∆ 

- a∆ - 1], b > 0, a ≠ 0   Where 













 1

ˆ




                  ______(1.4.1)             

The sign and magnitude of „a‟ represents the direction and degree of asymmetry 

respectively. The positive value of „a‟ is used when overestimation is more serious 

than under estimation, while a negative value of „a‟ is used in reverse situations. 

L(∆) rises exponentially when ∆ < 0 and almost linearly when ∆ > 0. The loss 

function defined by (1.4.1) is known as the LINEX loss function. „b‟ is the factor 

of proportionality. 

 

GENERAL ENTROPY LOSS FUNCTION 

Calabria and Pulcini (1996) defined generalized entropy loss function as  
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                       ______(1.4.2) 

as a valid alternative to the modified linex loss. 

This loss is a generalization of the entropy loss used by several authors (for 

example, Dey and Liu, 1992; Dey et al., 1987) where the shape parameter „p‟ is 

equal to unity (1).  The more general version of (1.4.2) allows different shapes of 

the loss function to be considered when  p > 0, a positive error   ˆ  causes more 

serious error than a negative error and when p < 0, a negative error   ˆ  causes 

more serious error than the positive error). 

 In particular, for p = 1, we have entropy loss function given by 

 












 1

ˆ
ln

ˆ
)ˆ,(








 bL   

However, if  ,0
ˆ







 we have .1

ˆ

2

1
)ˆ,(

2



















L  which resembles SELF. 

 

1.5 BAYESIAN POINT ESTIMATION 

 In Bayesian estimation, statistical inference is made when we are given a 

model, a distribution of parameters and a loss function associated with the 

decision, we make for the parameter under this setup and experimenter expresses 

his belief about the real situation via a prior distribution and the misjudgment by 

loss function. Before collecting the sample data, the experimenter specifies a prior 

distribution say g(𝜃) which reflects his knowledge or ignorance about the 

parameter on the basis of the sample data. The experimenter specifies the loss 

function say L(x/𝜃). The prior information g(𝜃) with sample information L(x/𝜃) is 

then combined by Bayes theorem to get the posterior distribution P(𝜃/x) as: 
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𝑃(𝜃 𝑥) =  
𝐿 𝑥 𝜃  𝑔(𝜃)

 𝐿 𝑥 𝜃  𝑔 𝜃 𝑑𝜃  
                                                                                ________(1.5.1)                                                                

Where  integration is taken over the whole parameter space. This posterior 

distribution P(𝜃/x) is thus, an inferential statement in the Bayesian view point. 

Consider that we wish to obtain a point estimate for 𝜃 under some specified loss 

function 𝐿 𝜃, 𝜃    where 𝜃  is the estimate of 𝜃. In Bayesian approach an estimate 𝜃  

is selected such that it minimizes the posterior risk, which is the average loss for 

the specified prior distribution P(𝜃/x). Under different loss functions different 

Bayes estimaters may be obtained for the same prior distribution. 

ESTIMATION UNDER SQUARED ERROR LOSS FUNCTION 

 A loss function which is often used for point estimation problem is the 

Squared Error Loss Function. 

𝐿 𝜃, 𝜃  =  ∆2                                                                                        ______(1.5.2) 

Where ∆ =  𝜃 − 𝜃   and may be considered as error due to estimation. 

The Bayes estimator under the loss (1.5.2) is the value which minimizes. 

𝐸 𝐿(𝜃, 𝜃 )/𝑥  =    𝜃 − 𝜃 
2

 𝑃 𝜃 𝑥    𝑑𝜃                                                                   _____(1.5.3) 

Obviously, 𝜃 =  𝜃 𝑠 = 𝐸 𝜃 𝑥  =   𝜃 𝑃 𝜃 𝑥    𝑑𝜃                                _____(1.5.4) 

Minimizes (1.5.4) and thus posterior mean is the Bayes estimator. 

ESTIMATION UNDER LINEX LOSS FUNCTION 

The LINEX loss function suggested by Varian (1975) is  

𝐿 𝜃, 𝜃  =  𝑏 𝑒𝑎∆ −  𝑐∆ − 𝑏   ;   𝑎, 𝑐 ≠ 0, 𝑏 > 0                                           ______(1.5.5)   
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Since, the loss function should be such that it has a minimum value viz. zero at 

𝜃 =  𝜃  we must have ab = c 

Therefore (1.5.5) reduces to  

𝐿 𝜃, 𝜃  =  𝑏  𝑒𝑎∆ −  𝑎∆ − 1    ;   𝑎 ≠ 0, 𝑏 > 0                                           ______(1.5.6)   

LINEX loss has two constants, 𝑎 and b which give the freedom to tailor the loss 

according to our needs by choosing them appropriately. The function for various 

choices has been shown graphically by Zellner (1986). Thus, LINEX loss could be 

used in situation where loss function is asymmetric. 

While estimating 𝜃 by 𝜃 , and denoting 𝐸𝑃𝑂𝑆𝑇   as the posterior expectation we have:  

𝐿 ∆ =  𝑏  𝑒𝑎 𝜃
 −𝜃 −  𝑎 𝜃 − 𝜃 − 1    ;     𝑤𝑕𝑒𝑟𝑒   ∆ =  𝜃 − 𝜃  

𝐸𝑃𝑂𝑆𝑇  𝐿 ∆ =  𝑏   𝐸𝑃𝑂𝑆𝑇  𝑒𝑎 𝜃
 −𝜃 −  𝑎 𝐸𝑃𝑂𝑆𝑇  𝜃 − 𝜃 − 1  

𝑑𝐸𝑃𝑂𝑆𝑇
𝑑𝜃

=  𝑏   𝐸𝑃𝑂𝑆𝑇 𝑒𝑎 𝜃
 −𝜃 −  𝑎 𝐸𝑃𝑂𝑆𝑇 1 −0 = 0  

⟹ 𝐸𝑃𝑂𝑆𝑇  𝑒𝑎 𝜃
 −𝜃 = 1 

i.e.  𝜃 =  −
1

𝑎
 𝑙𝑜𝑔 𝐸𝑃𝑂𝑆𝑇  (𝑒−𝑎𝜃 ) 

Provided  𝐸𝑃𝑂𝑆𝑇  (𝑒−𝑎𝜃 ) exist and is finite. 

Thus, we see that Bayes estimator which is the mean of posterior probability 

distribution function under „SELF‟, is proportional to the Moment Generating 

Function of posterior probability distribution function under LINEX loss. 

Basu and Ebrahimi (1991) modified the loss function for estimating a scale 

parameter i.e. they defined Δ as: 
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∆ =   
𝜃 

𝜃
−  1  then 

𝐿 ∆ =  𝑏  𝑒
𝑎 

𝜃 

𝜃
− 1 

−  𝑎  
𝜃 

𝜃
−  1 − 1    

𝑡𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒  
𝑑 𝐸𝑃𝑂𝑆𝑇𝐿(∆)

𝑑𝜃
= 0 

 ⇒  𝐸𝑃𝑂𝑆𝑇  
1

𝜃
 𝑒
𝑎 

𝜃 𝐵
𝜃
− 1 

 =  𝑒𝑎𝐸𝑃𝑂𝑆𝑇  
1

𝜃
  , solving this we get 𝜃 𝐵 , the 

estimator under L(Δ). 

ESTIMATION UNDER GENERAL ENTROPY LOSS FUNCTION 

A suitable alternative to modified LINEX loss is the General Entropy Loss 

(GEL) proposed by Calabria and Pulcini (1996) given by: 

    1ˆlnˆ),ˆ(   pL
p

E                                                         

Whose minimum occurs at 𝜃 =  𝜃. 

 If we are considering prior distributions, then the Bayes estimate of   under 

GELF is in a closed form and is given by     pp xE
1

ˆ


    provided that  pE   

exists and is finite.   

 When p = 1, the Bayes estimate (4.1.1.2) coincides with the Bayes estimate 

under the weighted squared error loss function   
2

ˆ , used by Varde (1969) 

for deriving Bayes estimate of R(t). 

 When p = -1, the Bayes estimate (4.1.1.2) coincides with the Bayes estimate 

under the squared error loss function. 
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The  Bayes estimator of  𝜃  under entropy  loss function is obtained  by putting  

p = 1 in    pp xE
1

ˆ


  which is the posterior harmonic mean. 

For the negative values of  p, i.e., p = - u (say), the form of the generalized 

entropy loss function reduces to  1
ˆ

ln
ˆ

)ˆ,( 
















 uL

u

.  

In particular for  u = 1, 1
ˆ

ln
ˆ

)ˆ,( 







L . In this case the Bayes estimator  

works out to be posterior arithmetic mean.                                                                  

PROBLEM OF TESTIMATION 

 Any given real life situation can be modeled via some probability 

distribution having some known mathematical form except for the constants 

(parameters) involved in it. Almost every parameter has its own physical 

interpretation in terms of real life situation. 

 The efforts are to estimate these parameter(s) in the best possible manner so 

as to provide „best‟ estimator(s). Sometimes we might have „additional‟ 

information about the parameter of interest which could be utilized to hopefully 

improve the estimator.  Such type of  informations are common in Bio-statistics 

and health statistics. For example we might know due to past studies that the 

hemoglobin level of school going girls is 𝜃0  and we wish to use this information 

for the estimation of the hemoglobin level for some population of school going 

girls. We might take this information as such and use it in while proposing an 

estimator for 𝜃 (say the hemoglobin level of entire population under study) or this 

available information might be tested (verified) using a test of significance and the 

given information is incorporated on the basis of outcome of this test. 
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TESTIMATION PROCEDURE: 

Suppose that we have the guess information: in the form of a point 𝜃0 or an 

interval (𝜃1, 𝜃2) and the sample information ( nxxx .......,, 21 ) then obtain: (i) The 

„best‟ estimator of 𝜃 using ( nxxx .......,, 21 ) by Maximum Likelihood Estimator or 

some other suitable method of estimation (ii) Test H0 :  𝜃 = 𝜃0 against a suitable 

alternative (one tailed or two tailed, mostly two tailed), if  H0  is  accepted utilize 

this information, otherwise ignore it. Thus, we combine testing procedure with the 

estimation procedure and in the literature such procedure has been termed as 

„TESTIMATION‟. 

1.6 REVIEW OF LITERATURE 

In this section a review of the literature related to the problems under study 

in the area of inferences based on Asymmetric Loss Function and those utilizing 

guess information has been made. 

Bancroft (1944) was the first statistician to consider the impact of 

preliminary test of significance on subsequent problem of estimation. 

Thompson (1968) was the first to introduce the idea of shrinkage technique 

using point as well as interval guess. Canfield (1970) introduced the idea of 

Asymmetric Loss Functions. 

Several authors have proposed estimator(s), weighted estimator(s), shrinkage 

testimators for the scale parameter of single parameter Exponential distribution. 

Pandey and Srivastava (1987) among others, proposed some improved shrinkage 

testimators, where the arbitrariness in the choice of shrinkage factor was removed. 
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Earlier studies were confined to the use of symmetric loss functions (mostly 

„SELF‟) but later on in several studies the superiority of Asymmetric Loss 

Functions was established, like Zellner (1986), Basu and Ebrahimi (1991), 

Calabria and Pulcini (1994, 1996) among others.. 

Srivastava and kapasi (1999) have proposed Conditional – Guess 

testimator(s) for the mean life in single parameter & two parameter exponential  

distribution.  Srivastava and Tank (2003) have proposed sometimes pool estimator 

for Exponential distribution. Properties of these estimators have been studied under 

asymmetric loss function. 

 Pandey and Srivastava (1987), Pandey and Singh (2007) have proposed 

shrinkage testimator(s) for the variance of Normal distribution and have studied the 

properties of these using „SELF‟ and asymmetric loss function (ASL).   

Katti (1962), Shah(1975), Arnold and Al-Bayatti (1970), Waiker et al. 

(1989) have  proposed double stage shrinkage testimator of the mean for an 

Exponential distribution and the variance of Normal distribution. 

Srivastava and Tanna (2007 & 2012) have  proposed double stage shrinkage 

testimator for the mean life of an Exponential distribution under „General Entropy 

Loss Function‟ and under asymmetric loss function. 

Pandey and Singh (1984) considered estimating shape parameter of Weibull 

distribution by shrinkage towards an interval.  Pandey, Srivastava and Malik 

(1989) studied some shrinkage testimators for the shape parameter of Weibull 

distribution.  
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1.7 AN OUTLINE OF PROBLEMS UNDER INVESTIGATION 

In the present thesis, an attempt has been made to study the properties of 

various parameters of Exponential distribution, Normal distribution and Weibull 

distribution using various asymmetric loss functions and we have proposed some 

improved estimator(s) for various parameter(s) for different probability 

distributions in terms of reduced risk(s). 

CHAPTER – I    

Chapter - I is introductory, and it covers the basic idea of Classical and Bayesian 

Inference procedures. It also provides a brief review of literature. In the same 

chapter Bayesian estimation procedures under various loss functions have been 

discussed. 

CHAPTER – II 

Chapter - II deals with the problems of one sample shrinkage testimators of 

Exponential Distribution and Normal Distribution under Asymmetric Loss 

Function. The Exponential distribution has a variety of statistical applications in 

life testing and reliability and other fields. Normal distribution occupies a very 

important place in Statistical studies. Vaious testimators for different parameters of 

both the distributions have been proposed and their risk properties have been 

studied.  

Several authors have proposed estimator(s), weighted estimator(s), shrinkage 

testimators for the scale parameter of single parameter Exponential distribution. 

Pandey and Srivastava (1987) among others, proposed some improved shrinkage 

testimators, where the arbitrariness in the choice of shrinkage factor was removed. 
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Srivastava and kapasi (1999) proposed Conditional – Guess testimator(s) for the 

same distribution. Srivastava and Tank (2003) proposed sometimes pool estimator 

for Exponential distribution under asymmetric loss function. 

In this chapter, we have proposed single stage shrinkage testimator(s) for the scale 

parameter of Exponential distribution for several choices of the shrinkage factors 

and the properties of these have been studied using asymmetric loss functions. 

Pandey and Srivastava (1987), Pandey and Singh (2007) have proposed shrinkage 

testimator(s) for the variance of Normal distribution and have studied the 

properties of these using „SELF‟ and asymmetric loss function (ASL).  In this 

chapter, we have proposed several estimators for the variance of Normal 

distribution for different choices of shrinkage factors, and the properties of these 

have been studied using asymmetric loss function.  It has been found that the 

proposed testimators dominate the usual estimator(s) in terms of reduced risk.  

Further the use of asymmetric loss function facilitates to provide better control 

over the „risk‟ of the proposed testimators by choosing the degree of asymmetry 

and level of significance carefully. Recommendations regarding these two have 

been attempted. 

,, 

CHAPTER - III 

Chapter - III deals with the problems of double stage shrinkage testimators of 

Exponential Distribution and Normal Distribution under Asymmetric Loss 

Function.  

The first stage sample is used to test  H0 ∶  𝜃 = 𝜃0  and if H0 is not rejected, it is 

suggested to use the prior knowledge being supported by a test, in estimating 𝜃. 
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However, if H0 is rejected, then take n2 = (n – n1)  additional observations 

𝑥21 , 𝑥22 , … . 𝑥2𝑛2
 and use the pooled estimator i.e. we do not use the prior 

knowledge and obtain a second sample to make up for the loss of the prior 

knowledge and estimate 𝜃 using both the samples.  

Such techniques were presented by Katti (1962), Shah (1975), Arnold and Al-

Bayatti (1970), Waiker et al. (1989).  We have proposed „Double stage shrinkage 

testimators‟ for the scale parameter of an Exponential distribution and the variance 

of Normal distribution. Properties of these proposed testimator(s) have been 

studied under asymmetric loss function and attempts have been made regarding the 

use of such procedures. 

It has been observed that General Entopy Loss Function has appeared as a valid 

alternative to Modified LINEX loss function, so it is of interest to study the risk 

properties of various testimators using General Entropy Loss Function (GELF).  

In particular not many attempts have been made to study shrinkage 

testimators under GELF with this motivation the next chapters of the present 

work have been devoted to such study.   

 

CHAPTER - IV 

Chapter – IV has been devoted to the study of risk properties of single stage 

shrinkage testimators for various parameters of interest in Exponential and Normal 

distribution under „General Entropy Loss Function‟.  The risk properties of these 

have been studied and recommendations regarding the degrees of asymmetry and 

level of significance have been made. 
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CHAPTER - V  

In the Chapter – V, we have extended the work done by Srivastava and Tanna 

(2007 & 2012) they have proposed double stage shrinkage testimator for the mean 

life of an Exponential distribution under „General Entropy Loss Function‟. Some 

new estimators have been proposed by removing the arbitrariness in the choice of 

shrinkage factors and „Double stage shrinkage testimators‟ have been proposed for 

Exponential and Normal distributions for their mean life and variance respectively.  

Properties of these testimator(s) have been studied using „General Entropy Loss 

Function‟ and recommendations for sample sizes, level(s) of significance and 

degrees of asymmetry have been made. 

 

CHAPTER – VI 

Pandey and Singh (1984) considered estimating shape parameter of Weibull 

distribution by shrinkage towards an interval.  Pandey, Srivastava and Malik 

(1989) studied some shrinkage testimators for the shape parameter of Weibull 

distribution.  

In this chapter, we have proposed some improved shrinkage estimators for the 

shape parameter of the Weibull distribution when it is known apriori that β (shape 

parameter) lies in the interval (β1, β2). We have studied the properties of this 

estimator using asymmetric loss function and it has been found that it is preferable 

to the other estimators, in terms of having smaller risk. 
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Chapter – 2 

 

ONE SAMPLE SHRINKAGE TESTIMATORS UNDER ASYMMETRIC 

LOSS FUNCTION 

 

2.1 Introduction  

 The present chapter deals with one sample shrinkage testimators under 

Asymmetric Loss Function (ASL) for single parameter Exponential distribution 

and Normal distribution. 

2.1.1 Exponential  Distribution 

 Exponential distribution plays an important part in life testing problems.  For 

a situation where the failure rate appears to be more or less constant, the 

Exponential distribution would be an adequate choice. 

 Exponential distribution also occurs in several other contexts, such as the 

waiting time problems. Maguire, Pearson and Wynn (1952) studied mine accidents 

and showed that time intervals between accidents follow Exponential distribution. 

 Exponential is a very interesting continuous type distribution due to its being 

endowed with the Markovian character of having „complete lack of memory‟. Its 

importance is stressed by Epstein (1961) by saying that the Exponential 

distribution occupies as commanding   a   position in life-testing, fatigue testing 

and other types of destructive test situations as does the Normal distribution in 

other areas of statistics. It may be defined as a special case of Gamma or Weibull 

distribution.   Situations such as sampling from the Income-distribution, waiting 

time for telephonic conversation or waiting time for scooter services etc. can also 

be modeled by Exponential distribution. 
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 In the estimation of reliability function use of symmetric loss function may 

be in appropriate as has been recognized by Canfiled (1970). Overestimate of 

reliability function or average failure time is usually much more serious than 

underestimate of reliability function or mean failure time. Also, an underestimate 

of the failure rate results in more serious consequences than an overestimate of the 

failure rate.  For example, in the recent disaster of the space shuttle (Ref: Basu and 

Ebrahimi (1991)) the management underestimated the failure rate and therefore 

overestimated the reliability of  solid-fuel rocket booster. 

2.1.2 Normal  Distribution 

The Normal (or Gaussian) distribution is often used as a first approximation 

to describe real-valued random variables that tend to cluster around a single mean 

value. Normal distribution is commonly encountered in practice, and is used 

throughout statistics, natural sciences as a simple model for complex phenomenon.  

The Normal distribution plays an important role in both the application and 

inferential statistics. In modeling applications, the normal curve is an excellent 

approximation to the frequency distributions of observations taken on a variety of 

variables and as a limiting form of various other distributions. Many psychological 

measurements and physical phenomena can be approximated well by the Normal 

distribution. In addition, there are many applications of the Normal distribution in 

engineering. One application deals with analysis of items which exhibit failure due 

to wear, such as mechanical devices. Other applications are, the analysis of the 

variation of component dimensions in manufacturing, modeling global irradiation 

data, and the intensity of laser light, and so on. Indeed the wide application and 

occurrence of the Normal distribution in life testing and reliability problems are a 

wonder. In the context of reliability problems and life testing, a number of failure 
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time data have been examined and it was shown that the Normal distribution give 

quite a good fit for the most cases. 

 In the estimation of a parameter sometimes there exists in certain situations  

some prior information about the parameter which one would like to utilize in 

order to get a better estimator (say in the sense of efficiency). This prior 

information could be either in the form of an initial guessed value or an interval in 

which the parameter lies (Thompson 1968 a, b) or a relation between the parameter 

e.g.  Coefficient of Variation, Kurtosis (Khan 1968, Searles 1964).  In all these 

cases no apriori distribution of the parameter is assumed. 

 According to Thomson sometimes there is a natural origin say 𝜃0 of the 

parameter 𝜃  and one would like the MVUE  𝜃   of the parameter 𝜃 to move it close 

to  𝜃0.  This leads to shrinkage estimator of  𝜃 which performs better (in the sense 

of smaller mean square error) than 𝜃  in the neighbourhood of  𝜃0. Searles (1974), 

Pandey and Singh (1977) and others have proposed such estimators utilizing guess 

value(s) of the parameter coupled with sample observations. In proposing 

shrinkage estimators the available prior information is always used along with the 

sample observations.  However, if we do not want to use it, indiscriminately, we 

may decide to use it or not on the evidence of a test of significance.  This gives us 

what is known a preliminary test estimator, pre-test estimator or a testimator. The 

pre-test estimator or a testimator has two components viz. : (i) when the outcome 

of the test of significance results in acceptance of the hypothesis H0 :  𝜃 = 𝜃0, then 

we use  𝜃0  along with sample observations which leads to a shrinkage testimator 

and (ii) the minimum variance unbiased estimator or the minimum mean square 

error estimator, when the hypothesis is rejected.  

Mathematically, a Testimator of the parameter 𝜃 is defined as follows 
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𝜃 𝑆𝑇 =  
𝑘𝜃0 +   1 − 𝑘 𝜃    𝑜𝑟   𝜃 𝑠 ,   𝑖𝑓 𝐻0  𝑖𝑠  𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

 
𝜃                                                       ,   𝑖𝑓 𝐻0  𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

                      _____(2.1.1) 

𝜃 𝑆𝑇   is the shrinkage estimator of 𝜃 with shrinkage factor k (0 ≤ k ≤ 1)  and  𝜃  is 

the best estimator of  𝜃.   

 In the present chapter we have considered shrinkage testimators for (i) Scale 

parameter of an Exponential distribution, (ii) variance of a Normal distribution, 

and studied their risk properties. In all these cases it has been assumed that we are 

given an initial estimate (or guess) of the parameter and a single random sample of 

size n from the underlying populations. The salient feature of the proposed 

testimators is that the arbitrariness in the choice of the shrinkage factors has been 

removed by making it dependent on the test statistics.  

In section 2.2 we have proposed four different testimators for the parameter  

𝜃 (mean life time) of the Exponential distribution and we have studied the risk 

properties of all the four shrinkage testimators under Asymmetric Loss Function. 

Section 2.3 deals with the derivation of the risk(s) of these four estimators.  Section 

2.4 deals with the relative risk(s) of these four estimators.  Section  2.5 concludes 

with the comparison of UMVUE and the proposed shrinkage testimators in terms 

of  their relative risks.  Suggestions for the choice of shrinkage factor, level of 

significance and degrees of asymmetry have been made. 

In section 2.6 we have proposed the two different shrinkage testimators for  

the  variance  of  a  Normal  distribution and we have studied the risk properties of  

these two shrinkage testimators under Asymmetric Loss Function.  Section 2.7 

deals with the derivation of the risk(s) of these two estimators.  Section 2.8 deals 

with the relative risk(s) of these two estimators. Section 2.9 concludes with the 

comparison of  UMVUE  and the proposed shrinkage testimatiors in terms of their 
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relative risks.  Further in the same section a suggestion for the choice of shrinkage 

factor, level of significance, degrees of asymmetry have been made. 

ASYMMETRIC  LOSS  FUNCTIONS  

The loss function L(𝜃 , 𝜃) provides a measure of financial consequences arising 

from a wrong estimate of the unknown quantity 𝜃. As in many real life situations, 

particularly in insurance claims, estimating any health statistics parameter the over-

estimation and under-estimation are having different impacts. So giving „equal‟ 

importance to these as the squared error loss function (SELF) does, may not be 

appropriate. Several authors such as canfield (1970), zellner (1986), Basu and 

Ebrahimi (1991), Srivastava (1996), Srivastava and Tanna (2001), Srivstava and 

Shah (2010) and others have demonstrated the superiority of the Asymmetric Loss 

Functions, over squared error loss functions in several contexts. 

A useful Asymmetric Loss Function known as LINEX loss function was 

introduced by Varian (1975), extended by Zellner (1986) is given by  

L(Δ) = b 𝑒𝑎∆ − 𝑎∆ − 1   , 𝑎 ≠ 0, 𝑏 > 0  where ∆ =   
𝜃 

𝜃
− 1         ___(2.1.2) 

The sign and magnitude of „a‟ represents the direction and degree of asymmetry 

respectively. Positive values of „a‟ are suggested for situations where 

overestimation is more serious than the under estimation, while negative values of 

„a‟ are recommended in reverse situations. „b‟ is constant of proportionality. L(Δ) 

rises exponentially when Δ < 0 and almost linearly when Δ > 0. Hence, the loss 

function defined by (2.1.2) is known as LINEAR EXPONENTIAL (LINEX) loss 

function. „b‟ is the factor of proportionality. 
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2.2  Shrinkage Testimator(s) for Scale Parameter of an Exponential 

Distribution. 

Let  X: ( nxxx .......,, 21 ) have the distribution 

𝑓 𝑥; 𝜃  =    
1

𝜃
 exp −𝑥 𝜃  ,     x ≥ 0,   θ > 0

0                  ,     𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 ,                                     _____(2.2.1) 

It is assumed that the prior knowledge about 𝜃 is available in the form of an initial 

estimate  𝜃0.   We are interested in considering an estimator of 𝜃 possibly using the 

information about 𝜃 and the sample observations  nxxx .......,, 21   from (2.2.1).  We 

then propose a testimator of  𝜃  which can be described as follows:  

1. Compute the sample mean  



n

i

ix
n

x
1

1
, which is the best estimator of  𝜃 in 

the absence of any information about 𝜃. Actually it is UMVUE. 

2. Test the hypothesis  H0 :  𝜃 =  𝜃0  against the two sided alternative              

H1 :  𝜃 ≠ 𝜃0 at level α using the test statistic 
0

2


xn
 which follows χ

2 
– 

distribution  with  2n degrees of freedom. 

3. If  H0  is accepted, i.e., 
2

2
22

1 0
   xn

 , where  1
2
  and  2

2
  are the lower 

and upper points of  χ
2 

– distribution  with  2n degrees of freedom at a given 

level of significance, use the conventional shrinkage estimator 𝜃 𝑆𝑇  with 

shrinkage factor  k ; otherwise,  ignore  θ0  and  use x , when the hypothesis 

H0  is rejected. 

The shrinkage testimator 𝜃 𝑆𝑇1  of   𝜃 is  defined as: 

𝜃 𝑆𝑇1 =  
𝑘𝑥 +   1 − 𝑘 𝜃0    ,   𝑖𝑓 𝐻0  𝑖𝑠  𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑
𝑥                                        ,   𝑖𝑓 𝐻0  𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

                              _____(2.2.2) 
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Estimators of this type with „k‟ arbitrary (0 ≤ k ≤ 1) have been defined and studied 

in different contexts by Bhattacharya and Srivastava (1974), Hogg (1974), Panday 

and Shah (1983).  

We observe that „k‟ defined in (2.2.2) can take any value between „0‟ and „1‟. We 

know that the test statistic for testing H0 :  𝜃 =  𝜃0 against the two sided alternative  

H1 :  𝜃 ≠ 𝜃0 at level α is given by 
0

2


xn
 which follows χ

2 
– distribution  with  2n 

degrees of freedom. Pandey and Srivastava (1987) and others have proposed 

shrinkage testimator where the arbitrariness in the choice of shrinkage factor has 

been removed by making it dependent on the test statistics. Waiker (1984) at el. 

have proposed and studied the properties of shrinkage testimator of the parameter 

of Exponential distribution. 

Now we propose a shrinkage testimator in which the shrinkage factor depends on 

the test statistics. 

The shrinkage testimator  𝜃 𝑆𝑇2  of   𝜃  is defined as: 

      𝜃 𝑆𝑇2 =  
 

2𝑛𝑥 

𝜃0𝑥
2
 𝑥 +   1 −

2𝑛𝑥 

𝜃0𝑥
2
 𝜃0    ,   𝑖𝑓 𝐻0  𝑖𝑠  𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑥                                                            ,   𝑖𝑓 𝐻0  𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑
              _____(2.2.3) 

where k = 2
0

2



xn

 ,  𝑥2 = (𝑥2
2 − 𝑥1

2). Properties of these estimators 𝜃 𝑆𝑇1 & 𝜃 𝑆𝑇2 

have been studied by Srivastava and Shah (2010) using Asymmetric Loss 

Function.  

In all these studies it has been shown that shrinkage testimators perform better than 

the conventional estimator, if  k is near zero, n is small, 𝜃0 ( the guess) is in the 

vicinity of 𝜃.  This motivated workers to select a shrinkage factor which 
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approaches to zero rapidly and an obvious choice was to take the square of the 

shrinkage factor.   

Thus the shrinkage testimator  𝜃 𝑆𝑇3  of   𝜃 is defined as: 

  𝜃 𝑆𝑇3 =  
 

2𝑛𝑥 

𝜃0𝑥
2
 

2
𝑥 +  1 −  

2𝑛𝑥 

𝜃0𝑥
2
 

2
 𝜃0    ,   𝑖𝑓 𝐻0  𝑖𝑠  𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑥                                                                       ,    𝑖𝑓 𝐻0  𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑
             ____(2.2.4) 

Where  k =  
2𝑛𝑥 

𝜃0𝑥
2
 

2
   ,     𝑥2 = (𝑥2

2 − 𝑥1
2)                                                                                                                                

It may be noted that different choices of „k‟ have been taken by several authors 

keeping in mind that it should lie between „0‟ and „1‟. But these limits are not 

attained unless 1
2 

= 0 or 2
2
 = ∞.  So, we propose another estimator of  as  𝜃 𝑆𝑇4  

given by  

𝜃 𝑆𝑇4 =  
 

2𝑛𝑥 

𝜃0𝑥
2 − 

𝑥1
2

𝑥2 𝑥 +   1 +
𝑥1

2

𝑥2 −
2𝑛𝑥 

𝜃0𝑥
2 𝜃0    ,   𝑖𝑓 𝐻0  𝑖𝑠  𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑥                                                                                            ,     𝑖𝑓 𝐻0   𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

     

_____(2.2.5) 

where k = 
2𝑛𝑥 

𝜃0𝑥
2
− 

𝑥1
2

𝑥2
  ,  𝑥2 = (𝑥2

2 − 𝑥1
2) with this choice of „k‟ the limits „0‟ and „1‟ 

can actually be attained. 

Pandey, Srivastava and Malik (1989) considered another choice of shrinkage 

factor which lies exactly between 0 and 1.   

We have considered all the four different choices of the shrinkage factor(s) 

and proposed four different estimators.   

2.3 Risk of Testimators 

In this section we derive the risk of all the four testimators which are defined in the 

previous section. 
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2.3.1 Risk of  𝜽 𝑺𝑻𝟏 

The risk of 
1

ˆ
ST  under L(∆) is defined by                                                                                                                                                                                           

 ]ˆ[)ˆ(
11

 LER STST   
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Straight forward integration of (2.3.1.2) gives 



44 
 

 

  





































































































































1
1

,
2

,
2

)1(1,
2

1,
2

1
1

1,
2

,
2

)ˆ(

)1(2

1

2

2

2

1

2

2

2

2

2

1

1











aak

n
ak

ee
nInI

knInIa

n
a

e
nInIR

n

kaa

n

a

ST

      

______(2.3.1.3)    

Where    dxxeppxI px

x

1

0

1);( 

   refers to the standard incomplete gamma 

function  and  ∅ =  
𝜃0

𝜃
      

2.3.2 Risk of  𝜽 𝑺𝑻𝟐 

The risk of 
2

ˆ
ST under L(∆) given by 
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A straight forward integration of  (2.3.2.2) gives: 
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and   I(x; p)  as defined previously. 
 

2.3.3 Risk of  𝜽 𝑺𝑻𝟑  

The risk of  𝜃 𝑆𝑇3 under L(∆) defined by                                                                                                                                                                                           
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and  I(x;p)  refers to incomplete gamma function defined previously. 
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and  I(x;p)  refers to incomplete gamma function defined previously.

 

2.4 Relative  Risks  of  
iST̂  

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator x  in this case, which is 

also the UMVUE. For this purpose, we obtain the risk of x  under L() as: 
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   A  straight  forward  integration of (2.4.1) gives  
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Now, we define the Relative Risk of 4...1ˆ i
iST  with respect to x  under L() 

as follows 
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Using (2.4.2) and (2.3.1.3) the expression for RR1 is given by (2.4.3). It is 

observed  that  RR1  is a function of   , n, , k  and  „a‟. 

Again, we define the  Relative  Risk of 
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The  expression  for  RR2 is given by (2.4.4) which can be obtained by using 

equations (2.4.2) and (2.3.2.3).  

 
Now, we  define the  Relative  Risk of 
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Using (2.4.2) and (2.3.3.3)  the  expression  for  RR3 is given by (2.4.5).

 
Finally, we define the  Relative Risk of  
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Same way the  RR4 is given by (2.4.6) which can be obtained by using equations 

(2.4.2) and (2.3.4.3)   

It is observed that RR2 , RR3  and  RR4  are  functions of  , n, , and „a‟.   

2.5 Recommendations  for  
iST̂

 

In this section we provide the comparison of UMVUE and the proposed 

shrinkage testimators in terms of their relative risks.  Recommendations regarding 

the applications of proposed testimators are provided in terms of the range of „k‟ 

and „∅‟.  The objective of present investigation is also to make recommendations 

for the degrees of asymmetry and level of significance. The following sections 

provide these separately for all the proposed testimators. 

2.5.1 Recommendations  for  
1

ˆ
ST

 

We observe that the expression for RR1 is a function of „k‟, „∅‟, „a‟, „n‟ and 

„𝛼‟. To study the behaviour of RR1 , we have taken these values as k = 0.2 

(0.2)…0.8 , ∅ = 0.2 (0.2)…1.6,  α = 1%, 5%, 10%, n = 5, 8, 10 and a = ±1, ±2, ±3 

,‟a‟ is the prime important factor and decides about the seriousness of over/under 

estimation in the real life situation. It is observed that 
1

ˆ
ST

 
performs better than the 

conventional estimator for almost the whole range of k. The performance is best at 

k = 0.2, n = 8, for a = -1, however as „k‟ increases to k = 0.4, there is a sudden 

change and the performance improves at a = 1 (positive) and the same trend 

remains for a = 2 and 3 but the range of  ∅ changes. It may be stated that for 

smaller weights a negative value of „a‟ is suggested however for higher weights 

positive value particularly a = 3 should be used. We have taken α = 5% and α = 

10% also, it is observed that the 
1

ˆ
ST still performs better for these values of α

s
, but 

the magnitude of relative risk is maximum at α = 1% out of the three values of α, 
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so α = 1% is the recommended level of significance. As regards the choice of 

degree of asymmetry „a‟ no fixed pattern is observed for various values of „k‟ i.e. 

for some values of „k‟, positive „a‟ and for some values of „k‟ (particularly lower), 

negative values of „a‟ are recommended (say a = -1 for k = 0.2). Looking at the 

different values of „a‟ for different choice of „k‟ it seems more logical to remove 

the arbitrariness in the choice of „k‟. 
2

ˆ
ST removes this arbitrariness and our 

conclusions for 
2

ˆ
ST are as follows: 

2.5.2 Recommendations  for  
2

ˆ
ST

 

There will be too many tables for varying „∅‟, „α‟, and „a‟ all the tables are not 

presented here. However our recommendations based on all these computations are 

summarized as follows: 

 For small n = 5 and for different levels of significance considered here 
2

ˆ
ST  

performs better than the usual estimator in the whole range of  ∅. However, 

its performance is best for a = ±3, (still better for a = 3) and α = 1%. Hence it 

is recommended to use the proposed estimator for the positive values of „a‟ 

and small values of „n‟. Similar results hold for n = 8 and 10 however the 

magnitude of  RR2  is maximum for n = 8. 

 For α = 5% and for n = 5, 8, 10 and for 0.2 ≤ ∅ ≤ 1.6, the magnitude of 

relative risk is still higher, i.e. usual estimator has more risk under L(∆) 

compared to
1

ˆ
ST . Again, 

2

ˆ
ST performs better for positive values of “a”, 

The higher magnitude of relative risk values implies better risk control in 

this situation, for the proposed testimator  
2

ˆ
ST compared to  𝑥  . 

 For α = 10%, rest of the findings are same, i.e., values of n considered here, 

range of ∅ (0.2 ≤ ∅ ≤ 1.6) and a = ±1, ±2, ±3. But comparing the values of 
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relative risks for varying α 
s
 (the level of significance) ; It is observed that 

the magnitude of these values is maximum for α = 1% and a = 1 for all the 

values as “n” considered here and for 0.2 ≤ ∅ ≤ 1.6  

So, it is recommended to use 
2

ˆ
ST for n = 8, a = 3, 0.2 ≤ ∅ ≤ 1.6 and α = 1% 

However, it performs well for other values of „n‟ and „a‟ also, considered 

here, but for the above values its performance is at its best. 

2.5.3 Recommendations  for  
3

ˆ
ST

 

For various values of n = 5, 8, 10 by fixing α = 1% and also varying the 

degree of asymmetry „a‟ = ±1, ±2, ±3, it is observed that the magnitude of 

relative risk of 
3

ˆ
ST  is higher for all these values of n

s
 and a

s 
 for the whole 

range of ∅. However, it is still higher for the positive values of „a‟ in 

particular a=3. It is suggested therefore, to use this estimator for a=3, α = 

1%. 

Next we change the level of significance to α = 5% for the same set of 

values of other parameters, again 
3

ˆ
ST  performs better than the conventional 

estimator in the whole range of „∅‟ and for different values of „n‟ and „a‟. 

However the magnitude of relative risk is higher in case of α = 1% compared 

to α = 5%. 

While taking α = 10% and observing the behavior of relative risk, it is found 

that 
3

ˆ
ST performs better for positive values of „a‟ in particular for a = 2. 

In all the above situations it is observed that the magnitude of relative risk 

decreases as „α‟ increases and shows higher values of it for „positive‟ values 

of  a. 
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So, we recommend to use 
3

ˆ
ST  for all values of „n‟ and α

 s
 considered here. 

In particular its performance is at its best for α = 1%, a = 3 and  n = 8, 10. 

2.5.4 Recommendations for  
4

ˆ
ST  

The testimator 
4

ˆ
ST behaves nicely compared to the conventional estimator 

in the sense of having „smaller‟ risk for different values of „n‟, „α‟, and „a‟. 

In fact 
4

ˆ
ST has lower risk for almost whole range of ∅ = 0.2(0.2) 1.6. As „n‟ 

increases the magnitude of relative risk decreases and it is lowest for n = 10, 

a = -1, for α = 1%. However, for smaller values of n i.e. n = 5 and n = 8,  

4

ˆ
ST has better control over risk values and in particular for n = 5 and a = 3 

the magnitude of relative risk is highest. 

For the other value of α = 5% and different values of n = 5, 8, and 10,  
4

ˆ
ST  

performs better for higher positive values of „a‟ compared to the negative 

values of „a‟. Particularly for a = -3, -2 there is not much difference in the 

performances however, the trend starts changing from   a = 1 and the highest 

magnitude of it is observed at a =3 for the values of n, in particular for n = 5, 

the gain is maximum, which remains true for  n = 8 and to  some  extent for 

n = 10 for the whole range  of  ∅. 

Finally taking α = 10% for various values of „n‟ and „a‟ again the 

performance of  
4

ˆ
ST is better compared to the conventional estimator, in 

particular for n = 5 and a = 2, a = 3, still the magnitude of relative risk is 

higher for a = 3. For n = 10 and for the negative values of „a‟ the 
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performance of its relative risk is not so good as compared to conventional 

estimator. 

CONCLUSIONS: 

1. It is concluded that both 
3

ˆ
ST and 

4

ˆ
ST perform better than the UMVUE 

for almost the whole range of ∅ = 0.2 (0.2) 1.6, various values of n = 5, 8, 10 

and different „positive‟ values of „a‟. The performance is not so good for the 

negative values of „a‟. 

2. Comparing the values of relative risk(s) of 
3

ˆ
ST and 

4

ˆ
ST , it is observed 

that the magnitude of relative risk is higher for 
3

ˆ
ST , so the choice of 

weights (Shrinkage factor) suggested is to take the „square‟ of the shrinkage 

factor making it „dependent‟ on test statistics. 

3. It is observed that using the Asymmetric Loss Function the effective range 

of ∅ for which 
3

ˆ
ST or 

4

ˆ
ST perform better than the usual estimator 

increases considerably as compared to the same in case of squared error 

loss function . 

4. In particular both the testimators 
3

ˆ
ST and 

4

ˆ
ST perform better for a = 3, α 

= 1% and n = 5. Positive value of „a‟ indicate that it should be used in those 

situations where over-estimation is more serious than underestimation, 

which remains true in case of insurance and re-insurance problems. 
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Tables  showing  relative risk(s) of proposed testimator(s) with respect 

to the best available estimator. 

 

Table : 2.5.1.1   Relative Risk of 
1

ˆ
ST

  
 𝛼 = 1% , n = 5, a = 3 

  ∅ k = 0.2 k = 0.4 k = 0.6 k = 0.8 

0.20 1.14 1.139 1.132 1.104 

0.40 2.35 2.363 2.231 1.796 

0.60 4.994 4.847 4.182 2.747 

0.80 5.484 5.384 5.558 2.985 

1.00 7.01 6.884 6.813 3.743 

1.20 5.007 5.805 5.08 2.414 

1.40 3.547 4.792 3.578 2.097 

1.60 1.872 2.516 2.499 1.813 
 

Table : 2.5.1.2  Relative Risk of 
1

ˆ
ST    𝛼 = 1% , n = 8, a = 3 

∅ k = 0.2 k = 0.4 k = 0.6 k = 0.8 

0.20 1.035 1.135 1.032 1.023 

0.40 2.726 2.752 2.67 1.416 

0.60 4.516 4.742 3.672 2.093 

0.80 5.648 6.379 4.874 2.191 

1.00 7.952 7.332 5.137 4.971 

1.20 5.452 5.507 2.877 2.708 

1.40 2.473 2.887 1.857 1.453 

1.60 1.593 1.924 1.206 1.224 
 

Table : 2.5.1.3       Relative Risk of  
1

ˆ
ST

     
𝛼 = 1%, n = 8, k = 0.2 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.20 0.777 0.824 0.826 1.163 1.059 1.035 

0.40 0.31 0.393 0.417 2.525 2.409 1.726 

0.60 0.41 1.548 1.611 3.185 3.17 3.516 

0.80 1.327 2.836 2.147 5.678 4.517 4.648 

1.00 7.861 6.177 5.585 6.878 6.385 5.952 

1.20 5.257 4.641 3.796 3.946 3.958 3.452 

1.40 1.796 1.663 1.831 1.928 1.139 1.473 

1.60 0.833 0.835 0.96 0.434 0.493 0.593 
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Table : 2.5.2.1     Relative Risk of 
2

ˆ
ST      𝛼 = 1%, n = 5 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.20 0.511 0.596 0.61 1.03 1.263 1.153 

0.40 1.337 1.47 1.535 2.529 2.397 2.689 

0.60 1.568 2.813 2.967 3.227 3.697 4.451 

0.80 2.383 3.917 4.357 4.635 4.988 5.131 

1.00 3.418 4.376 5.560 5.088 6.05 6.953 

1.20 2.863 4.073 3.837 3.298 3.687 5.94 

1.40 1.987 2.031 2.384 2.218 2.537 2.421 

1.60 1.031 1.102 1.331 1.654 1.824 1.361 

 
 

Table : 2.5.2.2     Relative Risk of  
2

ˆ
ST      𝛼 = 1%, n = 8 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.20 0.74 0.796 0.799 1.217 1.075 1.042 

0.40 1.292 1.405 1.457 2.289 2.49 2.173 

0.60 2.394 2.585 2.698 3.074 4.374 4.346 

0.80 3.051 3.489 4.791 4.246 5.618 6.676 

1.00 4.398 5.162 6.000 5.284 6.945 7.321 

1.20 2.362 4.888 4.246 3.853 3.166 4.534 

1.40 1.903 2.694 2.854 2.829 2.997 2.216 

1.60 0.918 1.875 1.994 1.414 1.476 1.566 

 
 

Table : 2.5.2.3     Relative Risk of  
2

ˆ
ST      𝛼 = 5%, n = 5 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.20 0.64 0.707 0.712 1.387 1.125 1.074 

0.40 1.346 1.468 1.526 2.568 2.848 2.814 

0.60 1.426 1.639 2.783 3.349 3.178 3.858 

0.80 2.858 2.33 3.713 3.842 4.059 4.918 

1.00 3.468 4.358 5.224 4.634 5.705 5.714 

1.20 2.648 2.185 3.285 2.718 3.42 3.977 

1.40 1.996 2.058 2.006 1.887 2.302 2.193 

1.60 1.66 1.643 1.721 0.532 1.757 1.269 
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Table : 2.5.2.4     Relative Risk of  
2

ˆ
ST      𝛼 = 5%, n = 8 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.20 0.865 0.895 0.894 1.082 1.03 1.017 

0.40 0.346 1.457 1.501 2.889 2.213 1.523 

0.60 1.317 1.48 2.583 3.834 3.592 3.959 

0.80 1.633 2.006 3.286 4.481 4.075 4.202 

1.00 2.505 3.319 4.006 5.561 6.554 6.761 

1.20 2.44 2.757 3.861 3.184 3.692 4.207 

1.40 1.856 2.484 2.739 2.567 2.806 2.052 

1.60 1.256 1.607 1.456 1.334 1.445 1.555 

 

Table : 2.5.4.1     Relative Risk of  
4

ˆ
ST      𝛼 = 1%, n = 5 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.20 0.348 0.455 0.502 1.145 1.487 1.185 

0.40 0.165 0.246 0.303 1.584 1.805 1.547 

0.60 1.233 1.346 1.435 1.921 2.051 2.491 

0.80 1.644 1.918 2.155 2.002 2.679 3.985 

1.00 2.908 3.724 4.625 3.111 4.019 5.748 

1.20 1.483 1.096 3.966 2.455 3.018 2.151 

1.40 0.305 0.77 2.581 1.251 1.562 1.256 

1.60 0.235 0.687 1.741 0.159 0.334 0.74 

 

Table : 2.5.4.2     Relative Risk of  
4

ˆ
ST      𝛼 = 1%, n = 8 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.20 0.603 0.701 0.732 1.579 1.15 1.065 

0.40 1.15 1.225 1.273 2.467 1.875 2.166 

0.60 1.161 1.244 1.304 2.486 3.193 3.056 

0.80 1.426 2.625 2.779 3.201 4.255 3.827 

1.00 2.404 3.893 4.775 3.874 4.511 5.151 

1.20 1.331 1.749 1.328 2.294 3.602 3.998 

1.40 1.203 1.52 1.073 1.152 2.297 1.488 

1.60 0.155 0.454 1.15 0.095 1.17 0.258 
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2.6 Shrinkage  Testimator  for  the  Variance  of  a  Normal  Distribution 

Shrinkage testimators for the mean 𝜇 of a Normal distribution N(𝜇, 𝜎2) when  

𝜎2 is known or unknown, have been proposed by Waiker, Schuurman and 

Raghunandan (1984). In this section we have proposed  single sample shrinkage 

testimator(s) for the variance of a Normal distribution. Let X be normally 

distributed with mean 𝜇 and variance 𝜎2, both being unknown. It is assumed 

that the prior knowledge about 𝜎2 is available in the form of an initial estimate 

𝜎0
2. Using the sample observations nxxx .......,, 21  and possibly the given 

information we wish to construct a shrinkage testimator for the variance.  The 

procedure described as follows:  

1. First test with a sample of size n, the null hypothesis 𝐻0 ∶  𝜎2 =  𝜎0
2  against 

the alternative 𝐻1 ∶  𝜎2 ≠  𝜎0
2 using the test statistics  

𝜈𝑠2

𝜎0
2  , where ν = (n -1) 

and  𝑠2 =  
1

𝑛−1
 (𝑥𝑖 − 𝑥 )2. The test statistics is distributed as 𝜒2 with ν 

degrees of freedom. 

2. If 𝐻0 is accepted at α level of significance i.e. 𝑥1
2  <  

𝜈𝑠2

𝜎0
2  <  𝑥2

2  where 𝑥1
2 

and  𝑥2
2 are the lower and upper points of the uniformly most powerful 

unbiased (UMPU) test of 𝐻0, use the conventional shrinkage estimator with 

shrinkage factor 𝑘 =
𝜈𝑠2

𝜎0
2𝑥2

 , which is inversely proportional to 𝜒2 and it 

depends on the test statistic, so the arbitrariness in the choice of shrinkage 

factor has been removed by making it dependent on the test statistic. 

3. If 𝐻0 is rejected, use 𝑠2, the Uniformly Minimum Variance Unbiased 

Estimator (UMVUE) as the estimator of 𝜎2. 
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Now, the proposed shrinkage testimator 𝜎 𝑆𝑇1
2  of  𝜎2 is 

𝜎 𝑆𝑇1
2 =   

𝑘1 𝑠2 +   1 − 𝑘1 𝜎0
2      ,   𝑖𝑓 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

𝑠2                      ,    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

Where   𝑘1 =
𝜈𝑠2

𝜎0
2  𝑥2

   

Estimators of this type with an arbitrary 𝑘 ( 0 ≤ 𝑘 ≤ 1) have been proposed by 

Pandey and Singh (1976,77), Srivastava (1976) and others.  In these studies it has 

been shown that the shrinkage testimators work well if  𝑘  is near zero, n is small 

and  𝜎2 − 𝜎0
2   is also small.  Hence, we should select the shrinkage factor which 

approaches to zero rapidly.  We have, therefore, define another shrinkage                          

Testimator  𝜎 𝑆𝑇2
2   of  𝜎2 by taking square of the shrinkage factor 𝑘2 =  𝑘1

2.  

𝜎 2
𝑆𝑇2

 =  
   

𝜈𝑠2

𝜎0
2 𝑥2 

2

𝑠2 +   1 −  
𝜈𝑠2

𝜎0
2 𝑥2 

2

 𝜎0
2     ;   𝑖𝑓   𝐻0  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

𝑠2             ;         𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

2.7 Risk of Testimators 

In this section we derive the risk of these two testimators which are defined in the 

previous section. 

2.7.1 Risk of  𝝈 𝑺𝑻𝟏
𝟐   

    The risk of  𝜎 2
𝑆𝑇1 under L(∆) is defined by   

  
 ]ˆ[)ˆ(
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Straight forward integration of (2.7.1.2) gives 

𝑅 𝜎 𝑆𝑇1
2  =   

𝜎2

𝒱
 
𝜈

2 

 

 
 
 
 
 
 
 
  𝐼

∗ −
2𝑎

𝜆 𝜒2
   

𝜈

2
+ 1  𝐼   𝜒2

2𝜆 ,
𝜈

2
+ 2 − 𝐼   𝜒1

2𝜆 ,
𝜈

2
+ 2  

+    𝑎  𝐼   𝜒2
2𝜆 ,

𝜈

2
+ 1 −  𝐼   𝜒1

2𝜆 ,
𝜈

2
+ 1   

𝑣

𝑥2
+ 1 

− 𝑎𝜆  𝐼   𝜒2
2𝜆 ,

𝜈

2
 −  𝐼   𝜒1

2𝜆 ,
𝜈

2
  

+ 
𝑒−𝑎

2
𝑣

2     
1

2
 − 

𝑎

𝑣
  

𝑣
2
  1 − 𝐼   𝜒2

2𝜆 ,
𝜈

2
 −  𝐼   𝜒1

2𝜆 ,
𝜈

2
  +  1

 
 
 
 
 
 
 
 

                   

                                                                                                            _____(2.7.1.3)   



61 
 

        Where    dxxeppxI px

x

1

0

1);( 

   refers to the standard incomplete 

gamma function,  𝜆 =  
𝜎0

2

𝜎2
  , and                                                                                                                     

  𝐼∗ =  
𝑒𝑎(𝜆−1)

2
𝑣

2    𝛤 
𝑣

2
 
  𝑒

 
𝑎𝑡2

𝜆𝑣𝑥2  − 
𝑎𝑡

𝑥2 𝑥2
2𝜆

𝑥1
2𝜆

 𝑒−
1

2
𝑡  𝑡 

𝑣

2
−1

 dt 

2.7.2 Risk of  𝝈 𝑺𝑻𝟐
𝟐   

Again, we obtain the risk of  𝜎 2
𝑆𝑇2  

under L(∆) with respect to 𝑠2, given by 
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   refers to the standard incomplete gamma 

function and  λ is same as defined earlier.   
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2.8 Relative  Risk of  𝝈 𝑺𝑻𝒊
𝟐  

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator 𝑠2
 in this case. For 

this purpose, we obtain the risk of  𝑠2 under  22 ,ˆ EL  as: 
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Now, we define the Relative Risk of  2,1,ˆ 2 i
iST   with respect to 𝑠2 under 

 22 ,ˆ L  as follows:              
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Using (2.8.2) and (2.7.1.3) the expression for RR1 given in (2.8.3) can be obtained; 

it is observed that RR1 is a function of „𝜆‟, „ ν ‟, „‟ and „a‟. 

Finally, we define the Relative Risk of 2

2ˆ ST by 
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The  expression for RR2 is given by (2.8.4) can be obtained by using (2.8.2) and 

(2.7.2.3).  Again we observed that 2RR   is a function of  „𝜆‟, „ ν ‟, „‟ and „a‟. 

2.9 Recommendations  for  𝝈 𝑺𝑻𝒊
𝟐  

In this section we wish to compare the performance of 1

2ˆ ST
 
and 2

2ˆ ST  with 

respect to the best available (unbiased) estimator of  𝜎2 .   

2.9.1 Recommendations  for  𝝈 𝑺𝑻𝟏
𝟐  

It is observed that the expressions of RR1 and RR2 are the functions of  𝜈, 𝛼, 𝜆  and 

the degrees of asymmetry " a ".  For the comparison of the proposed testimators 

with the best available estimator we have considered  𝛼 = 1%, 5%  𝑎𝑛𝑑 10% ,

𝜈 = 5, 8, 10  𝑎𝑛𝑑 12   𝑎𝑛𝑑  𝑎 =  −2.0, −1.0, 1.0, 1.5 , 𝑎𝑛𝑑 1.75  and 𝜆 =

0.2  0.2  2.0 . There will be several tables and graphs for RR values for both the 

testimators. We have assembled some of graphs at the end of the chapter.  

However our recommendations based on all these computations are as follows: 

(i) 
           1

2ˆ ST
 
Performs better than 

2̂
 
for a considerably large range of 𝜆 for 

different degrees of asymmetry. For a= -2 the range is  0.6 ≤  𝜆 ≤ 1.8 , which 

changes slightly for a = -1 and becomes 0.6 ≤  𝜆 ≤ 1.6 . For the positive 

values of „a‟ we have observed a different pattern for RR1 as when different 

values 0.8 ≤  𝜆 ≤ 1.4 , the performance of 1

2ˆ ST  is better than 
2̂ .  Similar 

pattern is observed for the other two positive values of „a‟ i.e. a = 1.5 and a = 

1.75. However the values of RR1 are smaller in magnitude. Further the 

magnitude of  RR1  is higher when „a‟ is negative as compared to those values 

of when „a‟ is positive. 
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(ii)          For higher values of 𝑎 i.e. 5% and 10%  a  similar kind of behaviour of 

RR values is observed but the range of „𝜆′ changes, it is 0.6 ≤  𝜆 ≤ 2.0 for a = 

-2 and 𝑎 = 5% and this becomes 0.8 ≤  𝜆 ≤ 2.0 for a = -2 and 𝑎 = 10% . 

Similarly for other values of negative „a‟ when „a‟ is positive the range of „𝜆‟ is 

0.8 ≤  𝜆 ≤ 1.8 for a = 1.75. 

 

(iii)  It is observed that for some negative values of „a‟ as well as for some 

positive values of „a‟ the magnitude of RR1 is greater than unity which indicates 

that 1

2ˆ ST
 
performs better than usual estimator. 

 

(iv) As the value of „𝜈‟ increases there is a decrease in the RR1 values for 

different values of levels of significance and degrees of asymmetries. However 

the best performance of 1

2ˆ ST
 
is observed at 𝛼 = 1%  for a = -2 and 𝛼 = 1% 

for a = 1.75  

 

(v)   It is recommended therefore to consider a smaller level of significance 

(preferably 𝛼 = 1% ) and smaller sample size 𝜈 = „5‟ or „8‟ for positive / 

negative values of „a‟ in particular a = 1.75 and a = -2.0. 

2.9.2 Recommendations  for  𝝈 𝑺𝑻𝟐
𝟐  

Next we have considered another testimator 2

2ˆ ST
 

which is obtained by 

squaring the shrinkage factor, we have evaluated the expression RR2 for the 

same set of values as considered for RR1 and our recommendations are as 

follows: 

(i) 2

2ˆ ST
 
performs better than the usual estimator 

2̂  for different range of  𝜆 

i.e. for a = -2, it is 0.6 ≤  𝜆 ≤ 1.8, however for a = -1 it becomes 0.6 ≤
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 𝜆 ≤ 1.6 i.e. almost the same whole range as observed for 1

2ˆ ST  but the 

magnitude of  RR2 values are HIGHER than the magnitude of RR1 values 

indicating a „better‟ control over the risk of 2

2ˆ ST
 
as compared to 1

2ˆ ST .  

This is observed when 𝛼 = 1%, 𝜈 = 5 and a = -1.0 also when a = +1.75. 

(ii)          A Similar kind of pattern for the performance of 2

2ˆ ST  is observed for 

𝛼 = 5% 𝑎𝑛𝑑 𝛼 = 10% for the range of  „𝜆‟ as mentioned above. 

(iii) It is observed that the values of  RR2  are more than unity for some 

positive and negative values of „a‟. So, it is conclude that in both the 

situations i.e. over/under estimation the proposed testimators 
 

behaves 

nicely. 

(iv) The maximum values of RR2 are observed for 𝛼 = 1%, a = -2.0 and 𝜈 

= 5. Similarly for a = +1.75, 𝛼 = 1%  and  𝜈 = 5. 

(v)        The general behaviour observed is that of „decreasing‟ values of RR for 

higher values of „𝜈‟ and „𝛼‟ . 

(vi) So, it is recommended to consider smaller level of significance along 

with a smaller sample size with proper choice of „a‟. 

 

CONCLUSION: 

We have proposed shrinkage testimator(s) for the variance of Normal distribution 

and we recommend that: A shrinkage testimator 2

2ˆ ST  (i.e.  „square‟ of shrinkage 

factor) should be considered for 𝛼 = 1%, 𝜈 = 5 𝑜𝑟 8 𝑎𝑛𝑑 𝑎 = 1.75 (for situations 

where overestimation is more serious) and 𝑎 =  −2.0 (for situations where under 

estimation is more serious). 
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Tables  showing  relative risk(s) of proposed testimator(s) with respect to the 

best available estimator. 

Table : 2.9.1.1    Relative Risk of  𝝈 𝑺𝑻𝟏
𝟐        𝛼 = 1% , ν = 5 

λ a = -2 a = -1 a = 1 a = 1.5 a = 1.75 

0.20 0.699 0.597 0.497 0.176 0.718 

0.40 0.76 0.794 0.642 1.071 1.229 

0.60 1.311 1.116 1.196 1.934 2.047 

0.80 2.606 1.939 2.693 2.92 3.307 

1.00 4.647 3.256 2.817 3.448 4.375 

1.20 4.64 3.092 1.725 2.436 3.071 

1.40 2.935 2.288 1.187 1.763 2.246 

1.60 1.802 1.459 0.801 1.233 1.609 

1.80 1.206 0.974 0.541 0.84 1.121 

2.00 0.878 0.695 0.373 0.569 0.768 
 

Table : 2.9.1.2    Relative Risk of  𝝈 𝑺𝑻𝟏
𝟐        𝛼 = 1% , ν = 8 

λ a = -2 a = -1 a = 1 a = 1.5 a = 1.75 

0.20 0.863 0.455 0.244 0.685 0.891 

0.40 1.642 0.983 0.651 1.599 1.165 

0.60 2.516 1.455 1.301 1.794 2.005 

0.80 3.579 1.878 1.806 2.133 2.44 

1.00 4.156 2.446 2.562 3.726 4.164 

1.20 3.693 2.01 1.757 2.755 3.333 

1.40 2.777 1.503 1.476 1.751 2.887 

1.60 1.738 1.062 1.008 1.482 1.574 

1.80 1.191 0.782 0.208 0.315 0.371 

2.00 0.895 0.611 0.146 0.211 0.245 
 

 

 

 

 

 

 

Table : 2.9.1.3    Relative Risk of  𝝈 𝑺𝑻𝟏
𝟐        𝛼 = 5% , ν = 5 

λ a = -2 a = -1 a = 1 a = 1.5 a = 1.75 

0.20 0.802 0.617 0.663 0.362 0.672 

0.40 1.018 0.876 0.981 1.162 1.278 

0.60 1.714 1.167 1.923 2.117 2.03 

0.80 2.833 1.598 2.442 2.548 3.336 

1.00 3.641 1.909 2.665 3.117 3.632 

1.20 3.279 1.886 1.879 2.254 2.977 

1.40 2.465 1.627 1.188 1.762 2.116 

1.60 1.829 1.334 0.828 1.049 1.771 

1.80 1.416 1.094 0.523 0.568 1.031 

2.00 0.92 0.666 0.249 0.429 0.583 
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Table : 2.9.1.4             Relative Risk of  𝝈 𝑺𝑻𝟏
𝟐       𝛼 = 5% , ν = 8 

λ a = -2 a = -1 a = 1 a = 1.5 a = 1.75 

0.20 0.768 0.781 0.315 0.475 0.603 

0.40 1.003 1.076 0.971 0.916 0.713 

0.60 1.801 1.583 1.387 1.59 1.374 

0.80 2.621 1.963 1.638 2.464 2.563 

1.00 3.265 2.377 2.219 2.764 3.103 

1.20 2.221 1.844 1.843 2.105 2.34 

1.40 1.909 1.631 1.474 1.611 1.744 

1.60 1.601 1.193 0.937 1.231 1.51 

1.80 1.374 0.766 0.711 0.831 0.974 

2.00 1.009 0.684 0.393 0.438 0.582 
 

Table : 2.9.2.1     Relative Risk of  𝝈 𝑺𝑻𝟐
𝟐         𝛼 = 1% , ν = 5 

λ a = -2 a = -1 a = 1 a = 1.5 a = 1.75 

0.20 0.426 0.393 0.343 0.789 0.996 

0.40 0.499 1.193 0.458 1.225 1.689 

0.60 1.059 1.907 1.494 1.874 2.768 

0.80 2.782 2.614 2.389 2.751 3.961 

1.00 6.727 4.124 3.826 4.747 6.296 

1.20 5.728 3.306 2.129 4.055 4.127 

1.40 2.833 2.432 1.28 3.227 2.709 

1.60 1.592 1.309 0.781 2.05 1.72 

1.80 1.04 0.836 0.495 1.265 1.081 

2.00 0.754 0.589 0.328 0.785 0.686 
 

Table : 2.9.2.2     Relative Risk of  𝝈 𝑺𝑻𝟐
𝟐         𝛼 = 5% , ν = 5 

λ a = -2 a = -1 a = 1 a = 1.5 a = 1.75 

0.20 0.509 0.552 0.441 0.992 0.688 

0.40 0.989 0.855 1.326 1.69 1.913 

0.60 1.405 1.514 1.921 2.054 2.874 

0.80 2.87 2.081 2.784 2.371 4.183 

1.00 3.975 2.833 2.973 3.354 5.017 

1.20 3.193 2.302 1.917 2.649 4.216 

1.40 2.464 1.825 1.581 1.806 3.446 

1.60 1.732 1.574 1.105 1.232 2.005 

1.80 1.168 1.195 0.295 0.52 1.715 

2.00 1.048 0.936 0.221 0.375 0.514 
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Chapter – 3 

 

DOUBLE STAGE SHRINKAGE TESTIMATORS UNDER ASYMMETRIC 

LOSS FUNCTION 

 

3.1 Introduction  

 

 In this chapter we have extended our studies of chapter 2 in the sense that 

now instead of drawing only one sample form the population, the experimenter 

may possibly drawn one or two samples.  Estimation of the mean from double 

sample in the presence of a priori information was first considered by Katti (1962) 

and later by many others. Katti‟s method consisted in constructing a region R using 

the a priori information available in the form of a guess value say 𝜃0 of the 

parameter 𝜃 and the observations nxxx .......,, 21  from the first sample. If the 

estimator constructed or proposed belonged to R; there was no need to draw a 

second sample of size  𝑛2. However, if it did not lie in R; a second sample of size 

𝑛2 was drawn and the proposed estimator used observations from both samples. 

Shah (1964) used this method in estimating variance of a Normal distribution when 

a guess of the population variance is given. He also proposed a pre-test estimator 

of the variance. The procedure adopted by Shah has something in common with 

the two stage procedure due to Stein (1945).  Arnold and Al-Bayyati (1970) 

modified the estimator proposed by Katti using the shrinkage technique and 

studied the properties of the estimator. Waiker and Katti (1971) have also studied 

two stage estimation of the mean. Pandey (1979) considered estimation of variance 

of a normal population using a priori information. 
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 Waiker et al (1984) have suggested and studied a two stage shrinkage 

testimator of the mean of a normal population when the variance of the population 

may be known or unknown. Their approach is different from that of Katti and 

others in the sense that (i) no region R is constructed in the sample space (ii) the 

shrinkage factor 𝒌 is no longer arbitrary but is a function of the test statistic used in 

testing the hypothesis regarding the given a priori information. In both techniques 

𝒌 being arbitrary or not, no assumption is made regarding the distribution of the 

parameter 𝜃 on (the parameter space). At the most one may take it a singular 

distribution with entire mass concentrated at a single point 𝜃 =  𝜃0. 

 Similar studies for estimating the scale parameter 𝜃 in one parameter 

Exponential distribution with p.d.f. 

𝑓 𝑥; 𝜃 =  
1

𝜃
exp −𝑥 𝜃  , 𝑥 ≥ 0, 𝜃 > 0

0                    , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
                                                _____ (3.1.1) 

have been made. Using the priori information available in the form of an initial 

estimate say 𝜃0 of the parameter 𝜃. Shah (1975) considered estimation of 𝜃 in 

censored sampling. Ojha and Srivastava (1980) have studied a pre-test double 

stage shrunken estimators of  𝜃 using complete samples. The object of the present 

chapter is to propose and study shrinkage testimators for scale parameters of 

(3.1.1). 

Recently Srivastava and Tanna (2007) have studied the risk properties of a 

Double stage shrinkage testimator under General Entropy Loss Function. Further 

Srivastava and Tanna (2012) have studied the risk properties of such estimators 

under Asymmetric Loss Function. 
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DOUBLE STAGE ESTIMATION: 

 

The first stage sample is used to test H0  and if  H0  is not rejected, it is 

suggested to use the prior knowledge being supported by a test, in estimating 𝜃. 

However, if H0 is rejected, we do not use the prior knowledge and obtain a second 

sample size 𝑛2 = (𝑛 − 𝑛1) to make up for the loss of the prior knowledge and 

estimate 𝜃 using both the samples. 

 

In section 3.2 we have proposed the three different shrinkage testimators for  

scale parameter of an Exponential Distribution and we have studied the risk 

properties of  these three shrinkage testimators under Asymmetric Loss Function.  

Section 3.3 deals with the derivation of the risk(s) of these three estimators.  

Section 3.4 deals with the relative risk(s) of these three estimators. Section 3.5 

concludes with the comparison of UMVUE and the proposed shrinkage testimators 

in terms of their relative risks.  Further in the same section a suggestion for the 

shrinkage factor is made. 

 

In section 3.6 we have proposed the two different shrinkage testimators for  

the  variance  of  a  Normal Distribution and we have studied the risk properties of  

these two shrinkage testimators under Asymmetric Loss Function.  Section 3.7 

deals with the derivation of the risk(s) of these two estimators.  Section 3.8 deals 

with the relative risk(s) of these two estimators. Section 3.9 concludes with the 

comparison of UMVUE and the proposed shrinkage testimators regarding their 

choice in terms of their relative efficiency.  Further in the same section a 

suggestion for the choice of shrinkage factor is made. 
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3.2  Shrinkage Testimator(s) for Scale Parameter of an Exponential 

Distribution. 

Let x11, x12, ______, x1n1 be the first stage sample of size n1 from and exponential 

population is given by (3.1.1). Let 𝜃0 be the guess estimate of the mean 𝜃. 

Compute the sample mean 𝑥 1 =  
1

𝑛
  𝑥1𝑖

𝑛1
𝑖=1  and test the preliminary hypothesis H0 

: 𝜃 = 𝜃0  vs. H1 : 𝜃 ≠ 𝜃0, using the test statistic T = 
2𝑛1𝑥 1

𝜃0
  which follows 𝑥2𝑛1  

2  . It is 

to be noted that  H0 is accepted if  𝑥1 
2  ≤  

2𝑛1𝑥 1

𝜃0
   ≤ 𝑥2 

2   and  H0 is rejected, otherwise.  

Then take 𝑛2 =  𝑛 − 𝑛1 additional observations  x21,x22,______,x2n2  and use the 

pooled estimator 𝑥 𝑝  as the estimator of the mean where 𝑥 𝑝  =   
𝑛1𝑥 1+ 𝑛2𝑥 2

𝑛1+𝑛2
         

𝑥1 
2   and  𝑥2 

2   being given by  

𝑃 𝑥2𝑛1  
2 ≥ 𝑥2 

2  + 𝑃 𝑥2𝑛1  
2 ≤ 𝑥1 

2  =  𝛼                                               ________(3.2.1) 

where α is the pre-assigned level of significance. 

When 𝜃 = 𝜃0, the probability of avoiding the second sample is (1- α) and the 

expected sample size is given by  

        𝑛∗ = 𝐸 𝑛| θ =  θ0  

    =  𝑛1 𝑃  𝑥1 
2 <

2𝑛1𝑥 1

𝜃0
<  𝑥2 

2  + (𝑛1 + 𝑛2) 𝑃  
2𝑛1𝑥 1

𝜃0
< 𝑥1 

2  U  
2𝑛1𝑥 1

𝜃0
> 𝑥2 

2   

            or,  𝑛∗ =  𝑛1  1 + 𝑢𝛼   where  𝑢 =  
𝑛2

𝑛1
  . 

       When 𝜃 ≠ 𝜃0 , the probability of avoiding the second sample is  

       𝑃 =  
1 

2𝑛1  Γ𝑛1
 

2𝑛1

𝜃0
 
𝑛1
 𝑥 1 

𝑛1−1  𝑒
 
−𝑛1𝑥 1
𝜃0

 
𝑑𝑥 1    and the expected sample size is  
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        𝑛∗∗ =  𝑛1 + 𝑛2  1 − 𝑃  𝜆𝑥1 
2 <

2𝑛1𝑥 1

𝜃0
< 𝜆𝑥2 

2    

Now we propose a shrinkage testimator  𝜃 𝐷𝑆𝑇1  of   𝜃   defined as: 

𝜃 𝐷𝑆𝑇1  =    
  𝑘1𝑥 1 +   1 − 𝑘1 𝜃0     ;   𝑖𝑓   𝑥1 

2 ≤   
2𝑛1𝑥 1
𝜃0

   ≤  𝑥2 
2   

𝑥 𝑝              ;         𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

                                                                                                                 _____(3.2.2) 

Where   𝑥 𝑝  =   
𝑛1𝑥 1+ 𝑛2𝑥 2

𝑛1+𝑛2
      and   𝑥 𝑖 =  

1

𝑛𝑖
  𝑥𝑖𝑗

𝑛𝑖
𝑗=1     ;   𝑖 = 1,2   

and  𝑘1  being dependent on test statistic is given by  𝑘1 =  
2𝑛1𝑥 1

𝜃0  𝑥2
     

where 𝑥2 = (𝑥2
2 − 𝑥1

2) 

Now, taking the „square‟ of  𝑘1 (i.e. 𝑘2 = 𝑘1
2), another testimator is defined as 

𝜃 𝐷𝑆𝑇2 =  
  

2𝑛1𝑥1    

𝜃0𝑥
2
 

2
𝑥 1 +  1 −  

2𝑛1𝑥1    

𝜃0𝑥
2
 

2
 𝜃0  ; 𝑖𝑓 𝐻0  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

𝑥 𝑝                                            ;   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

     _______(3.2.3) 

Finally, taking  𝑘3  , the third testimator can be proposed as  

𝜃 𝐷𝑆𝑇3  =    
 𝑘3 𝑥 1 +  (1 − 𝑘3)𝜃0   ;   𝑖𝑓   𝐻0  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

𝑥 𝑝              ;         𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
                  _______(3.2.4) 

Where  𝑘3  =   
2𝑛1𝑥 1

𝜃0𝑥
2
− 

𝑥1
2

𝑥2
       and   𝑥2 = (𝑥2

2 − 𝑥1
2 )            

In this case „𝑘3‟ exactly lies between „0‟ and „1‟.  

3.3 Risk of Testimators 

In this section we derive the risk of all the three testimators which are defined in 

the previous section. 
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3.3.1 Risk of  𝜽 𝑫𝑺𝑻𝟏 

The risk of 
1

ˆ
DST  under L(∆) is given by   

 ]ˆ[)ˆ(
11

 LER DSTDST                                                                                                                                                                                     

 







































2

2

0

112

1

0

112

2

0

112

1

0

11

2

2

0

112

1

2

2

0

112

10111

2222

22
1





















xnxn
p

xnxn
xE

xn
p

xn
kxkE

p 

                                                                       

                                                                                                         

_______(3.3.1.1)

 

 

 

  2121

0

2

2121

0

2

2121

0

2

2121

0

2

0

2121

0

2

0

2121

0

2

0

2

2

11

11

2

2

001

0

11

11

2

2

2

)()()()(1

)()(

)()()()(1

)()()(

)(1

2

)(

1

0
2
2

1

0
2
2

1

0
2
2

1

0
2
1

1

0
2
1

1

0
2
1

1

0
2
2

1

0
2
1

1

0
2
2

1

0
2
1

1

0
2
2

1

0
2
1

001
0

11

xdxdxfxfxdxdxfxfa

xdxdxfxfee

xdxdxfxfxdxdxfxfa

xdxdxfxfeexdxf

xdxf

x
xn

a

xdxfee

n

x

n

x
a

n

a

n
x

n

x
a

n

a

n

n

n

n

n

n

x
xn

a

a

p

p

p

p








































































































































 

   _______(3.3.1.2) 



75 
 

Where   



11

1

1

1

1
1

1

1

1
)(

xn
n

n

ex
n

n
xf
















 

and          



22

2

2

1

2

2

2

2

1
)(

xn
n

n

ex
n

n
xf














  

Straight forward integration of (3.3.1.2) gives 

 

















































































































































































































1

11

1

,
2

,
2

1,
2

,
2

1,
2

1,
2

2

2,
2

2,
2

)1(2
*)ˆ(

2121

1

2121

21

1

1

2

1
1

2

2
1

2

1
1

2

2

1

2

1
1

2

2

21

1

2

1

1

2

1
1

2

2

2

1

nn

a

nn

a

DST

nn

a

e

nn

a

e

nn

an

n
x

In
x

Iaan
x

In
x

I

n
x

In
x

I
nn

an

x

an

n
x

In
x

I
x

na
IR













                                                                                                                                    

   _______(3.3.1.3)                                                                                                                                                                                                                             

Where  dtte
n

eeI
nt

x

x

x

at

xn

at

aa 1

1

2

2

22

1

2
2

2
1

22
1

2

1
*

















 







  

 ;  ∅ =  
𝜃0

𝜃
     and 

  dxxeppxI px

x

1

0

1);( 

   refers to the standard incomplete gamma function   

3.3.2 Risk of  𝜽 𝑫𝑺𝑻𝟐 

Again, we obtain the risk of 
2

ˆ
DST under L(∆) with respect to 𝑥 1, given by 

 ]ˆ[)ˆ(
22

 LER DSTDST   
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A straight forward integration of (3.3.2.2) gives: 
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3.3.3 Risk of  𝜽 𝑫𝑺𝑻𝟑 

Finally, we obtain the risk of 
3

ˆ
DST under L(∆) with respect to 𝑥 1, given by 
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3.4 Relative  Risks  of  
iDST̂

 

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator 𝑥 1 in this case. For this 

purpose, we obtain the risk of 𝑥 1  under L() as: 
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A straightforward integration of (3.4.1) gives  
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Now, we define the Relative Risk of 1
ˆ
DST  with respect to 

1x  under L(∆) as 

follows –                 
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                                                                                   _______(3.4.3)                                                                         

Using (3.4.2) and (3.3.1.3) the expression for RR1 given in (3.4.3) can be obtained;  

Similarly, we define the Relative Risk of 
2

ˆ
DST  with respect to 1x  under L() as 

follows 
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                                                                                                 ______(3.4.4)

                                                                                               

                                                                                                        

 

The expression for RR2 given in (3.4.4) which can be obtained by using (3.4.2) and 

(3.3.2.3). 

Finally, we define the Relative Risk of 3
ˆ
DST  with respect to 1x  under L() as 

follows 



81 
 

)ˆ(

)(

3

1
3

DST

E

R

xR
RR




                                                                                         

_____(3.4.5)

                                                                                                     

 

Using (3.4.2) and (3.3.3.3) the expression for RR3 given in (3.4.5) can be obtained. 

Now, it is observed that RR1 , RR2  and  RR3  are  functions of  „‟, „n1‟, „n2‟, 

„‟ and „a‟. In order to study the behaviour of Relative Risk(s), we have taken a set 

of values  of  (n1, n2) = (4,4), (4,6), (4,8), (4,10) and (4,12), 𝛼𝑠  = 1%, 5% and 10% 

,  ∅ = 0.6 (0.2) 1.8 and a = ± 1 to ±3.  The recommendations regarding the 

applications of proposed testimators are provided as follows: 

The values of  n* and n** are defined in section 3.2. For some values of (n1, n2) 

these values are obtained as follows: 

Table -1 shows the values of  n* for   = 1.0 and  n1 = 4, n2  = 8 and  table - 2 

shows the values of  n**  for   = 0.8  and  n1 = 4, n2  = 10 

Table -1         = 1.0   

 

(n1, n2) α = 1% α = 5% 

(4, 8) 4.08 4.40 

 

Table -2         = 0.8   

 

(n1, n2) α = 1% α = 5% 

(4, 8) 4.17 4.62 

(4,10) 4.21 4.78 

 

Similarly the other values of n* and n** can be computed for other values of 

(n1, n2) considered here. 
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3.5 Recommendations  for  
iDST̂

 

In this section we wish to compare the  performance of  
1

ˆ
DST  , 

2

ˆ
DST and  

3

ˆ
DST with respect to the best available (unbiased) estimator of 1x  .   

3.5.1 Recommendations for 𝜽 𝑫𝑺𝑻𝟏 

1. For various set of values of (n1, n2), keeping α = 1% and allowing the variations 

in all the values of „a‟, it is observed that the proposed testimator  𝜃 𝐷𝑆𝑇1 

performs better than  𝑥 1   for 0.6 ≤ ∅ ≤ 1.4 considered here, except for few 

higher values i.e. ∅ = 1.8. The magnitude of RR is higher for all the values of 

„a‟ however maximum gain is achieved at a=3 and a= -3. Similar pattern is 

observed for other values of 𝛼𝑠  i.e. 5% and 10% but the magnitude of Relative 

Risk is higher at α` = 1%. It is also observed that for a = -3 and (n1, n2) = (4,8), 

𝜃 𝐷𝑆𝑇1 performs better. 

 

2. In the next comparison stage we have fixed a=3, and have allowed the variation 

for values of 𝛼𝑠  such as α = 1%, 5% and 10%. Maximum gain in risk is 

observed at ∅ = 1.0 (though it is true for the whole range of  ∅) again at α = 

1%, relative risk values are higher than those at 5% and 10% so a lower level of 

significance i.e. α = 1% is recommended for better performance of the proposed 

testimator. 

 

3. We have kept  „a‟ = 3.0 and have allowed the variation in α for n1 = 4, n2 = 12. 

It is seen that the Relative Risk values are much higher than unity, indicating 

superiority of the proposed testimator under Asymmetric Loss Function. A 
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value of α = 1% shows maximum relative risk value implying that it is the most 

preferred value. 

 

4. Again, for n1 = 4, n2 = 10, ∅ = 1.2  for different values of 𝛼𝑠  , the table of  

θ DST 1 , indicates that, it dominates the usual estimator for the whole range of ∅, 

with best performance at α = 1% and a = 3. 

 

5. It has also been observed that the relative risk increases as ∅ increases from 0.6 

to 1.0 reaches its maximum at ∅ = 1.0 and then it decreases. The relative risk 

increases as n2 increases for fixed value of n1, and is maximum at (4, 8). 

 

6. Thus, our recommendation for the use of 𝜃 𝐷𝑆𝑇1 is to take n1 = 4 and n2 = 8  i.e. 

n2 = 2 n1 and small values of 𝛼𝑠 . 

3.5.2 Recommendations for 𝜽 𝑫𝑺𝑻𝟐 and 𝜽 𝑫𝑺𝑻𝟑 

 We have considered two other choices of the weight functions viz. square of „k‟ 

and making the values of „k‟ to lie exactly between „0‟ and „1‟ and with these 

choices of shrinkage factors we have proposed  𝜃 𝐷𝑆𝑇2 and 𝜃 𝐷𝑆𝑇3, so it is natural to 

suggest which „k‟ should be taken. This can be achieved by making a comparative 

study of the relative risks of values for all the three choices. 

However a comparison of the values of relative risks for 𝜃 𝐷𝑆𝑇1, 𝜃 𝐷𝑆𝑇2 and 𝜃 𝐷𝑆𝑇3 

reveals that  

(i) 𝜃 𝐷𝑆𝑇2 is better than the usual estimator for 0.6 ≤ ∅ ≤1.8 however if n1 is 

small similar pattern is observed for 𝜃 𝐷𝑆𝑇3 . However the magnitude of 

relative risk is smaller in case of 𝜃 𝐷𝑆𝑇1 and 𝜃 𝐷𝑆𝑇3 in comparison to 𝜃 𝐷𝑆𝑇2. 
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So, we conclude that 𝜃 𝐷𝑆𝑇2 is preferred in comparison to 𝜃 𝐷𝑆𝑇1 and / or  

𝜃 𝐷𝑆𝑇3. 

(ii) Our focus is also on recommending the degree(s) of asymmetry. A careful 

study of the table of Relative Risks, reveals following choices: 

For  𝜃 𝐷𝑆𝑇1 , it is recommended that a = 3 and a = -3 for almost all the 

choices of n1 and n2  

For  𝜃 𝐷𝑆𝑇2 , it is recommended to take a = -3 and a = 3 for several choices of 

n1 and n2 

For  𝜃 𝐷𝑆𝑇3 , it is recommended to choose a = -3 and  a = 3 and α = 1% . The 

performance of  𝜃 𝐷𝑆𝑇3 is better than  𝑥 1 in almost the whole range of  ∅ (0.6 

≤ ∅ ≤ 1.4) 

CONCLUSION 

To conclude it is recommended to use „square‟ of the weight function (Shrinkage 

factor) with high positive / negative values of degrees of asymmetry along with 

lower level(s) of significance viz 1% and 5%.  However 1% is preferable as the 

magnitude of relative risk is higher in this case showing better control over risk of 

the proposed estimator. 
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Tables  showing  relative risk(s) of proposed testimator(s) with respect 

to the best available estimator. 
 

Table : 3.5.1.1     Relative Risk of  
1

ˆ
DST      𝛼 = 1%, n1 = 4, n2 = 4 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.60 1.028 1.286 1.435 1.063 2.592 3.138 

0.80 2.103 2.656 3.197 2.061 3.394 4.895 

1.00 3.852 4.902 6.384 3.835 4.388 6.405 

1.20 3.508 4.076 5.113 2.64 3.159 5.44 

1.40 1.893 2.129 2.629 1.535 2.009 4.921 

1.60 1.036 1.195 1.508 0.855 1.162 3.1 

1.80 0.639 0.765 0.995 0.5 0.664 1.849 

 

Table : 3.5.1.2     Relative Risk of  
1

ˆ
DST      𝛼 = 1%, n1 = 4, n2 = 8 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.60 1.255 1.467 1.583 1.885 2.328 2.959 

0.80 2.392 2.892 3.419 3.06 3.122 4.804 

1.00 4.015 5.052 6.564 3.769 4.379 6.689 

1.20 3.432 4.039 5.095 2.691 3.188 5.48 

1.40 1.839 2.101 2.611 1.571 2.031 3.952 

1.60 1.011 1.181 1.499 0.872 1.173 2.119 

1.80 0.625 0.758 0.989 0.508 0.669 1.858 

 

Table : 3.5.1.3     Relative Risk of  
1

ˆ
DST      𝛼 = 1%, n1 = 4, n2 = 10 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.60 1.339 1.528 1.631 1.109 3.77 3.586 

0.80 2.49 2.967 3.488 4.83 6.044 6.737 

1.00 4.064 5.096 6.617 3.75 4.375 9.438 

1.20 3.411 4.029 5.09 2.706 3.195 7.49 

1.40 1.825 2.094 2.605 1.581 2.037 4.96 

1.60 1.004 1.177 1.496 0.877 1.176 3.123 

1.80 0.622 0.755 0.987 0.511 0.671 1.861 
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Table : 3.5.1.4     Relative Risk of  
1

ˆ
DST      𝛼 = 5%, n1 = 4, n2 = 8 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.60 1.073 1.348 1.498 1.741 1.821 2.276 

0.80 2.022 2.668 3.206 4.55 5.587 4.22 

1.00 3.75 4.78 6.103 5.637 6.942 7.115 

1.20 3.899 4.253 5.206 2.619 3.632 5.939 

1.40 2.301 2.4 2.89 1.451 2.068 4.08 

1.60 1.302 1.405 1.73 0.859 1.218 3.564 

1.80 0.82 0.929 1.179 0.541 0.74 2.132 

 

Table : 3.5.1.5     Relative Risk of  
1

ˆ
DST      𝛼 = 10%, n1 = 4, n2 = 8 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.60 1.005 1.283 1.439 2.066 2.578 2.588 

0.80 1.833 2.523 3.065 3.567 3.055 3.929 

1.00 3.771 4.873 6.119 6.985 7.386 7.903 

1.20 4.793 4.72 5.529 2.753 4.258 5.462 

1.40 2.972 2.739 3.167 1.417 2.208 4.227 

1.60 1.668 1.635 1.947 0.858 1.291 3.059 

1.80 1.053 1.106 1.365 0.567 0.81 2.431 

 

Table : 3.5.2.1     Relative Risk of  
2

ˆ
DST      𝛼 = 1%, n1 = 4, n2 = 8 

∅ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.60 1.224 1.41 1.508 1.531 1.661 2.664 

0.80 3.037 3.746 4.437 3.93 3.367 3.359 

1.00 6.154 7.193 8.043 6.574 7.717 8.331 

1.20 4.046 4.508 5.469 3.635 4.902 5.35 

1.40 1.61 1.817 2.243 1.512 2.192 3.766 

1.60 0.82 0.969 1.241 0.724 1.02 2.237 

1.80 0.501 0.62 0.822 0.399 0.522 1.578 
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3.6 Shrinkage  Testimator  for  the  Variance  of  a  Normal  Distribution 

Let X be normally distributed with mean 𝜇 and variance  𝜎2, both unknown. 

It is assumed that the prior knowledge about 𝜎2 is available in the form of an 

initial estimate 𝜎0
2.  We are interested in constructing an estimator of  𝜎2 

using the sample observations and possibly the guess value  𝜎0
2.  We define a 

double stage shrinkage testimator of  𝜎2 as follows: 

1. Take a random sample  𝑥1𝑖   (𝑖 = 1,2, ___, 𝑛1) of size 𝑛1 from N(𝜇, 𝜎2) 

and compute  𝑥 1 =  
1

𝑛1
 𝑥1𝑖  , 𝑠1

2 =  
1

𝑛1−1
 (𝑥1𝑖 − 𝑥 1)2.  

2. Test the hypothesis 𝐻0 ∶  𝜎2 =  𝜎0
2  against the alternative 𝐻1 ∶  𝜎2 ≠  𝜎0

2 

at level α using the test statistic  
𝜈1𝑠1

2

𝜎0
2  ,  which is distributed as  𝜒2 with  ν1 

= (𝑛1 − 1) degrees of freedom. 

3. If 𝐻0 is accepted at α level of significance i.e. 𝑥1
2  <  

𝜈1𝑠1
2

𝜎0
2   <  𝑥2

2  ,where 

𝑥1
2 and  𝑥2

2  refer to lower and upper critical points of the unbiased 

portioning of the test statistic at a given level of significance α, take 

𝑘1 𝑠1
2 +   1 − 𝑘1 𝜎0

2  as the shrinkage estimator of 𝜎2 with shrinkage 

factor 𝑘1 dependent on the test statistic. 

4. If 𝐻0 is rejected, take a second sample 𝑥2𝑗   ( 𝑗 = 1,2, ___, 𝑛2) of size  𝑛2  = 

(𝑛 – 𝑛1) compute 𝑥 2 =  
1

𝑛2
 𝑥2𝑗  , 𝑠2

2 =  
1

𝑛2−1
 (𝑥2𝑗 − 𝑥 2)2  and take 

 𝜈1𝑠1
2 +  𝜈2𝑠2

2  𝜈1 + 𝜈2   where 𝜈2 = (𝑛2 − 1) as the estimator of  𝜎2. 

 

To summarize, we define the double- stage shrinkage Testimator 𝜎 𝐷𝑆𝑇1
2  of  𝜎2    

as follows: 
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 𝜎 𝐷𝑆𝑇1
2 =  

𝑘1 𝑠1
2 +   1 − 𝑘1 𝜎0

2    , 𝑖𝑓   𝐻0  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑠𝑝
2 =

 𝜈1𝑠1
2 +  𝜈2𝑠2

2 

 𝜈1 + 𝜈2 
, 𝑖𝑓 𝐻0  𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

  

Where  𝑘1 =
𝜈1𝑠1

2

𝜎0
2  𝜒2

 

Estimators of this type with  𝑘 arbitrary and lying between 0 and 1 have 

been proposed by Katti (1962), Shah(1964), Arnold and Al-Bayyati (1970), 

Waiker and Katti (1971), Pandey (1979) and  𝑘 being dependent on the test 

statistics by Waiker Schuurman and Raghunandan (1984). 

We define another double stage shrinkage Testimator  𝜎 𝐷𝑆𝑇2
2  of  𝜎2 by 

taking square of the shrinkage factor as  𝑘2 = 𝑘1
2 =  

𝜈1𝑠1
2

𝜎0
2  𝜒2

 
2

 which tends to 

zero more rapidly than 𝑘1  as follows 
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  𝜎0
2    , 𝑖𝑓   𝐻0   𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑠𝑝
2                                                         , 𝑖𝑓 𝐻0   𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

  

3.7 Risk of Testimators 

 

In this section we derive the risk of  two proposed  testimators which are defined in 

the previous section. 

3.7.1 Risk  of   𝝈 𝑫𝑺𝑻𝟏
𝟐  

The risk of  𝜎 2
𝐷𝑆𝑇1 under L(∆) is defined by   
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Straight forward integration of (3.7.1.2) gives 

𝑅 𝜎 𝐷𝑆𝑇1
2  =   

𝜎2

𝒱1
 

𝒱1
2 

  
𝜎2

𝒱2
 

𝒱2
2 

 

𝑅 𝜎 𝐷𝑆𝑇1
2  =  

𝜎2

𝒱1
 

𝒱1
2 

 
𝜎2

𝒱2
 

𝒱2
2 

 
 
 
 
 
 
 
 
 
 
 
  𝐼1

∗ −
2𝑎

𝜆 𝜒2
   

𝒱1

2
+ 1 

 𝐼   𝜒2
2𝜆 ,

𝒱1

2
+ 2 − 𝐼   𝜒1

2𝜆 ,
𝒱1

2
+ 2  

+    
𝑎𝒱1

𝜒2
 𝐼   𝜒2

2𝜆 ,
𝒱1

2
+ 1 −  𝐼   𝜒1

2𝜆 ,
𝒱1

2
+ 1  

− (𝑎𝜆 − 𝑎 + 1)  𝐼   𝜒2
2𝜆 ,

𝒱1

2
 −  𝐼   𝜒1

2𝜆 ,
𝒱1

2
   

–  
𝑎𝒱1

𝒱1+𝒱2
 𝐼   𝜒1

2𝜆 ,
𝒱1

2
+ 1 −  𝐼   𝜒2

2𝜆 ,
𝒱1

2
+ 1  

+  
𝑎𝒱1

𝒱1+𝒱2
 𝐼   𝜒1

2𝜆 ,
𝒱1

2
 −  𝐼   𝜒2

2𝜆 ,
𝒱1

2
  

−  𝐼   𝜒1
2𝜆 ,

𝒱1

2
 −  𝐼   𝜒2

2𝜆 ,
𝒱1

2
 + 1 +  𝐼2

∗
 
 
 
 
 
 
 
 
 
 
 
 

              

                   

                                                                                                            _____  (3.7.1.3)   

        Where    dxxeppxI px

x

1

0

1);( 

   refers to the standard incomplete 

gamma function, 𝜆 =  
𝜎0

2

𝜎2
  and 
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  𝐼2
∗ =  

𝑒−𝑎

2
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3.7.2 Risk of  𝝈 𝑫𝑺𝑻𝟐
𝟐   

Again, we obtain the risk of  𝜎 2
𝐷𝑆𝑇2  

under L(∆) with respect to 𝑠𝑝
2, given by 
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Straight forward integration of (3.7.2.2) gives 
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Where    dxxeppxI px
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3.8 Relative  Risk of  𝝈 𝑫𝑺𝑻𝒊
𝟐  

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator 𝑠𝑝
2
 in this case. For 

this purpose, we obtain the risk of  𝑠𝑝
2
  under  22 ,ˆ EL  as: 
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Now, we define the Relative Risk of  2,1,ˆ 2 i
iDST   with respect to 𝑠𝑝

2 under 

 22 ,ˆ L  as follows:              
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Using (3.8.2) and (3.7.1.3) the expression for RR1 given in (3.8.3) can be obtained; 

it is observed that RR1 is a function of „𝜈1‟, „𝜈2‟, „λ‟, „‟ and „a‟. 

Finally, we define the Relative Risk of 2

2ˆ ST by 

 )ˆ(

)s(
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E
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R
RR


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_______(3.8.4)                                                                                                                                      

 

The  expression for RR2 is given by (3.8.4) can be obtained by using (3.8.2) and 

(3.7.2.3).  Again we observed that 2RR   is a function of  „𝜈1‟, „𝜈2‟, „λ‟, „‟ and „a‟. 

3.9 Recommendations for  𝝈 𝑫𝑺𝑻𝒊
𝟐  

In this section we wish to compare the performance of 1

2ˆ DST
 
and 2

2ˆ DST  with 

respect to the best available (unbiased) estimator of  𝜎2  𝑖. 𝑒.  𝜎 2. 
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3.9.1 Recommendations  for  𝝈 𝑫𝑺𝑻𝟏
𝟐  

It is observed that the above expressions (3.8.3) and (3.8.4) are functions of  

 𝛼, 𝜆, 𝜈1, 𝜈2  and the degrees of asymmetry " a ".  For the comparison purpose we 

have considered several values for these viz. (𝜈1, 𝜈2) = (6,6), (6,9), (6,12), (6,15), 

(6,18); (8,8), (8,12), (8,16), (8,20), (8,24) and (10,10), (10,15), (10,20), (10,25), 

(10,30) ; α = 1%, 5% and 10%, and 𝑎 = -3, -2, -1, 1, 1.25, 1.50 and 𝜆 = 

0.2  0.2  2.0 . 

In all there will be several tables for these data sets of Relative Risk (RR1). We 

have presented some of the tables at the end of the chapter.  However, our 

recommendations based on all these findings are as follows: 

(i)      The proposed testimator 1

2ˆ DST
 
performs better than the pooled estimator 

𝑠𝑝
2 for almost all the values considered as above. However some of the best 

performances are outlined specifically. 

 

(ii)     1

2ˆ DST
 
dominates the usual estimator when (𝜈1, 𝜈2) = (6,6) ; α = 1% ; a = -1 

for 0.2 ≤  𝜆 ≤ 2.0  and for a = +1 the range of  𝜆 is  0.2 ≤  𝜆 ≤ 2.0 . 

 

(iii) As  „𝜈2‟ increases the RR1 values are still greater than unity, but decrease in 

magnitude also the range of „𝜆‟ changes slightly now it becomes 0.6 ≤  𝜆 ≤

1.8 for negative values of „a‟. A similar pattern is observed when „a‟ is positive 

for almost 0.6 ≤  𝜆 ≤ 1.8 . 

(iv) The performance of 1

2ˆ DST
 
is the best when a = +1 or a = -1 in terms of the 

range of  𝜆, the magnitude of RR1 values for the first data set i.e. (6,6). The 

same remains true when  𝜈2 increases i.e. (6,9) etc. Here we have considered 

these values for α = 1%. 
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(v)    As the other quantity of interest i.e. the level of significance in addition to the 

degrees of asymmetry. We change „α‟ to 5% and 10%  it is observed that still 

the proposed testimator performs better for the „ranges‟ mentioned as above. i.e. 

when „a‟ is negative 0.2 ≤  𝜆 ≤ 2.0 and when „a‟ is positive it becomes 

0.2 ≤  𝜆 ≤ 1.6  indicating that range shrinks for overestimation case. Still the 

values of RR1 are more than unity but their magnitude decreases slightly. 

 

(vi) Now, we have considered the other values of (𝜈1, 𝜈2) as mentioned above 

and it is observed that  RR1 values are still higher than unity for these different 

data sets, with almost the same ranges of „𝜆‟ as above for positive as well as 

negative values of „a‟. Again as 𝜈2 increases the magnitude of  RR1 values 

decreases but not falling below 1. 

 

(vii) Overall recommendations are:  𝜈1 should be small i.e. 𝜈1 ≯ 10 and  𝜈2 ≤ 

3𝜈1, α = 1%  i.e. a smaller level of significance and for various degrees of 

asymmetry i.e. „a‟ could be extreme negative as a = -3 or it could be 

considerably positive i.e. a = 1.5. The best suggested values are a = -1 or a = +1. 

 

(viii) When these RR1 values are compared with the Mean Square values of 

1

2ˆ DST  proposed by Pandey and Srivastava (1987) it is observed that the 

magnitude of RR1 values are HIGHER, the range of „𝜆‟ increases considerably 

as it was (0.5 – 1.5) and now it becomes almost (0.2 – 2.0) earlier it was 

recommended that 𝜈2 ≤ 2𝜈1 now it becomes 𝜈2 ≤ 3𝜈1  a considerable increase 

in the choice of 𝜈2. Implying that the use of ASL not only allows to take 

account for various degrees of asymmetry (i.e. choose „a‟ accordingly when 

over / under estimation is more serious) but also increases the range of „𝜆‟, 𝜈2 

etc. 
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3.9.2 Recommendations  for  𝝈 𝑫𝑺𝑻𝟐
𝟐  

We have also proposed 2

2ˆ DST
 
which is obtained by squaring the shrinkage factor. 

The performance of it, is compared with respect to 𝑠𝑝
2 for the same data as 

considered for 1

2ˆ DST  . Again, similar tables of RR2 will be generated for these 

data sets. Our recommendations based on all these computations are as follows: 

(i) It is observed that the magnitude of  RR2 values is higher than RR1 values. 

The proposed testimator performs better than the best available estimator for 

almost all the values considered here. The best performing data sets are 

mentioned briefly. 

 

(ii) 2

2ˆ DST
 
dominates 𝑠𝑝

2 when (𝜈1, 𝜈2) =  (6,6), α = 1% for a = -1, 0.2 ≤ 𝜆 ≤

2.0  and for a = +1,  0.2 ≤ 𝜆 ≤ 2.0  as obtained earlier. 

 

(iii) As „𝜈2‟ increases the RR2 values decrease in their magnitude (but still above 

unity). Here the range of „𝜆‟ change shortens slightly as it is now 0.6 ≤ 𝜆 ≤

1.8 for negative values of „a‟ however when „a‟ is positive it remains 

unchanged i.e. 0.2 ≤ 𝜆 ≤ 2.0 . 

(iv) The performance of 2

2ˆ DST
 
is at its best when a = ± 1. As „𝜈2‟ increases i.e. 

for the other data set (6,9), (6,12), (6,15) or (6,18) the magnitude of RR2 

decreases slightly but not below unity. Again, if we increase  𝜈1 i.e. (8,8), 

(8,12) etc. Similar behaviour of RR2 values is observed but their magnitude 

change. 

 

(v) Now taking  𝛼 =  5%  and  𝛼 =  10%  when the values of  RR2 are obtained 

again these values are „good‟ in the sense of being more than unity. But 

there is a decrease in the magnitude of  RR2 values as „𝛼‟ increase. 
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(vi) We therefore recommend as, 𝜈1 should be small i.e. 𝜈1 ≯ 10 and  𝜈2 ≤ 3𝜈1, 

and choose  α = 1% .  However the degree of asymmetry could chosen for a 

fairly large range i.e. from a = -3 to a = 1.5. The best performing values are 

observed for a = ±1. 

 

(vii) Comparing these RR2 values with those obtained by Pandey and Srivastava 

(1987) under the MSE criterion (or the use of „SELF‟) indicate that these 

values are „better‟ than those values showing that the application of 

Asymmetric Loss Function yields better result also providing a choice to 

tailor the risk by choosing „a‟ appropriately. Further the range of „𝜆‟ 

increases. 

 

CONCLUSIONS: 

Two shrinkage  testimators  viz.  1

2ˆ DST  and 2

2ˆ DST have been proposed for 

the variance of a Normal distribution. It is concluded that (i) use asymmetric 

loss function to study the risk properties. (ii) 𝜈1 should be small preferably 

should not exceed 10 for both the cases. (iii) 𝜈2 ≤ 3𝜈1 (iv) take α = 1% and 

take 0.2 ≤ 𝜆 ≤ 2.0  for negative values of „a‟ and take  0.2 ≤ 𝜆 ≤ 1.8  for 

positive values of „a‟. (v) take „SQUARE‟ of the shrinkage factor. 

 

 

Tables  showing  relative risk(s) of proposed testimator(s) with respect 

to the best available estimator. 
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Table : 3.9.1.1          Relative Risk of  1

2ˆ DST      𝛼 = 1% , (𝜈1, 𝜈2) = (6, 6) 

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50 

0.20 1.059 1.531 1.229 1.835 1.884 1.890 

0.40 1.257 1.649 2.081 2.06 1.984 1.975 

0.60 1.658 2.618 3.714 3.514 3.762 3.509 

0.80 3.484 4.013 5.103 5.913 4.623 3.974 

1.00 4.433 5.486 6.834 7.02 5.153 4.851 

1.20 4.086 5.332 6.08 6.884 4.774 3.368 

1.40 3.753 4.414 5.827 4.499 3.213 2.336 

1.60 2.357 3.417 4.518 2.909 2.087 1.541 

1.80 1.637 2.339 3.117 1.911 1.354 0.999 

2.00 1.239 1.735 2.236 1.295 0.899 0.654 
 

 

Table : 3.9.1.2        Relative Risk of  1

2ˆ DST       𝛼 = 5% , (𝜈1, 𝜈2) = (6, 6) 

 λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50 

0.20 1.379 1.831 1.813 1.49 1.692 1.057 

0.40 1.972 1.912 2.436 2.592 2.54 1.536 

0.60 1.339 2.021 3.939 2.855 2.711 2.676 

0.80 2.271 3.074 4.42 3.909 3.568 3.334 

1.00 3.593 4.462 5.081 5.001 4.111 4.67 

1.20 4.153 4.172 5.051 3.563 2.842 2.267 

1.40 3.549 3.736. 4.476 2.299 1.837 1.472 

1.60 2.754 2.888 3.762 1.634 1.294 1.034 

1.80 2.182 2.166 3.133 1.212 0.945 0.748 

2.00 1.815 1.658 2.649 0.926 0.707 0.551 
 

Table : 3.9.1.1       Relative Risk of  1

2ˆ DST
      
𝛼 = 1% , (𝜈1, 𝜈2) = (8, 8) 

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50 

0.20 1.486 1.74 1.481 1.775 1.792 1.851 

0.40 1.989 1.839 1.861 2.693 2.606 2.56 

0.60 1.617 2.722 2.195 3.211 3.123 3.249 

0.80 3.301 3.041 3.476 4.793 4.437 4.311 

1.00 4.105 5.296 6.005 6.403 5.446 5.405 

1.20 4.077 4.315 5.212 5.968 4.572 3.507 

1.40 3.886 3681 4.75 3.679 2.869 2.256 

1.60 2.5 2.75 3.089 2.326 1.797 1.413 

1.80 1.782 2.675 2.395 1.534 1.159 0.897 

2.00 1.392 2.069 2.338 1.059 0.779 0.589 
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Table : 3.9.2.1        Relative Risk of  2

2ˆ DST
     
𝛼 = 1% , (𝜈1, 𝜈2) = (6, 6) 

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50 

0.20 0.647 1.117 1.897 1.214 1.164 1.156 

0.40 0.652 1.997 2.725 1.452 1.347 1.299 

0.60 1.381 2.054 3.202 2.629 2.496 3.603 

0.80 3.826 4.273 4.73 4.669 3.67 4.078 

1.00 5.225 5.732 5.933 5.684 5.396 6.077 

1.20 4.882 4.758 4.747 4.077 4.857 4.248 

1.40 3.444 3.075 3.385 3.59 3.369 2.531 

1.60 2.035 2.952 3.022 2.702 1.951 1.464 

1.80 1.397 1.976 2.755 1.68 1.181 0.871 

2.00 1.06 1.463 2.735 1.103 0.752 0.541 
 

Table : 3.9.2.2        Relative Risk of  2

2ˆ DST
     
𝛼 = 1% , (𝜈1, 𝜈2) = (8, 8) 

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50 

0.20 0.74 1.306 1.328 1.143 1.074 1.036 

0.40 0.61 1.962 2.865 1.177 1.173 1.909 

0.60 1.285 2.009 4.475 3.825 3.595 3.514 

0.80 3.539 4.15 5.735 4.962 4.863 3.643 

1.00 6.627 7.176 7.917 6.658 5.38 4.939 

1.20 4.728 5.556 5.968 4.261 4.945 3.906 

1.40 3.439 3.151 4.721 3.488 2.737 2.179 

1.60 2.076 2.192 3.519 2.069 1.577 1.233 

1.80 1.466 1.692 3.76 1.313 0.968 0.736 

2.00 1.151 1.406 2.141 0.885 0.631 0.465 
 

Table : 3.9.2.3        Relative Risk of  2

2ˆ DST
     
𝛼 = 5% , (𝜈1, 𝜈2) = (6, 6) 

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50 

0.20 0.848 1.521 1.017 1.577 1.549 1.582 

0.40 0.957 1.87 2.343 1.947 1.967 1.927 

0.60 1.987 1.302 2.97 2.942 2.777 2.698 

0.80 3.798 2.522 4.836 4.478 3.225 3.658 

1.00 4.434 4.561 5.914 5.711 4.446 5.626 

1.20 3.403 3.652 4.607 3.579 2.887 2.326 

1.40 2.456 3.585 3.919 2.183 1.751 1.413 

1.60 1.887 2.773 2.884 1.487 1.171 0.936 

1.80 1.555 2.272 2.015 1.065 0.818 0.641 

2.00 1.357 1.964 1.388 0.79 0.589 0.45 
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Chapter – 4 

 

SINGLE SAMPLE SHRINKAGE TESTIMATORS UNDER GENERAL 

ENTROPY  LOSS FUNCTION 

 

4.1 Introduction  

 The present chapter deals with one sample shrinkage testimators under 

General Entropy Loss Function (GELF) for single parameter Exponential 

distribution and Normal distribution. 

The aim of systems reliability is to forecast of various system performance 

measures such as mean life time, guarantee period and reliability etc. In general, 

the type of failure distribution depends on the failure mechanism of components. If 

the failure rate is constant, which is mostly true for electronic components during 

the major part of their useful life, the failure time follows an exponential 

distribution with the p.d.f. 

𝑓 𝑥; 𝜃 =  
1

𝜃
exp −𝑥 𝜃  , 𝑥 ≥ 0, 𝜃 > 0

0                    , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
                                     ______(4.1.1)                                                                     

 

In the context of life testing and reliability estimation, numerous data have 

been examined and it has been found that exponential distribution fits well for 

most of the cases. Several authors have proposed estimators, testimators with 

different choices of shrinkage factors (S.F.) under different loss functions. The 

choice of an appropriate loss function is guided by financial consideration apart 

from other considerations such as over estimation being more serious than under- 

estimation or vice-versa.   
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Shrinkage testimators for the mean 𝜇 of a Normal distribution N(𝜇, 𝜎2) when 

variance 𝜎2 is known or unknown, have been proposed by Waiker, Schuurman and 

Raghunandan (1984). Recently Pandey et. al. (1987) considered some shrinkage 

testimators for the variance estimator under Mean Square Error criterion (MSE).  

Parisan and Farsipour (1999), Misra and Meuten (2003), Pandey et. al. (2004), 

Ahmadi et. al. (2005), Xiao et. al. (2005), Prakash and Singh (2006), Prakash and 

Pandey (2007) and others have considered the estimation procedures under the 

LINEX loss function in various contexts.  Pandey et. al. (2007) have proposed 

shrinkage testimator(s) variance and have studied the properties of these under the 

Asymmetric loss function (ASL). The present work is an attempt to study the risk 

properties of shrinkage testimator(s) for the variance of Normal distribution under 

a more general loss function viz. (GELF).  Pandey et. al. (2007) have studied the 

risk properties of the same for positive degree of asymmetry only, under ASL.  

Where as this study attempts to find the range for positive as well as negative 

degrees of asymmetry under GEL where the shrinkage testimator of variance 

performs better than the UMVUE. 

 

4.1.1 General Entropy Loss Function (GELF) 

A suitable alternative to modified LINEX loss is the General Entropy Loss 

(GEL) proposed by Calabria and Pulcini (1996) given by: 

     0,1ˆlnˆ),ˆ(  ppL
p

E                                     ______ (4.1.1.1) 

Whose minimum occurs at 𝜃 =  𝜃. 

This loss is a generalization of the entropy loss used by several authors (for 

example, Dey and Liu, 1992) where the shape parameter „p‟ is equal to unity (1).  

The more general version of (4.1.1.1) allows different shapes of the loss function 
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to be considered (say  when  p > 0, a positive error   ˆ  causes more serious 

consequence than a negative error and when p < 0, then negative error is more 

serious). If we are considering prior distributions, then the Bayes estimate of   

under GELF is in a closed form and is given by 

   ppE E
1

ˆ


                                                                              ______(4.1.1.2) 

provided that  pE   exists and is finite. 

4.1.2 Incorporating a Point Guess and 𝜽 𝑺𝑻 

In many real life situations the experimenter may have some prior 

information regarding the parameter being estimated due to some past experience 

or similar kind of studies and it is thought to apply this information to inference 

procedures of the original model.  If the prior information is available only in the 

form of a point (a single) value (say) 0  for  . For example a medical practitioner 

knows that in how many days the patient may get cured (say) 7 days or 10 days 

due to his past experience of treatment. Here we may take 0  = 7 days. For such 

situations it is suggested to start with the current (sample) information, construct an 

estimator 𝜃  (MVUE or UMVUE) and modify it by incorporating the guess 0  

(sometimes called natural origin) so that the resulting estimator or testimator 

though perhaps biased, has smaller risk than that of ̂  in some interval around 0 .   

In this chapter an attempt has been made to demonstrate that how 

shrinkage testimation procedure works under GELF. 

We have proposed the shrinkage testimators for the scale parameter of an 

Exponential distribution in section 4.2.  The risks of the proposed testimators have   

been derived in section 4.3.  The section 4.4 deals with the relative risk(s) of these 
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two estimators. Section  4.5 concludes with the comparison of UMVUE and the 

proposed shrinkage testimators in terms of  their relative risks.  Suggestion for the 

choice of shrinkage factor is made and recommendations regarding the choice of 

level of significance and degree of asymmetry have been made. 

In section 4.6 we have proposed the two different shrinkage testimators for  

the  variance  of  a  Normal  distribution and we have studied the risk properties of  

these two shrinkage testimators under General Entropy Loss Function.  Section 4.7 

deals with the derivation of the risk(s) of these two estimators.  Section 4.8 deals 

with the relative risk(s) of these two estimators. Section 4.9 concludes with the 

comparison of  UMVUE  and the proposed shrinkage testimatiors in terms of their 

relative risks.  Further in the same section a suggestion for the shrinkage factor is 

made, along with the choices of degrees of asymmetry and level of significance. 

4.2  Shrinkage Testimator(s) for Scale Parameter of an Exponential 

Distribution. 

Let x have the distribution defined in (4.1.1). It is assumed that the prior 

knowledge about 𝜃 is available in the form of an initial estimate 𝜃0.  We are 

interested in constructing an estimator of θ possibly using the information about 𝜃 

and the sample observations: nxxx .......,, 21 . The proposed shrinkage testimator 

can be described as follows: 

(i) Compute the sample mean 



n

i

ix
n

x
1

1
 which is the „best‟ estimator of θ in 

absence of any  information about θ.  (ii) Test the hypothesis H0 :  𝜃 =  𝜃0 against 

H1 :  𝜃 ≠ 𝜃0 at α level using the test statistic 
0

2


xn
 which follows χ

2 
– distribution 

with 2n degrees of freedom.                   
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We define the shrinkage testimator 
1

ˆ
ST  and 

2

ˆ
ST of  θ as follows: 

 
   



 


otherwisex

xnifkxk
ST

;

2;1ˆ
2

20

2

10

1


                       _______(4.2.1) 

     where k  being dependent on test statistic is given by  2

02 xnk  and 

 2

1

2

2

2    

       Now, taking the „square‟ of  k  (i.e. 2kk  ), another testimator is defined as 

    




 


otherwisex

acceptedisHifxnxxn
ST

;

;212ˆ 00

22

0

22

0

2


   _____(4.2.2)                    

4.3    Risk of Testimators 

In this section we derive the risk of these two testimators which are defined in the 

previous section. 

4.3.1 Risk of  𝜽 𝑺𝑻𝟏 

The risk of 
1

ˆ
ST  under   ,ˆEL   is defined by   

 ],ˆˆ[)ˆ(
11

 ESTST LER                                                                                                                                                                                     
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Where     )exp()1()(
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A Straight forward integration of (4.3.1.2) gives 
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4.3.2 Risk of  𝜽 𝑺𝑻𝟐 

Similarly, we obtain the risk of 
2

ˆ
ST under   ,ˆEL   given by 
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A straight forward integration of (4.3.2.3) gives: 
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4.4 Relative  Risks  of  
iST̂

 

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator x  in this case. For this 

purpose, we obtain the risk of x under   ,ˆEL  as:                                                                                                                                                              
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A straightforward integration of (4.4.1) gives  
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Where        ndndn  ln)(    refers to the Euler‟s psi function. 

Now, we define the Relative Risk of 1
ˆ
ST  with respect to x under   ,ˆEL   as 

follows:              
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Using (4.4.2) and (4.3.1.3) the expression for RR1 given in (4.4.3) can be obtained;  

Similarly, we define the Relative Risk of 
2

ˆ
ST by 

)ˆ(
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E
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xR
RR
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                                                                            ______(4.4.4) 

The expression for  RR2 is given by (4.4.4) which can be obtained by using 

equations (4.4.2) and (4.3.2.3).   

Now, it is observed that both RR1 and RR2   are functions of „∅‟, „n‟, „‟ and „p‟. 

4.5 Recommendations  for  
iST̂

 

In this section we provide the comparison of UMVUE and the proposed 

shrinkage testimators in terms of their relative risks.  Recommendations regarding 

the applications of proposed testimators are provided. 

 In order to study the behaviour of 
1

ˆ
ST

 
and 

2

ˆ
ST  and the effect of shrinkage 

factor (S.F.) on the proposed testimators we have computed the values of 

Relative Risk (RR1) for the following set of values. n = 5, 8, 10, 12; α = 1%, 

5%, 10%  ; p = -3, -2, -1 and p = 2, 3, 4.  In all there will be several tables of 

RR for different variations in „p‟, „α‟ and „n‟. We have considered  = 0.2 

(0.2) 1.6. Some of the tables have been assembled in the appendix by (i) 

keeping „α‟ to be fixed and varying „p‟ (ii) keeping „p‟ to be fixed and 

varying „α‟ as we wish to recommend for these two values.   

 

 For n = 5, α = 1% and for different values of „p‟ (positive as well as 

negative) 
1

ˆ
ST  performs better than the conventional estimator for all the 

values of „p‟ with its best performance for p = -3 and p = 2 for the whole 

range of . Considered here i.e. 0.2 ≤  ≤ 1.6. 
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 Next we have changed to α = 5%.  Similar pattern of behaviour is observed 

for the relative risk and p = -3 and p = 2 provide the best results. However 

the magnitude of RR is small compared to α = 1% values. 

 

 We have also considered α = 10%.  In order to observe the behaviour for still 

higher level of significance just to confirm whether under different loss 

function the value of „α‟ gets changed or not.  We found that 
1

ˆ
ST  performs 

still better than the conventional estimator but the magnitude of RR values is 

still small though in all the cases it is above unity. 

 

 So, a small value of α = 1% is recommended.  Also by varying „n‟ it is 

observed that RR values are higher for n = 5 compared to its other values of 

8, 10 and 12.  Hence a smaller „n‟ is suggested. A higher RR1 value indicates 

a „better‟ control over the risk.  So, by choosing appropriate value of „p‟ and 

„α‟ a better gain in terms of performance of 
1

ˆ
ST  can be achieved. 

 

 
2

ˆ
ST  , is another testimator proposed by taking the „SQUARE‟ of shrinkage 

factor. We have again prepared the relevant tables of Relative Risk (RR2) of 

2

ˆ
ST  with respect to the conventional estimator for the same set of values as 

we have considered to study the behaviour of 
1

ˆ
ST . We observe the 

following: 

 

 For 
2

ˆ
ST  where we have considered the square of S.F. Following behaviour 

of RR is observed.  For almost the entire range of   i.e. 0.2 ≤  ≤ 1.4 the 

values of RR (in terms of magnitude) are higher than those for S.F.(without 

square). 
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 Almost similar pattern of RR for different values of „p‟ and „α‟ has been 

observed for the values of n considered here.  The S.F. can be made small 

either by taking smaller values of  α  or by fixing α and taking higher powers 

of „k‟. 

 

 So, the proposed testimator is having smaller risk than the conventional 

estimator provided n is small, α is small and square of S.F. is considered.  

 

Tables  showing  relative risk(s) of proposed testimator(s) with respect to the 

best available estimator. 
 

 

Table : 4.5.1.1        Relative Risk of 
1

ˆ
ST  𝛼 = 1% , n = 5 

 ɸ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 0.959 0.777 0.568 1.002 0.953 0.968 

0.40 1.327 0.918 0.595 1.935 1 1 

0.60 1.893 1.327 0.745 2.369 1.144 1.071 

0.80 2.183 1.821 0.949 3.448 1.966 1.476 

1.00 3.003 1.934 1.048 4.583 3.359 2.257 

1.20 1.669 1.641 1.626 3.008 2.301 1.453 

1.40 1.383 1.291 1.362 1.772 1.654 1.464 

1.60 1.175 1.026 1.113 0.744 0.723 0.741 
 

 

 

Table : 4.5.1.2        Relative Risk of 
1

ˆ
ST  𝛼 = 1% , n = 8 

 ɸ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 0.995 0.995 0.984 0.957 0.976 0.968 

0.40 1.046 0.998 1 1.004 0.977 0.986 

0.60 1.429 1.215 1.087 1.006 1.002 1.001 

0.80 2.149 1.742 1.371 2.11 1.394 1.197 

1.00 2.435 2.124 1.603 4.259 3.894 2.992 

1.20 1.943 1.839 1.505 3.227 2.768 1.824 

1.40 1.411 1.351 1.211 1.408 1.166 1.096 

1.60 1.071 1.002 0.942 0.48 0.513 0.528 
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Table : 4.5.1.3        Relative Risk of 
1

ˆ
ST  𝛼 = 5% , n = 5 

 ɸ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 1.12 1.026 0.991 1.049 1.022 1.012 

0.40 1.371 1.179 1.051 1.09 1.04 1.021 

0.60 1.449 1.437 1.197 1.314 1.122 1.058 

0.80 1.575 1.589 1.36 2.17 1.375 1.17 

1.00 1.587 1.63 1.404 3.488 2.793 1.404 

1.20 1.28 1.391 1.299 2.844 1.771 1.35 

1.40 1.139 1.182 1.132 1.524 1.233 1.136 

1.60 1.035 1.02 0.979 0.722 0.739 0.76 

 

Table : 4.5.1.4        Relative Risk of 
1

ˆ
ST  𝛼 = 5% , n = 8 

 ɸ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 1.033 1.017 1.007 1.008 1.004 1.002 

0.40 1.151 1.088 1.047 1.096 1.053 1.035 

0.60 1.341 1.203 1.097 1.11 1.047 1.023 

0.80 1.545 1.403 1.216 1.303 1.089 1.007 

1.00 1.555 1.487 1.304 2.055 1.396 1.18 

1.20 1.324 1.326 1.232 1.998 1.319 1.111 

1.40 1.099 1.094 1.063 1.062 0.992 0.951 

1.60 0.947 0.918 0.907 0.556 0.606 0.627 

 

Table : 4.5.2.1        Relative Risk of 
2

ˆ
ST  𝛼 = 1% , n = 5 

 ɸ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 0.919 0.883 0.916 0.82 0.883 0.923 

0.40 1.302 1.027 0.932 0.968 0.983 0.99 

0.60 2.034 1.608 1.231 1.261 1.091 1.035 

0.80 2.215 2.396 1.671 3.366 2.363 1.621 

1.00 2.463 2.508 1.843 6.484 5.819 3.158 

1.20 1.786 1.993 1.617 4.733 4.083 3.031 

1.40 1.449 1.5 1.288 1.617 1.273 1.237 

1.60 1.219 1.169 1.023 0.495 0.513 0.54 
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Table : 4.5.2.2        Relative Risk of 
2

ˆ
ST  𝛼 = 1% , n = 8 

 ɸ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 0.979 0.943 0.952 0.874 0.881 0.886 

0.40 0.978 0.994 1.001 0.906 0.948 0.969 

0.60 1.405 1.183 1.057 1.008 1.004 1.003 

0.80 2.361 1.878 1.431 2.305 1.385 1.144 

1.00 2.628 2.306 1.697 5.258 3.935 2.094 

1.20 1.883 1.774 1.467 2.069 2.689 1.952 

1.40 1.29 1.205 1.09 0.768 0.759 0.764 

1.60 0.963 0.871 0.816 0.291 0.322 0.331 

 

4.6 Shrinkage  Testimator  for  the  Variance  of  a  Normal  Distribution 

Shrinkage testimators for the mean 𝜇 of a Normal distribution N(𝜇, 𝜎2) 

when variance 𝜎2 is known or unknown, have been proposed by Waiker, 

Schuurman and Raghunandan (1984). Recently Pandey et. al. (2007) have 

studied the risk properties for the positive degree of asymmetry. Where as 

this study finds the range for positive as well as negative degrees of 

asymmetry where the shrinkage testimator perform better than the UMVUE. 

 

Let X be Normally distributed with mean 𝜇 and variance 𝜎2. We have 

proposed a single sample shrinkage testimator. It is assumed that the prior 

knowledge about 𝜎2 is available in the form of an initial estimate 𝜎0
2. Using 

the sample observations nxxx .......,, 21  and possibly the given information 

we wish to construct a shrinkage testimator.  The procedure is as follows: 

 

1. First test with a sample of size n, the null hypothesis 𝐻0 ∶  𝜎2 =  𝜎0
2  against 

the alternative 𝐻1 ∶  𝜎2 ≠  𝜎0
2 using the test statistics  

𝜈𝑠2

𝜎0
2  , where ν = (n -1) 
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and  𝑠2 =  
1

𝑛−1
 (𝑥𝑖 − 𝑥 )2. The test statistics is distributed as 𝜒2 with ν 

degrees of freedom. 

2. If 𝐻0 is accepted at α level of significance i.e. 𝑥1
2  <  

𝜈𝑠2

𝜎0
2  <  𝑥2

2  where 𝑥1
2 

and  𝑥2
2 are the lower and upper points of the uniformly most powerful 

unbiased (UMPU) test of 𝐻0, use the conventional shrinkage estimator with 

shrinkage factor 𝑘 =
𝜈𝑠2

𝜎0
2𝑥2

 , which is inversely proportional to 𝜒2 and it 

depends on the test statistic, so the arbitrariness in the choice of shrinkage 

factor has been removed by making it dependent on the test statistic. 

3. If 𝐻0 is rejected, use 𝑠2, the Uniformly Minimum Variance Unbiased 

Estimator (UMVUE) as the estimator of 𝜎2. 

 

Now, the proposed shrinkage testimator 𝜎 𝑆𝑇1
2  of  𝜎2 is 

 

𝜎𝑆𝑇1
2 =   

𝑘 𝑠2 +   1 − 𝑘 𝜎0
2      ,   𝑖𝑓 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

𝑠2                      ,    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

The next proposed shrinkage testimator 𝜎 𝑆𝑇2
2  of  𝜎2 is 

 

𝜎 𝑆𝑇2
2 =   

𝑘1 𝑠2 +   1 − 𝑘1 𝜎0
2      ,   𝑖𝑓 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

𝑠2                      ,    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

Where   𝑘1 =
𝜈𝑠2

𝜎0
2  𝑥2

   

  Estimators of this type with and arbitrary k (0 ≤ k ≤ 1) have been proposed 

by Pandey and Srivastava (1987) and others. In all such studies it has been 

found that the shrinkage estimators work well if k is near zero and „n‟ is small 

and „α‟ is also small.  The present work deal with the shrinkage factor 

dependent on the test statistic and arbitrary „k‟. 
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 We have studied the risk properties for several choices of level of significance, 

sample sizes, a wide range of  λ and several values of degrees of asymmetry.  

 

4.7 Risk of Testimators 

In this section we derive the risk of these two testimators which are defined in the 

previous section. 

4.7.1 Risk of  𝝈 𝑺𝑻𝟏
𝟐   

The risk of  𝜎 2
𝑆𝑇1 under   ,ˆEL   

is defined by   

 ],ˆˆ[)ˆ(
11

22  ESTST LER 
                                                                                                                                                                        

                

 











































2

22

0

2
2

12

0

2
2

22

0

2
2

12

0

2
2

2

22

0

2
2

1

2

22

0

2
2

1

2

0

2 1
































ss
p

ss
sE

s
p

s
kksE



                                                                                                                                                                                  

                                                       ______(4.7.1.1) 

   

22

2

2

2

2
22

2

2

2

2

0

22

22

2

2

0

2

0

2

22

2

2

0

2

0

2

)(1ln)(1ln)(

)(ln)(

2
0

2
2

2
0

2
1

2
0

2
2

2
0

2
1

2
0

2
2

2
0

2
1

2
0

2
2

2
0

2
1

dssf
s

p
s

dssf
s

p
s

dssf

dssf
sk

pdssf
sk

pp

p










































































 








 


















































 

   ______(4.7.1.2) 

Where  
  22

1

1
22

2

2
2

2

2
2

1
)( dsessf

s




























 

Straight forward integration of (4.7.1.2) gives     
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𝑅  𝜎 𝑆𝑇1
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4.7.2 Risk of  𝝈 𝑺𝑻𝟐
𝟐   

Again, we obtain the risk of  𝜎 2
𝑆𝑇2  

under   ,ˆEL    
with respect to 𝑠2, given by 
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Straight forward integration of (4.7.2.2) gives 
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Where    dxxeppxI px
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4.8 Relative  Risk of  𝝈 𝑺𝑻𝒊
𝟐  

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator 𝑠2
 in this case. For 

this purpose, we obtain the risk of  𝑠2 under  22 ,ˆ EL  as: 
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Where        ndndn  ln)(    refers to the Euler‟s psi function.                                                                                                                                                                                                                                     

Now, we define the Relative Risk of  2,1,ˆ 2 i
iST   with respect to 𝑠2 under 

 22 ,ˆ L  as follows:              
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Using (4.8.2) and (4.7.1.3) the expression for RR1 given in (4.8.3) can be obtained; 

it is observed that RR1 is a function of „𝜆‟, „ ν ‟, „‟, „k‟ and „p‟. 

Finally, we define the Relative Risk of 2

2ˆ ST by 
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The  expression for RR2 is given by (4.8.4) which can be obtained by using (4.8.2) 

and (4.7.2.3).  Again we observed that 2RR   is a function of  „𝜆‟, „ ν ‟, „‟ and „p‟. 

4.9 Recommendations  for  𝝈 𝑺𝑻𝒊
𝟐  

In this section we wish to compare the performance of 1

2ˆ ST
 
and 2

2ˆ ST  with 

respect to the best available (unbiased) estimator of  𝜎2 .   

4.9.1 Recommendations for  𝝈 𝑺𝑻𝟏
𝟐  

It is observed that RR1 is a function of 𝜈, 𝛼, 𝜆, 𝑘 and the degrees of asymmetry "p". 

In order to study the behaviour of 1

2ˆ ST  with respect to the best available estimator 

we have considered several values of above mentioned quantities viz. 𝑘 = 0.2 (0.2) 

1.0, 𝜆 = 0.2 (0.2) 2.0, 𝜈 = 5,8,10,12, and p = -2, -1.75, -1.5, -1.25, -1.0 , 1.0 and 

smaller values of 𝛼 = 1% and 0.1%. As we have observed that RR1 values start 

getting negative even for p = +1, so other higher values of „p‟ are not considered 

with a view that for positive values of „p‟ the usual estimator may perform better 

than the proposed one. Also, several studies have pointed out that smaller level of 

significance should be taken, this motivated us to consider smaller values of 𝛼𝑠  

considered as above. There will be several tables of  RR1 . Some of these have 

been assembled at the end of the chapter. However our recommendations based on 

all these tables are as follows. 

1.  1

2ˆ ST
 
performs better than  𝜎 2 at 𝛼 = 1% for the whole range of „𝜆‟ for p = 

-2 i.e. the values of RR1 are greater than unity for 0.4 ≤ 𝜆 ≤ 1.8. In this 

situation the range of „k‟ is 0.2 ≤ k ≤ 0.8. It is observed that as p assume 
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other negative values upto p = -1, still the performance is better but the 

range of „𝜆‟ changes and for p = -1 it is 0.8 ≤ 𝜆 ≤ 1.2 . i.e. it reduces. These 

values are obtained for 𝜈 = 5. However, for other values of 𝜈 i.e. 8, 10 and 

12 again a similar pattern is observed but now the recommended values of p 

are upto -1.50. 

 

2. The positive values of „p‟ (p = +1 reported here) are indicative of better 

performance of 𝜎2, so it is suggested that the use of GEL would be 

beneficial for under estimation situations. 

3. We have considered 𝛼 = 0.1% also to observe the behaviour of  1

2ˆ ST , here 

the range of „𝜆‟ is increased as now it is 0.4 ≤  𝜆  ≤ 2.0 which holds even for 

„p‟ upto -1.25 again when p = -1 the range changes slightly and becomes 0.4 

≤ 𝜆 ≤ 1.8.  As  𝜈 is increased to „8‟ the range of  „𝜆‟ decreases for different 

negative values of „p‟ and it is now 0.6 ≤ 𝜆 ≤ 1.8 for p = -2 and 0.8 ≤ 𝜆 ≤ 1.2 

for p = -1. 

 

4. Still increasing 𝜈 to 10 and 12 we have observed that the range of  𝜆 reduces 

to 0.6 ≤ 𝜆 ≤ 1.6 and now the values are better upto p = -1.50. 

 

5. For both the values of  𝛼𝑠  considered here the RR1 values are more than „1‟ 

but the magnitude of these values are higher for 𝛼 = 0.1% and the range of 

shrinkage factor for all the above recommendations is 0.2 ≤ k ≤ 0.8. 

 

6. So, it is recommended to consider higher degrees of underestimation with a 

small sample size and smaller level of significance. i.e. take 𝜈 = 5, p = -2, 𝛼 

= 0.1% than 1

2ˆ ST
 
performs better than 𝜎 2 for 0.4 ≤ 𝜆 ≤ 2.0 and 0.2 ≤ k ≤ 

0.8. 
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4.9.2 Recommendations  for  𝝈 𝑺𝑻𝟐
𝟐  

As the arbitrariness in the choice of „k‟ is removed by making it dependent on test 

statistic, now the relative risk of 2

2ˆ ST  with respect to 𝜎 2 is a function of  p, 𝜆, 𝑐, 

and 𝛼. In order to study the behaviour of RR2  we have considered p = -2, -1.75, -

1.50, -1.25, -1.0 and 1.0, 𝜆 = 0.2 (0.2) 2.0, 𝜈 = 5,8,10 and 12, 𝛼 = 1% and 0.1% . 

Again the reason for considering only one positive value for degree is that RR2 

values turn negative even at p = +1. Again there will be several tables of  RR2 

some of these have been assembled at the end of the chapter however our 

recommendations for 2

2ˆ ST  are as follows: 

1. For 0.2 ≤ 𝜆 ≤ 1.6, p =-2, 𝜈 = 5 and 𝛼 = 1%  2

2ˆ ST
 
dominates 𝜎 2. However 

the range of „𝜆‟ decreases as „p‟ becomes -1.75, now it is 0.2 ≤ 𝜆 ≤ 1.4 and it 

remains true upto -1.25. But for p = -1 the range of „𝜆‟ is shorter as it is now 

0.8 ≤ 𝜆 ≤ 1.2. These values of  RR2 were observed for 𝜈 = 5. For the other 

values of „𝜈‟ almost similar pattern of  RR2 values is observed but the values 

become smaller as 𝜈  increase. 

 

2. Here also for positive values of „p‟  𝜎 2 the usual estimator performs better 

than 2

2ˆ ST  as the RR2 values are negative in this case. 

 

3. For another lower level of significance i.e. 𝛼 = 0.1% the values of RR2 are 

higher in magnitude as compared to those at 𝛼 = 1%. Also the range of „𝜆‟ 

increases and it becomes 0.2 ≤ 𝜆 ≤ 2.0 upto p = -1.50, it slightly decreases 

and becomes 0.6 ≤ 𝜆 ≤ 1.6 for p = -1. Again for p = +1 the RR2 values are 

negative for the whole range of 𝜆. 
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4. Changing 𝜈 = 8, 10, 12 we observe that the range of „𝜆‟ reduces further and 

it becomes 0.6 ≤ 𝜆 ≤ 1.6. However for 𝜈 = 12 none of the RR2 values is 

greater than „1‟. 

 

5. For both the values of  𝛼𝑠  considered here the RR2 values are more than 

unity but the magnitude of RR2 values is higher for lower level of 

significance. 
 

6. So, it is recommended to consider the higher values of degree of asymmetry 

when under estimation is more serious than over estimation and a lower 

values of „𝜈‟.  

CONCLUSION: 

Two shrinkage testimators for the variance of Normal distribution have been 

proposed viz. 1

2ˆ ST  and 2

2ˆ ST  .  

The values of RR1 (i.e. 1

2ˆ ST
 
with respect to 𝜎 2) and RR2 (i.e. 2

2ˆ ST
 
with 

respect to 𝜎 2) are not much different in their magnitudes. However 2

2ˆ ST
 
is a 

shrinkage testimator based on test statistic, so it could be used. It is observed 

that the use of GELF does not provide good result for positive values of degrees 

of asymmetry (i.e. overestimation being more serious). So, it is recommended 

for the reverse situations. 

 

A lower value 𝜈 = 5 with p = -2, 𝛼 = 0.1%  provide better result for almost the 

whole range of „𝜆‟. However both the estimators perform better than the usual 

estimator for other values also but the reported values are indicative of the best 

performance. 
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Tables  showing  relative risk(s) of proposed testimator(s) with respect to the 

best available estimator. 
 

Table : 4.9.1.1         Relative Risk of  1

2ˆ ST      𝛼 = 0.1% , 𝜈1 = 5, k = 0.2 

λ p = -2 p = -1.75 p = -1.50 p = -1.25 p = -1 p = 1 

0.20 0.833 0.671 0.558 0.476 0.411 -2.82 

0.40 1.432 1.298 1.079 0.869 0.687 -2.13 

0.60 1.801 1.962 1.827 1.522 1.18 -1.37 

0.80 1.831 2.171 2.214 1.95 1.527 -1.101 

1.00 1.727 2.058 2.16 1.966 1.575 -1.028 

1.20 1.599 1.856 1.932 1.775 1.448 -1.081 

1.40 1.48 1.661 1.691 1.547 1.277 -1.268 

1.60 1.379 1.494 1.485 1.346 1.117 -1.719 

1.80 1.293 1.358 1.319 1.182 0.983 -3.129 

2.00 1.221 1.247 1.186 1.051 0.873 -3.934 
 
 

Table : 4.9.1.2      Relative Risk of  1

2ˆ ST      𝛼 = 0.1% , 𝜈1 = 5, a = -1.75 

λ k = 0.2 k = 0.4 k = 0.6 k = 0.8 k = 1.0 

0.20 0.671 0.867 0.994 1.027 0.839 

0.40 1.298 1.428 1.411 1.255 0.821 

0.60 1.962 1.911 1.733 1.429 0.818 

0.80 2.171 2.05 1.84 1.502 0.807 

1.00 2.058 1.976 1.818 1.517 0.796 

1.20 1.856 1.829 1.738 1.5 0.786 

1.40 1.661 1.674 1.639 1.466 0.777 

1.60 1.494 1.533 1.538 1.423 0.769 

1.80 1.358 1.411 1.444 1.376 0.762 

2.00 1.247 1.308 1.358 1.328 0.756 
 

 

Table : 4.9.1.3      Relative Risk of  1

2ˆ ST
   

  𝛼 = 0.1% , 𝜈1 = 8, a = -1.75 

λ k = 0.2 k = 0.4 k = 0.6 k = 0.8 k = 1.0 

0.20 0.346 0.486 0.623 0.745 0.825 

0.40 0.562 0.703 0.782 0.79 0.709 

0.60 1.237 1.288 1.197 1.013 0.738 

0.80 1.914 1.741 1.466 1.131 0.723 

1.00 1.913 1.756 1.506 1.16 0.695 

1.20 1.565 1.532 1.406 1.136 0.666 

1.40 1.24 1.28 1.255 1.081 0.639 

1.60 1.003 1.072 1.106 1.014 0.615 

1.80 0.837 0.914 0.977 0.945 0.594 

2.00 0.719 0.795 0.871 0.881 0.577 
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Table : 4.9.1.4      Relative Risk of  1

2ˆ ST
   

  𝛼 = 1% , 𝜈1 = 5, a = -2 

λ k = 0.2 k = 0.4 k = 0.6 k = 0.8 k = 1.0 

0.20 0.859 0.991 1.058 1.047 0.863 

0.40 1.127 1.172 1.157 1.073 0.816 

0.60 1.277 1.263 1.21 1.099 0.81 

0.80 1.273 1.247 1.196 1.093 0.805 

1.00 1.21 1.193 1.156 1.072 0.801 

1.20 1.138 1.132 1.111 1.048 0.798 

1.40 1.074 1.078 1.07 1.025 0.797 

1.60 1.02 1.031 1.033 1.003 0.797 

1.80 0.976 0.991 1 0.984 0.798 

2.00 0.939 0.957 0.973 0.967 0.801 
 

Table : 4.9.2.1      Relative Risk of  2

2ˆ ST
   

  𝛼 = 0.1% , 𝜈1 = 5 

λ p = -0.2 p = -1.75 p = -1.5 p = -1.25 p = -1.0 

0.20 1.242 1.057 0.876 0.728 0.601 

0.40 1.632 1.558 1.317 1.053 0.815 

0.60 1.839 2.029 1.899 1.579 1.215 

0.80 1.824 2.151 2.179 1.907 1.489 

1.00 1.714 2.026 2.106 1.904 1.521 

1.20 1.584 1.824 1.879 1.714 1.396 

1.40 1.464 1.627 1.639 1.488 1.226 

1.60 1.361 1.459 1.433 1.288 1.065 

1.80 1.273 1.321 1.267 1.125 0.931 

2.00 1.2 1.209 1.134 0.995 0.822 
 

Table : 4.9.2.2      Relative Risk of  2

2ˆ ST
   

  𝛼 = 1% , 𝜈1 = 5 

λ p = -0.2 p = -1.75 p = -1.5 p = -1.25 p = -1.0 

0.20 1.169 1.085 0.967 0.846 0.727 

0.40 1.256 1.217 1.084 0.908 0.723 

0.60 1.3 1.347 1.282 1.125 0.914 

0.80 1.266 1.339 1.323 1.207 1.013 

1.00 1.199 1.254 1.24 1.146 0.978 

1.20 1.129 1.152 1.121 1.03 0.884 

1.40 1.066 1.058 1.008 0.915 0.782 

1.60 1.012 0.979 0.913 0.816 0.694 

1.80 0.967 0.913 0.835 0.736 0.621 

2.00 0.929 0.86 0.773 0.673 0.564 
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Chapter – 5 

 

DOUBLE STAGE SHRINKAGE TESTIMATORS UNDER GENERAL 

ENTROPY LOSS FUNCTION 

 

5.1 Introduction  

 

In situations when there is no a priori knowledge is available for the 

parameter 𝜃 (scale parameter) the sample mean x  is the BLUE (Best Linear 

Unbiased Estimator) of 𝜃 based on complete set of observations. 

 

However in many real life situations such as mean life time of a component / 

system, average number of days required to get cured from a disease, etc. A guess 

value of 𝜃 in terms of a point (single) or interval is available to the experimenter 

either due to past studies or similar studies or his familiarity with behavior of the 

characteristic under study. Then this guess may be utilized to improve the 

estimation procedure. In order to use this information for constructing an estimator 

for 𝜃, the use of preliminary test of significance has been suggested by Bancroft 

(1944). An extensive bibliography in this area is provided by Han and Bancroft 

(1977) and Han, Rao and Ravichandran (1988). 

 

Several authors have proposed estimators / testimators for the mean life 

(scale parameter) with different shrinkage factors and under different loss 

functions mostly under Squared Error Loss Function (SELF).  Recently  Srivastava 

and Tanna (2007) have proposed a double stage shrinkage testimator under 

General Entropy Loss Function (GELF) and they have shown the superiority of the 

proposed testimators, over the usual estimator.     
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 The shrinkage testimators are proposed when the shrinkage factor can take 

any arbitrary value between „0‟ and „1‟. In the present paper this arbitrariness in 

the choice of shrinkage factor is removed by making it dependent on the test 

statistics and hence for a given level of significance and degrees of freedom, the 

shrinkage factor is no longer arbitrary. The choice of an appropriate loss function 

is often guided by economic considerations and the situation(s) under which the 

parameter is being estimated. 

 In this chapter the problem of estimation of the mean life 𝜃 of exponential 

population is considered when a guess 𝜃0  of 𝜃 is available to the experimenter. 

The double stage estimation for 𝜃 is to use the mean of the first sample and the 

guess value if H0 : 𝜃 =  𝜃0  is accepted; otherwise use pooled mean px  of the two 

samples if H0 is rejected.        

 In section 5.2 we have proposed the two different shrinkage testimators for  

scale parameter of an Exponential Distribution and we have studied the risk 

properties of  these two shrinkage testimators under  General Entropy Loss 

Function defined in section 4.1.1.  Section 5.3 deals with the derivation of the 

risk(s) of these two estimators.  Section 5.4 deals with the relative risk(s) of these 

two estimators. Section 5.5 concludes with the comparison of unbiased pooled 

estimator and the proposed shrinkage testimators in terms of their relative risks.  

Further in the same section a suggestion for the shrinkage factor is made. 

In section 5.6 we have proposed the two different shrinkage testimators for  

the  variance  of  a  Normal Distribution and we have studied the risk properties of  

these two shrinkage testimators under General Entropy Loss Function.  Section 5.7 

deals with the derivation of the risk(s) of these two estimators.  Section 5.8 deals 

with the relative risk(s) of these two estimators. Section 5.9 concludes with the 
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comparison of unbiased pooled estimator and the proposed shrinkage testimators in 

terms of their relative risks.  Further in the same section a suggestion for the 

shrinkage factor is made. 

5.2  Shrinkage Testimator(s) for Scale Parameter of an Exponential 

Distribution. 

Let x11, x12, ---------, x1n1 be the first stage sample of size n1 from the exponential 

population                                                                                             

 



 




otherwise

xe
xf

x

;0

0,;1
);(
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                                                           ___(5.2.1)                                                                                             

Let 𝜃0 be the guess value of 𝜃. Compute the sample mean  



n

ix
n

x
1

11

1

i

  and 

test the preliminary hypothesis Hp :  𝜃 =  𝜃0,  using the test statistic  0112 xn  

which has 
2

2 1n   distribution. It is to be noted that HP is accepted if  𝑥1 
2  ≤  

2𝑛1𝑥 1

𝜃0
   ≤ 

𝑥2 
2   and  HP is rejected, otherwise where 𝑥1 

2  and 𝑥2 
2  being given by 𝑃 𝑥2𝑛1  

2 ≥

𝑥2 2+𝑃𝑥2𝑛1 2≤𝑥1 2= 𝛼  where α is the pre-assigned level of significance. 

 

Now, if  Hp is accepted, take the estimator    )10(001  kxk   and if it 

is rejected then take n2 = n – n1 additional observations x21, x22,_ _ _ _, X2n2 and 

use the pooled estimator 
)( 21

2211

nn

xnxn
x p




  as the estimator of 𝜃.  The properties of 

such estimators have been studied by Srivastava and Tanna (2007) under General 

Entropy Loss Function.  

Now, we define the shrinkage testimator 
1

ˆ
DST  and 

2

ˆ
DST of  θ as follows: 
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where k  being dependent on test statistic is given by  2

0112 xnk  and 

 2

1

2

2
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Finally, taking the „square‟ of  k  (i.e. 2

1 kk  ), another testimator is defined as 
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5.3 Risk of Testimators 

In this section we derive the risk of all the two testimators which are defined in the 

previous section. 

5.3.1 Risk of  𝜽 𝑫𝑺𝑻𝟏 

The risk of 
1

ˆ
DST  under   ,ˆEL   is defined by   
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5.3.2 Risk of  𝜽 𝑫𝑺𝑻𝟐 

  Again, we obtain the risk of 
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A straight forward integration of (5.3.2.2) gives: 
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5.4 Relative  Risks  of  
iDST̂

 

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator px  in this case. For this 

purpose, we obtain the risk of px under   ,ˆEL  as:                                                                                                                                             
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A straightforward integration of (5.4.1) gives  
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Where        ndndn  ln)(    refers to the Euler‟s psi function. 

Now, we define the Relative Risk of 1
ˆ
DST  with respect to px under   ,ˆEL   as 

follows:              

)ˆ()(
11 DSTpE RxRRR                                                                 _______(5.4.3)                                                                                                                                              

Using (5.4.2) and (5.3.1.3) the expression for RR1 given in (5.4.3) can be obtained;  

Similarly, we define the Relative Risk of 
2

ˆ
DST  under   ,ˆEL   as follows 

)ˆ()(
22 DSTpE RxRRR                                                                  _______(5.4.4) 

The expression for RR2 given in (5.4.4) which can be obtain by using equation 

(5.4.2) and (5.3.2.3). 
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Now, it is observed that both RR1 and RR2   are a function of  „∅‟ , „n1‟ , „n2‟ , 

„‟ and „p‟. To observe the behavior of  the  risk(s) of  
1

ˆ
DST and  

2

ˆ
DST

 
, we have 

taken several values of these viz  α = 1%, 5%, 10%, (n1, n2) = (4,6), (4,8), (6,10), 

(4,12), ∅ = 0.2 (0.2) 1.6  and p = -3, -2, -1, 2, 3, 4  ; „p‟ is the prime important 

factor and decides about the seriousness of over/under estimation in the real life 

situation. The recommendations regarding the applications of proposed testimators 

are provided as follows: 

5.5 Recommendations  for  
iDST̂

 

In this section we wish to compare the  performance of  
1

ˆ
DST  and  

2

ˆ
DST with 

respect to the best available (unbiased) estimator of px  .   

(1) Taking n1 = 4, n2 = 6 and fixing α = 1% we have allowed the variation in „p‟ 

which represents the degree of asymmetry. As the shrinkage factor depends on 

test statistics and hence on „α‟. It has been observed that the RR  1 values are 

higher than 1 (unity) in the whole range of  , demonstrating that 
1

ˆ
DST

performs better than .px
 

For p = -3 (negative) and p = 2 (positive) its 

performance is „best‟ however it performs better for the other values of „p‟ 

also. 

 

(2) It is also observed that 1
ˆ

DST performs still better for n1 = 4, n2 = 8 (n2 = 2n1) 

i.e. perhaps second sample should be twice as much compared to the 1
st
 stage 

sample. 

 

(3) For α = 5% and α = 10% a similar pattern of performance is observed however 

the magnitude of RR1  is highest at α = 1%. 
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(4) For α = 10% and n1 = 4, n2 = 6, it observed in particular that RR1 is highest for 

p = 2 (positive) and then followed by p = -3 (negative) a trend not observed 

earlier.  However for other values of (n1, n2) considered here, p = -3 shows 

larger values of RR1. 

 

(5) In the next comparison stage, we have fixed p = -3 and have allowed variation 

in α values. Maximum gain in RR1 is observed at  = 1.0.  So, we have fixed 

= 1.0 again for the whole range and for all the combination(s) of (n1, n2). 

1
ˆ
DST fairs better than the usual estimator. It is also observed that there is a 

minor difference in the values of RR1 for (4, 8) and (4, 12). So again second 

stage sample may be chosen in this light. 

 

(6) It is observed that (6,10) sample combination does not give better control over 

risk as the values of RR1 are smaller in magnitude compared to other RR1  

values.  

 

(7) The data set considered here is n1 = 4, n2 = 10 and  = 0.8 (different from  = 

1.0 i.e. 0  ) again for α = 1%. We have allowed the variation in the values 

of shape parameter „p‟ and it has been observed that 1
ˆ

DST  dominates the usual 

unbiased  estimator  for all values of  „p‟  and the  performance is at its best for 

p = -3. 

 

(8)  It has been observed that positive values of „p‟ considered here, the maximum 

RR1  values have been observed at p = 2, for different values of .s The highest 

values in terms of magnitude are observed at α = 1% for different n1 and n2 

combination values.  
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The present investigation has also considered the square of S.F. and we have 

proposed another testimator  viz 2
ˆ

DST . We have also studied the behaviour of 

Relative risk(s) of 2
ˆ

DST with respect to px and have computed RR2 values, to 

observe the behaviour of 2
ˆ

DST  . For all the values of (n1, n2),  , α and p 

considered for RR1, we have computed RR2 values for the same set of values. 

Following observations have been made. 

1)  It is observed that 2
ˆ

DST  performs better than the usual estimator px . For 

all the values considered here.  However the magnitude of RR2 values are 

higher than RR1 values, indicating a better control over risk by the proposed 

estimator 2
ˆ

DST  .  

2) Almost similar recommendations as above in case of 1
ˆ
DST (1 - 8) follow 

here also. But definitely 2
ˆ

DST  has  better performance compared to 1
ˆ
DST .  

CONCLUSIONS: 

The present chapter studies the risk properties of double stage shrinkage 

testimator(s) of the scale parameter (average life) of exponential life model using 

General Entropy Loss Function. Two choices of the shrinkage factor have been 

made making it dependent on the test statistics, hence the choice of „α‟ plays an 

important role. We conclude that a lower value of level of significance i.e. α = 1%  

is suitable for almost all values of „shape‟ parameter of the loss function but in 

particular when p = -3, at α = 1%  its performance best for (n1 = 4, n2 = 8) and 

similar recommendation holds for p = 2 (positive). 

The „square‟ of  S.F. gives better control over the relative risk as has been observed 

by Comparing the relative risk values.  So, to conclude take  α = 1%  square of the 

shrinkage factor, p = -3 or p = 2 and (n1 = 4, n2 = 8). 
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Tables  showing  relative risk(s) of proposed testimator(s) with respect to the 

best available estimator. 

 

Table : 5.5.1.1     Relative Risk of  
1

ˆ
DST      𝛼 = 1%, n1 = 4, n2 = 8 

∅ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 1.324 0.684 0.321 0.873 0.836 0.94 

0.40 2.225 1.741 1.218 1.147 1.53 1.187 

0.60 4.729 3.217 2.278 2.453 2.241 1.664 

0.80 6.102 4.69 3.54 3.62 3.33 2.444 

1.00 9.883 6.898 5.369 5.147 5.883 5.062 

1.20 4.447 4.8 3.533 3.998 3.576 3.01 

1.40 2.284 3.01 2.017 2.712 2.016 1.833 

1.60 1.614 1.688 1.786 1.089 1.032 0.916 
 

Table : 5.5.1.2     Relative Risk of  
1

ˆ
DST      𝛼 = 1%, n1 = 6, n2 = 10 

∅ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 0.953 0.431 0.153 0.159 0.483 0.831 

0.40 1.224 0.445 0.209 0.282 0.643 0.897 

0.60 2.002 1.096 1.388 1.904 1.618 1.783 

0.80 5.362 4.12 3.789 4.027 3.218 2.866 

1.00 9.259 8.591 6.399 7.714 6.367 5.165 

1.20 5.908 4.197 4.218 5.025 3.737 3.165 

1.40 2.954 2.985 2.58 3.073 1.633 1.421 

1.60 1.722 1.329 1.766 1.513 0.823 0.698 
 

Table : 5.5.1.3     Relative Risk of  
1

ˆ
DST      𝛼 = 5%, n1 = 4, n2 = 8 

∅ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 1.103 0.564 0.461 0.598 0.641 0.86 

0.40 1.237 0.76 0.987 0.819 0.753 1.689 

0.60 2.103 1.771 1.639 1.313 1.468 2.096 

0.80 4.103 3.631 3.238 2.819 2.694 2.437 

1.00 6.684 6.075 5.758 5.097 4.771 4.413 

1.20 4.04 3.068 2.587 3.111 2.581 1.988 

1.40 2.15 2.019 1.627 2.098 1.627 1.077 

1.60 1.04 0.957 0.804 1.203 0.787 0.653 
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Table : 5.5.1.4     Relative Risk of  
1

ˆ
DST      𝛼 = 5%, n1 = 6, n2 = 10 

∅ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 0.702 0.52 0.147 0.177 0.248 0.845 

0.40 0.806 0.834 0.258 0.886 0.548 1.053 

0.60 1.702 1.44 1.249 1.202 1.023 1.241 

0.80 2.891 2.484 2.841 2.514 2.702 2.311 

1.00 5.888 5.073 4.069 4.667 3.992 3.893 

1.20 3.214 2.334 2.23 2.871 2.667 2.378 

1.40 1.066 0.417 1.077 1.911 1.754 1.716 

1.60 0.025 0.16 0.678 0.363 0.429 0.927 
 

Table : 5.5.1.5     Relative Risk of  
1

ˆ
DST      𝛼 = 10%, n1 = 4, n2 = 6 

∅ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 0.685 0.716 0.338 0.784 0.236 0.669 

0.40 1.404 0.938 0.535 0.809 1.092 1.585 

0.60 1.949 1.789 1.331 1.409 1.37 2.07 

0.80 2.554 2.537 2.486 3.054 2.418 2.382 

1.00 3.934 3.443 3.3 4.881 3.789 3.148 

1.20 2.282 2.631 2.737 2.097 2.087 2.07 

1.40 1.136 1.306 1.206 1.598 1.34 1.286 

1.60 0.075 0.168 0.591 0.784 0.672 0.94 
 

 

Table : 5.5.2.1     Relative Risk of  
2

ˆ
DST      𝛼 = 1%, n1 = 4, n2 = 8 

∅ p = -3 p = -2 p = -1 p = 2 p = 3 p = 4 

0.20 1.154 0.626 0.311 0.739 0.683 0.939 

0.40 2.047 1.697 1.213 0.815 1.399 1.084 

0.60 3.742 1.212 2.277 1.715 2.221 1.785 

0.80 4.696 2.893 4.553 2.974 3.468 1.866 

1.00 6.42 7.955 5.443 4.653 4.094 2.279 

1.20 4.318 5.692 3.556 2.173 2.259 2.267 

1.40 3.548 2.514 2.147 1.516 1.416 1.441 

1.60 1.491 1.63 1.882 0.868 0.768 0.763 
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5.6 Shrinkage  Testimator  for  the  Variance  of  a  Normal  Distribution 

Let X be normally distributed with mean 𝜇 and variance  𝜎2, both unknown. 

It is assumed that the prior knowledge about 𝜎2 is available in the form of an 

initial estimate 𝜎0
2.  We are interested in constructing an estimator of  𝜎2 

using the sample observations and possibly the guess value  𝜎0
2.  We define a 

double stage shrinkage testimator of  𝜎2 as follows: 

1. Take a random sample  𝑥1𝑖   (𝑖 = 1,2, ___, 𝑛1) of size 𝑛1 from N(𝜇, 𝜎2) 

and compute  𝑥 1 =  
1

𝑛1
 𝑥1𝑖  , 𝑠1

2 =  
1

𝑛1−1
 (𝑥1𝑖 − 𝑥 1)2.  

2. Test the hypothesis 𝐻0 ∶  𝜎2 =  𝜎0
2  against the alternative 𝐻1 ∶  𝜎2 ≠  𝜎0

2 

at level α using the test statistic  
𝜈1𝑠1

2

𝜎0
2  ,  which is distributed as  𝜒2 with  ν1 

= (𝑛1 − 1) degrees of freedom. 

3. If 𝐻0 is accepted at α level of significance i.e. 𝑥1
2  <  

𝜈1𝑠1
2

𝜎0
2   <  𝑥2

2  ,where 

𝑥1
2 and  𝑥2

2  refer to lower and upper critical points of the unbiased 

portioning of the test statistic at a given level of significance α, take 

𝑘1 𝑠1
2 +   1 − 𝑘1 𝜎0

2  as the shrinkage estimator of 𝜎2 with shrinkage 

factor 𝑘1 dependent on the test statistic. 

4. If 𝐻0 is rejected, take a second sample 𝑥2𝑗   ( 𝑗 = 1,2, ___, 𝑛2) of size  𝑛2  = 

(𝑛 – 𝑛1) compute 𝑥 2 =  
1

𝑛2
 𝑥2𝑗  , 𝑠2

2 =  
1

𝑛2−1
 (𝑥2𝑗 − 𝑥 2)2  and take 

 𝜈1𝑠1
2 +  𝜈2𝑠2

2  𝜈1 + 𝜈2   where 𝜈2 = (𝑛2 − 1) as the estimator of  𝜎2. 

 

To summarize, we define the double- stage shrinkage testimators 𝜎 𝐷𝑆𝑇1
2   and 

𝜎 𝐷𝑆𝑇2
2  of  𝜎2 as follows: 
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𝜎 𝐷𝑆𝑇1
2 =  

𝑘 𝑠1
2 +   1 − 𝑘 𝜎0

2    , 𝑖𝑓   𝐻0  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑠𝑝
2 =

 𝜈1𝑠1
2 +  𝜈2𝑠2

2 

 𝜈1 + 𝜈2 
, 𝑖𝑓 𝐻0  𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

  

Estimators of this type with  𝑘 arbitrary and lying between 0 and 1 have 

been proposed by Katti (1962), Shah(1964), Arnold and Al-Bayyati (1970), 

Waikar and Katti (1971), Pandey (1979) and  𝑘 being dependent on the test 

statistics by Waikar, Schuurman and Raghunandan (1984), Pandey, 

Srivastava and Malik (1988). 

 

 𝜎 𝐷𝑆𝑇2
2 =  

𝑘1 𝑠1
2 +   1 − 𝑘1 𝜎0

2    , 𝑖𝑓   𝐻0  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑠𝑝
2 =

 𝜈1𝑠1
2 +  𝜈2𝑠2

2 

 𝜈1 + 𝜈2 
, 𝑖𝑓 𝐻0  𝑖𝑠  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

  

Where 𝑘1  being dependent on test statistic and is given by   𝑘1 =
𝜈1𝑠1

2

𝜎0
2  𝜒2    

We have studied the risk properties of these testimators under GELF defined 

in section 4.1.1. 

 

5.7 Risk of Testimators 

 

In this section we derive the risk of proposed testimators which are defined in the 

previous section. 

 

5.7.1 Risk  of   𝝈 𝑫𝑺𝑻𝟏
𝟐  

    The risk of  𝜎 2
𝐷𝑆𝑇1 under  22 ,ˆ EL

  
is defined by   

    
 ],ˆˆ[)ˆ( 2222

11
 EDSTDST LER      
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Straight forward integration of (5.7.1.2) gives     
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5.7.2 Risk of  𝝈 𝑫𝑺𝑻𝟐
𝟐   

Again, we obtain the risk of  𝜎 2
𝐷𝑆𝑇2  

under   ,ˆEL    
with respect to 𝑠𝑝

2, given by 
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Straight forward integration of (5.7.2.2) gives 
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Where    dxxeppxI px
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5.8 Relative  Risk of  𝝈 𝑫𝑺𝑻𝒊
𝟐  

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator 𝑠𝑝
2
 in this case. For 

this purpose, we obtain the risk of  𝑠𝑝
2 under  22 ,ˆ EL  as: 
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        A straightforward integration of (5.8.1) gives    
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Where        ndndn  ln)(    refers to the Euler‟s psi function.                                                                                                                                                                                                                                     

Now, we define the Relative Risk of  2,1,ˆ 2 i
iDST   with respect to 𝑠2 under 

 22 ,ˆ L  as follows:              
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Using (5.8.2) and (5.7.1.3) the expression for RR1 given in (5.8.3) can be obtained; 

it is observed that RR1 is a function of „𝜆‟, „(𝜈1 , 𝜈2 )‟, „‟, „k‟ and „p‟. In order to 

study the risk behaviour of  𝜎 𝐷𝑆𝑇1
2  we have considered the following values of 

these quantities. k = 0.2 (0.2) 1.0, 𝜆 = 0.2 (0.2) 2.0, p = -3, -2.5, -2.0, -1.5, -1.0, 1.0 

and 1.5,  = 1% and 0.1%, (𝜈1 , 𝜈2 ) = (5,5), (5,8), (5,10), (5,12). 

Finally, we define the Relative Risk of 2

2ˆ DST by 
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The  expression for RR2 is given by (5.8.4) can be obtained by using (5.8.2) and 

(5.7.2.3).  Again we observed that 2RR   is a function of  „𝜆‟, „(𝜈1 , 𝜈2 )‟, „‟ and „p‟. 

We have considered same values of these as in case of RR1 not „k‟. i.e.  𝜆 = 0.2 
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(0.2) 2.0, p = -3, -2.5, -2.0, -1.5, -1.0, 1.0 and 1.5,  = 1% and 0.1% , (𝜈1 , 𝜈2 ) = 

(5,5), (5,8), (5,10), (5,12). 

 5.9 Recommendations for  𝝈 𝑫𝑺𝑻𝒊
𝟐  

In this section we wish to compare the performance of 1

2ˆ DST
 
and 2

2ˆ DST  with 

respect to the best available (unbiased) estimator of  𝜎2 .   

5.9.1 Recommendations  for  𝝈 𝑫𝑺𝑻𝟏
𝟐  

There will be several tables of RR1 , some of these tables are assembled at the end 

of the chapter. Recommendations for the use of 𝜎 𝐷𝑆𝑇1
2  are as follows: 

1. For (𝜈1 , 𝜈2 ) = (5, 5),  = 1% the following table provides the effective 

ranges of „𝜆‟ for different choice of „k‟ (shrinkage factor) values. Various 

degrees of asymmetries are also presented. 

k 𝜆 p 

0.2 

0.4 

0.6 

0.8 

0.6 ≤ 𝜆 ≤ 2.0 

0.6 ≤ 𝜆 ≤ 2.0 

0.8 ≤ 𝜆 ≤ 1.6 

0.8 ≤ 𝜆 ≤ 1.4 

p = -3 to -1.5 

p = -3 to -1.5 

p = -1 

p = 1 & 1.5 

 

From the above table it is observed that the range of „𝜆‟ decreases as „k‟ 

increases and it remains true for extreme negative and positive values of „p‟. 

2. As (𝜈1 , 𝜈2 ) change i.e. (5,8), (5,10) the values of RR1 also change in their 

magnitude but still higher than unity. A high value of 𝜈2 is not 

recommended. In this case, also for 0.2 ≤ 𝑘 ≤ 0.8  the effective range of „𝜆‟ 

varies slightly as in the above table as for p = -3 it is 0.6 ≤ 𝜆 ≤ 2.0 for k = 0.2 

where as for k = 0.8 it becomes 1.0 ≤ 𝜆 ≤ 2.0 for p = 1.5 . 
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3. Next, we have considered  = 0.1% as it is reported by several authors that 

shrinkage testimators perform better for smaller level of significance. RR1 

values obtained for this choice of „‟ are better than those obtained for 

earlier value of „‟ as their magnitude is higher. A higher value of relative 

risk indicates better performance of the proposed estimator. 

4. The effective ranges of „𝜆‟ are more or less the same obtained previously i.e. 

for p = -3 it is 0.6 ≤ 𝜆 ≤ 2.0 and for p = +1 it is 0.8 ≤ 𝜆 ≤ 1.6 However as 

mentioned above the numerical values are larger. 

5. As (𝜈1 , 𝜈2 ) change to (5,8) and (5,10) the RR1 values are better in the range 

of 0.6 to 2.0 for „𝜆‟ when p is upto -1.75, however „𝜆‟ range becomes 0.8 to 

1.8 for p = -1.5 and -1.0. This range reduces further to 0.8 to 1.6 for both the 

positive values of „p‟. 

5.9.2 Recommendation  for  𝝈 𝑫𝑺𝑻𝟐
𝟐  

There will be several tables of RR2 some of these are assembled at the end of 

the chapter. The recommendations are as follows: 

1. For  = 1% and all the negative values of „p‟ i.e. -3 upto -1.5  𝜎 𝐷𝑆𝑇2
2  

performs better than 𝑠𝑝
2 for fairly large range of 𝜆  i.e. 0.6 ≤ 𝜆 ≤ 2.0. 

However for p = -1 this shrinks and it becomes 0.8 ≤ 𝜆 ≤ 1.6.  For p = +1 

and 1.5 the values of   

RR2 are better i.e. greater than unity for a range of „𝜆‟ i.e. 0.8 ≤ 𝜆 ≤ 1.6 for p 

= +1 however for p = 1.5 it becomes 0.8 ≤ 𝜆 ≤ 1.4 it reduces very slightly. 

So, 𝜎 𝐷𝑆𝑇2
2  can be considered for various degrees of positive / negative 

asymmetry. This behaviour is observed for (𝜈1 , 𝜈2 ) = (5,5). 

2. As we have considered another data sets for (𝜈1 , 𝜈2 ) it is observed that as 

𝜈2 increases i.e. (5, 8), (5,10) etc. still 𝜎 𝐷𝑆𝑇2
2  behaves nicely for different 
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positive / negative values of „p‟. But it is observed that the performance is 

better for larger negative values of „p‟ as compared to positive values of „p‟. 

Further, it is noted that the magnitude of RR2 values decrease as 

𝜈2 increases. However it does not change the effective ranges of „𝜆‟ i.e. 

again for p = -3 it is 0.6 ≤ 𝜆 ≤ 2.0 which reduces by 0.2 units as „p‟ changed 

from -3 to -1 but even for p = -1, it is 0.6 ≤ 𝜆 ≤ 1.6. For much higher values 

of 𝜈2 i.e. 𝜈2 = 12 and more the performance is not very good. 

3. Next we reduce „‟ further to  = 0.1% then still better values of RR2 are 

obtained in the sense that they are higher in magnitude as compared to those 

obtained for  = 1%. 

4. The effective ranges of „𝜆‟ are more or less same as obtained previously i.e. 

for p = -3 it is 0.6 ≤ 𝜆 ≤ 2.0 and for p = +1 it becomes 0.8 ≤ 𝜆 ≤ 1.6. Again, it 

performs better for both positive/ negative degrees of asymmetry for almost 

all the data set considered here. But the magnitude of RR2 values are higher 

uniformly than those obtained at  = 1%. 

5. It is recommended that use large negative value of „p‟, smaller level of 

significance and a small sample (𝜈1 , 𝜈2 ). 

CONCLUSIONS: 

We have propose two double stage shrinkage testimator(s) for the variance of a 

Normal distribution viz. 𝜎 𝐷𝑆𝑇1
2  and 𝜎 𝐷𝑆𝑇2

2 . It is observed that both the 

testimators dominate the usual unbiased estimator of 𝜎2 for various sample 

sizes, degrees of asymmetries, levels of significance and a wide range of „𝜆‟. It 

is found that the use of GEL is beneficial for those situations where 

underestimation is more harmful than overestimation or vice- versa. In 

particular for p = -3 and p = 1.0,  = 0.1% and (𝜈1 , 𝜈2 ) = (5,5) both the 
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testimator(s) perform at their best. However for other values also the 

performance is satisfactory. So, it is recommended take smaller sample sizes, 

smaller level of significance for both positive  and negative values of degrees of 

asymmetry. In particular 𝜎 𝐷𝑆𝑇2
2  may be preferred as it removes the arbitraryness 

in the choice of shrinkage factor. So, it can be mentioned that shrinkage 

testimators perform better under GELF. 

 

Tables  showing  relative risk(s) of proposed testimator(s) with respect to the 

best available estimator. 

 

 

Table : 5.9.1.1      Relative Risk of  1

2ˆ DST
   

  𝛼 = 0.1% ,( 𝜈1, 𝜈2) = (5,5), p = -3 

 

λ k = 0.2 k = 0.4 k = 0.6 k = 0.8 

0.20 0.129 0.179 0.192 0.149 

0.40 0.598 0.669 0.564 0.337 

0.60 2.371 1.989 1.272 0.596 

0.80 4.35 4.172 2.479 0.936 

1.00 7.854 6.174 5.214 1.365 

1.20 5.518 4.561 4.974 2.173 

1.40 4.134 4.009 3.873 2.43 

1.60 3.264 3.496 3.612 1.966 

1.80 2.854 2.903 2.845 1.426 

2.00 2.03 1.868 1.981 1.237 
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Table : 5.9.1.2      Relative Risk of  1

2ˆ DST
   

  𝛼 = 1% ,( 𝜈1, 𝜈2) = (5,5), p = -3 

λ k = 0.2 k = 0.4 k = 0.6 k = 0.8 

0.20 0.149 0.19 0.196 0.153 

0.40 0.596 0.646 0.551 0.346 

0.60 2.024 1.756 1.198 0.611 

0.80 5.209 3.658 2.122 0.94 

1.00 6.541 4.929 3 1.301 

1.20 4.996 4.615 3.434 1.65 

1.40 3.588 3.75 3.372 1.93 

1.60 2.712 2.998 3.049 2.104 

1.80 2.176 2.464 2.69 2.176 

2.00 1.823 2.085 2.367 2.167 

 

Table : 5.9.2.1      Relative Risk of  2

2ˆ DST
   

  𝛼 = 1% , (𝜈1, 𝜈2) = (5,5) 

λ p = -3 p = -2.5 p = --2 p = -1.5 p = -1.0 P = 1 P = 1.5 

0.20 0.265 0.263 0.263 0.246 0.182 0.172 0.282 

0.40 0.874 0.71 0.594 0.481 0.326 0.279 0.426 

0.60 2.409 1.917 1.528 1.199 0.839 0.647 0.828 

0.80 4.943 4.708 4.041 3.324 2.612 1.629 1.6 

1.00 5.67 6.903 7.338 7.522 5.091 4.169 2.647 

1.20 4.464 5.371 5.886 6.642 6.524 5.442 2.541 

1.40 3.3 3.597 3.627 3.772 3.394 2.829 1.547 

1.60 2.529 2.548 2.399 2.327 3.175 1.43 0.899 

1.80 2.041 1.942 1.745 1.617 1.972 0.844 0.566 

2.00 1.715 1.563 1.364 1.226 1.401 0.561 0.387 
 

 

Table : 5.9.2.2      Relative Risk of  2

2ˆ DST
   

  𝛼 = 0.1% , (𝜈1, 𝜈2) = (5,5) 

λ p = -3 p = -2.5 p = --2 p = -1.5 p = -1.0 P = 1 P = 1.5 

0.20 0.235 0.234 0.236 0.226 0.176 0.174 0.278 

0.40 0.858 0.697 0.6 0.52 0.409 0.379 0.507 

0.60 2.857 2.144 1.711 1.415 1.146 0.9 0.977 

0.80 3.38 5.283 3.631 4.47 3.602 2.143 1.984 

1.00 6.92 6.46 6.591 6.884 6.081 4.099 3.357 

1.20 5.342 5.642 5.793 4.171 6.213 3.131 2.613 

1.40 4.746 4.677 4.464 3.557 3.007 1.588 1.373 

1.60 3.506 3.577 2.72 2.12 1.749 0.887 0.768 

1.80 2.351 2.554 1.902 1.458 1.179 0.562 0.482 

2.00 1.661 1.982 1.453 1.099 0.876 0.392 0.33 
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Chapter – 6 

 

SHRINKAGE TESTIMATION IN WEIBULL DISTRIBUTION 

 

6.1 Introduction 

 

Weibull distribution is a continuous distribution. It is named after Swedish 

physicist Walodi Weibull (1939). He used this distribution to model data from 

problems dealing with yield strength of  Bofor‟s Steel, fibre strength  of Indian 

Cotton etc. In the context of life testing and reliability estimation this model fits 

well for the situations with changing failure rates i.e. when the failure rates 

increasing or decreasing. The Weibull distribution interpolates between 

Exponential distribution when  β = 1  and a Rayleish distribution when  β = 2. As 

„β‟ converges to infinity the Weibull distribution converges to Dirac Delta 

distribution. This distribution is very widely used in Survival Analysis, Reliability 

and Engineering and Industrial Engineering. The Weibull distribution is alos useful 

in describing wear out, fatigue failure, vaccum tube failures, ball bearing failures 

etc. 

 

In weather forecasting to describe wind speed distributions it is extensively used as 

the shape parameter of this distribution matches with natural distribution. Also, in 

general insurance to model the size of re-insurance claims, this model is 

appropriate.  

 

In hydrology the Weibull distribution is applied to extreme events such as annual 

maximum one-day rainfalls and river discharges.  
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THE MODEL: 

When we assume that some power (say)  p
th

  of the failure time is distributed 

Exponentially, we get the Weibull distribution whose pdf is given by  

𝑓 𝑥;  𝜃, 𝛽 =  
 
𝛽

𝜃
   

𝑥

𝜃
 
𝛽−1

exp  − 
𝑥

𝜃
 
𝛽
 , 𝑥 > 0,   𝜃, 𝛽 > 0

0                             , 𝑜. 𝑤.

      

 _____(6.1.1) 

The parameters 𝜃 and  𝛽  are called the life and shape parameter 

respectively. This distribution is also useful in describing the wear out or fatigue 

failures. Cohen (1965), Harter and Moore (1965) have derived maximum 

likelihood estimators in Weibull distribution based on Complete and  Censored  

samples.  Bain and Antle (1967) have given estimators which are practical and 

based on Monte - Carlo methods. Mann and Fertig (1975) have derived simplified 

efficient point and interval estimator for Weibull distribution parameters, which are 

either maximum likelihood or best linear invariant.  

 

Singh and Bhatkulikar (1978) have studied shrunken estimators in Weibull 

distribution, Pandey and Singh (1984) considered estimating the shape parameter 

of this distribution by shrinkage towards an interval.  

Due to considerable handling of manufactured items or past information as 

in the case of wind speed data and in many other situations in life testing and 

reliability estimation where one may have an initial estimate of the shape 

parameter  𝛽  in the form of either a guess  𝛽0 or an interval (𝛽1 , 𝛽2)  (𝛽1 < 𝛽2) in 

which  𝛽  lies. We have proposed shrinkage testimators for the shape parameter 

both using point and interval guess. We have studied the risk properties of the 

proposed estimator using an asymmetric loss function. 
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In section 6.2 two shrinkage testimators for the shape parameter using point 

guess have been proposed and their risks are derived in section 6.3. In section 6.4 

we have derived the relative risks of the proposed testimators with respect to 𝛽  the 

best available estimator in the absence of any other information. Section 6.5 is 

devoted to the recommendations and conclusions of  𝛽 𝑆𝑇1
 and 𝛽 𝑆𝑇2

.  

In section  6.6 deals with the shrinkage testimation of „𝛽‟ by shrinkage 

towards an interval. Section 6.7 is devoted to the derivation of the risk of the 

proposed testimator and its relative risk is derived in section 6.8. Section 6.9 gives 

the recommendations and conclusions of the proposed testimator. 

6.2 SHRINKAGE TESTIMATOR USING POINT GUESS 

Let 𝑥 have the distribution 

𝑓 𝑥;  𝜃, 𝛽 =   
𝛽

𝜃
   

𝑥

𝜃
 
𝛽−1

exp  − 
𝑥

𝜃
 
𝛽

 , 𝑥 > 0,   𝜃, 𝛽 > 0  

Suppose that a guess of  𝛽 (say) 𝛽0 is given and a random sample of size „n‟ (

nxxx .......,, 21 ) is available from this distribution and we are interested in 

constructing an estimator of  𝛽 using the sample information and hopefully the 

guess value 𝛽0. Let 𝑥1 ≤ 𝑥2 …… . . ≤ 𝑥𝑟  denote the r smallest ordered observations 

in a sample of size n from the Weibull distribution. 

Then, the shrinkage Testimator of  𝛽 (say)  𝛽 𝑆𝑇1
 can be proposed as follows: 

1. First test with a sample of size „n‟ the null hypothesis H0 : 𝛽 = 𝛽0 against the 

alternative  H1 : 𝛽 ≠ 𝛽0  where 𝛽0 is the point guess value of  𝛽. 

2. If  H0  is accepted at 𝛼 % level of significance i.e.  𝜒1
2  <  

2 Tr

𝛽0
 <  𝜒2

2 , where  

𝑇𝑟 =  −  𝑥 𝑖 − 𝑥 𝑟   ; N = 𝑛 𝑘𝑟,𝑛  and 𝜒1
2 , 𝜒2

2 refer to critical points of 
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unbiased portioning of 𝜒2 distribution with 2N  degrees of freedom, N = 

𝑛 𝑘𝑟,𝑛  . Then use the conventional shrinkage estimator 𝛽 𝑠 = 𝑘𝛽 +

 1 − 𝑘 𝛽0  with shrinkage factor „𝑘‟ otherwise ignore 𝛽0 and use an unbiased 

estimator 𝛽  of  𝛽.  

 

Estimators of this type with „𝑘‟ arbitrary and lying between „0‟ and „1‟ have been 

proposed by Singh and Bhatkulikar (1978) and have calculated relative efficiencies 

with respect to 𝛽 . In the present study we have studied the risk properties of 

shrinkage testimators of 𝛽 using an asymmetric loss function.  

We have proposed another testimator  𝛽 𝑆𝑇2
 which removes the arbitrariness in the 

choice of a shrinkage factor for a given „𝛼‟. Also, in all such studies we have 

considered a two sided alternative. i.e.  H1 : 𝛽 ≠ 𝛽0  which appears more 

appropriate for shrinkage problems. It is to be noted that a UMP test of  H0 : 𝛽 = 𝛽0 

against H1 : 𝛽 ≠ 𝛽0 does not exist. However, a UMPU test of an equivalent 

hypothesis H0 : b = 1 against H1 : b ≠ 1 exist and is to reject H0  whenever    2Tr 

<  𝜒1
2  and  2Tr >  𝜒2

2 .   So, we define  

𝛽 𝑆𝑇1
=  

𝑘  
𝑁−1

𝑇𝑟
− 1 + 1 , 𝑖𝑓 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

  
𝑁−1

𝑇𝑟
     ,    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                          

                                      ____(6.2.1) 

Where  0 ≤ 𝑘 ≤ 1. Again, we take  𝑘 =
2 𝑇𝑟

𝜒2
  and define another shrinkage 

testimator 𝛽 𝑆𝑇2
 of  𝛽 as follows: 

𝛽 𝑆𝑇2
=  

   
2 𝑇𝑟

𝜒2
 
𝑁−1

𝑇𝑟
− 1 + 1 , 𝑖𝑓 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑  

  
𝑁−1

𝑇𝑟
     ,    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                          

                                ____(6.2.2) 
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6.3 Risk of Testimators 

In this section we derive the risk of these two testimators which are defined in the 

previous section. 

6.3.1  Risk of  𝜷 𝑺𝑻𝟏 

The risk of  𝛽 𝑆𝑇1
  under L(∆) is defined by                                                                                                                                                                                           

𝑅 𝛽 𝑆𝑇1
 = 𝐸 𝛽 𝑆𝑇1

| 𝐿  Δ     

                 =   𝐸    𝑘  𝑁−1
𝑇𝑟

−1 + 1 
𝜒1

2

2
 <  𝑇𝑟 <  

𝜒2
2

2
    ∙ 𝑃  

𝜒1
2

2
 <  𝑇𝑟 <  

𝜒2
2

2
    

                    +  𝐸    
𝑁−1

𝑇𝑟
 𝑇𝑟 <  

𝜒1
2

2
 ∪  𝑇𝑟 >  

𝜒2
2

2
    ∙ 𝑃  𝑇𝑟 <  

𝜒1
2

2
 ∪  𝑇𝑟 >  

𝜒2
2

2
  

 ____(6.3.1.1) 
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  0,0;
)(

1
)(

1








bTrdTrTre
Nb

Trf
Nb

Tr

N

 
Straight forward integration of (6.3.1.2) gives 

𝑅 𝛽 𝑆𝑇1
 =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐼1 –  𝐼  

𝜒2
2

2𝑏
, 𝑁 − 1 − 𝐼  

𝜒1
2

2𝑏
, 𝑁 − 1  𝑎𝑘

+  𝐼  
𝜒2

2

2𝑏
,𝑁 − 𝐼  

𝜒1
2

2𝑏
, 𝑁  𝑎 𝑘𝑏 − 𝑏 + 1 

−  𝐼  
𝜒2

2

2𝑏
,𝑁 − 𝐼  

𝜒1
2

2𝑏
, 𝑁  +  𝐼2 + 𝐼3 −

𝑎  𝐼  
𝜒1

2

2𝑏
, 𝑁 − 1 − 𝐼  

𝜒2
2

2𝑏
, 𝑁 − 1 + 1 

+ 𝑎  𝐼  
𝜒1

2

2𝑏
, 𝑁 − 𝐼  

𝜒2
2

2𝑏
, 𝑁 + 1 

− 𝐼  
𝜒1

2

2𝑏
, 𝑁 − 𝐼  

𝜒2
2

2𝑏
,𝑁 + 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

_____(6.3.1.3) 

Where    dxxeppxI px

x

1

0

1);( 

   refers to the standard incomplete gamma 

function and b = (1/β) and 

𝐼1
 =  

𝑒𝑎(𝑏−1)

 𝛤 𝑁 
𝑒−𝑎𝑏𝑘   𝑒

 
𝑎𝑘(𝑁−1)

𝑡
 

𝑥2
2

2𝑏

𝑥1
2

2𝑏

 𝑒−𝑡  (𝑡) 𝑁−1 𝑑𝑡 

𝐼2
 =  

𝑒−𝑎

 𝛤 𝑁 
  𝑒

 
𝑎(𝑁−1)

𝑡
 

𝑥1
2

2𝑏

0

 𝑒−𝑡  (𝑡) 𝑁−1 𝑑𝑡 
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𝐼3
 =  

𝑒−𝑎

 𝛤 𝑁 
  𝑒

 
𝑎(𝑁−1)

𝑡
 

∞

𝑥2
2

2𝑏

 𝑒−𝑡  (𝑡) 𝑁−1 𝑑𝑡 

6.3.2  Risk of  𝜷 𝑺𝑻𝟐 

The risk of  𝛽 𝑆𝑇2
  under L(∆) is defined by                                                                                                                                                                                           

𝑅 𝛽 𝑆𝑇2
 = 𝐸 𝛽 𝑆𝑇2

| 𝐿  Δ     

                 =   𝐸    2𝑇𝑟
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    ∙ 𝑃  

𝜒1
2

2
 <  𝑇𝑟 <  

𝜒2
2

2
    

                    +  𝐸    
𝑁−1

𝑇𝑟
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2
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2
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Straight forward integration of (6.3.2.2) gives 

𝑅 𝛽 𝑆𝑇2
 =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

𝑒𝑎(𝑏−1)

 1 +
2𝑎𝑏2

𝜒2  
𝑁  𝑒

 
2𝑎𝑏  𝑁−1 

𝜒2  
 𝐼  
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2

2𝑏
, 𝑁 − 𝐼  
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2

2𝑏
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2
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2𝑏
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6.4 Relative Risk of  𝜷 𝑺𝑻𝒊 

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator 𝛽  in this case. For this 

purpose, we obtain the risk of  𝛽  under 𝐿𝐸 𝛽 , 𝛽  as: 

 

  𝑅𝐸 𝛽  = 𝐸 𝛽 | 𝐿  𝛽 , 𝛽     
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   A  straight  forward  integration of (6.4.1) gives  
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Now, we define the Relative Risk of  𝛽 𝑆𝑇𝑖  ; 𝑖 = 1,2  with respect to 𝛽  under L() 

as follows 
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Using (6.4.2) and (6.3.1.3) the expression for RR1 is given by (6.4.3). It is 

observed  that  RR1  is a function of  N, , k, b  and  „a‟. 

Again, we define the  Relative  Risk of  𝛽 𝑆𝑇2
 by 
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The  expression for RR2 is given by (6.4.4) which can be obtained by using (6.4.2) 

and (6.3.2.3).  Again we observed that 2RR   is a function of  N, , k, b  and  „a‟. 

We have calculated N from the values of 𝑘𝑟,𝑛  given in Bain (1972). For n = 10, 20, 

30 the values of  N are respectively. 

𝑟
𝑛  0.2 0.3 0.4 0.5 0.6 

N 1.0540 2.1720 3.3690 4.6670 6.0980 

N 3.1666 5.4420 7.8880 10.5540 13.5120 

N 5.2770 8.7120 12.4110 16.4460 20.9370 

 

6.5 Recommendations  for  𝜷 𝑺𝑻𝒊  

In this section we wish to compare the  performance of  𝛽 𝑆𝑇1
  and  𝛽 𝑆𝑇2

   with 

respect to the best available (unbiased) estimator of  𝛽  .   

6.5.1 Recommendations  for  𝜷 𝑺𝑻𝟏 

The risk of   𝛽 𝑆𝑇1
 with respect to  𝛽   the best available estimator of  𝛽 is a 

function of „𝑘‟, a, b, „𝛼‟, N (i.e. 𝑛  𝑎𝑛𝑑  𝑘𝑟,𝑛 ). For different values of   𝑟 𝑛  these 

values are given by Bain (1972).  Now we have taken  𝑘 = 0.2 (0.2) 0.8, a =  -0.5, -

0.75, -1.0, -1.25, -1.50  and 𝑏 = 0.2 (0.2) 1.8,  N is given in table and  𝛼 = 1% and 

5%. 

For  a = -1.5, it performs better for the whole range of „𝑘‟ and „b‟ considered 

here. The values of  RR1 are better for almost all the values of  N obtained for 

different censoring fractions however as N increases i.e. „𝑟 𝑛 ‟ increases there. We 

observe that RR1  values are still better.  Implying that one can take larger 

censoring factions. However for other values of „a‟ up to – 0.5  𝛽 𝑆𝑇1
 performs 
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better than 𝛽  but the magnitude of RR1 values decrease slightly (but greater than 

unity).  

When we change „𝛼‟ to 5% the similar kind of pattern of RR1 values is 

observed  as observed for 𝛼 =1% . But the magnitude of relative risk values lowers 

down but still greater than unity for the whole range of shrinkage factor (i.e. 0.2 ≤ 

k ≤ 0.8 ) and the whole range of „b‟ i.e. b = 0.2 (0.2) 1.8. Again changing the 

censoring fraction to some higher values, it is observed that the magnitude of RR1 

increases with larger values of „N‟ i.e. again it may be suggested that a larger 

censoring faction can be considered.  

We have also tried some positive values of „a‟ the degree of asymmetry but 

it is observed that  RR1 values are not good in such situations indicating that the 

asymmetric loss function is more useful for those situations where under-

estimation is more serious. 

6.5.2 Recommendations  for  𝜷 𝑺𝑻𝟐 

It is observed that  RR2  is a function of  „a‟, „b‟, „α‟ and N (i.e. 𝑛  𝑎𝑛𝑑  𝑘𝑟,𝑛 ) we 

have considered a= -0.5,  -0.75, -1.0, -1.25, -1.5    b= 0.2 (0.2) 1.8, N is again 

tabulated for different values of  𝑟 𝑛  in table and α = 1% and α = 5%. There will be 

several tables for RR2 values for the above values considered. We have assembled 

some of the tables at the end of the chapter. However our recommendations based 

on all the computations are as follows. 

1.  𝛽 𝑆𝑇2
  performs better than  𝛽   for almost all the values considered as above. 

However for a = - 1.5 and  α  = 1%  its performance is at its best for the 

whole range of „b‟.  
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2. When the value of α = 5% still the performance of  𝛽 𝑆𝑇2
 is good though there 

is a slight decrease to in the values of RR2. 

 

3. As N increases (i.e. r/n increases) implying that a higher censoring fraction 

is admissible the RR2 values increase indicating a better control over the risk 

of 𝛽 𝑆𝑇2
. This is in contrast to the behaviour of MSE of  𝛽   under the „SELF‟. 

As the recommendations with MSE criterion is to use small censoring 

fraction. 

 

4. As the degree of asymmetry becomes positive the RR2 values are not good 

in the sense that they are less in magnitude even lesser than unity.  So, it is 

suggested that only negative degree(s) of asymmetries be considered. 

 

5. RR2 values are higher in magnitude compared to RR1.  

 

CONCLUSIONS: 

We have proposed two shrinkage  testimators  𝛽 𝑆𝑇1
 and 𝛽 𝑆𝑇2

 for the shape 

parameter 𝛽 . It is suggested to use 𝛽 𝑆𝑇1
 as it ( k = k ) performs better than 

the shrinkage factor dependent on test statistics i.e. 𝛽 𝑆𝑇2
 . In particular 

smaller level of significance i.e. α =1% coupled with proper censoring 

fraction is recommended for various degrees of asymmetry. The best 

performance is achieved at a = -1.5. 
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Tables  showing  relative risk(s) of proposed testimator(s) with respect to the 

best available estimator. 

 

Table : 6.5.1.1               Relative Risk of  𝜷 𝑺𝑻𝟏 
   

  𝛼 = 1% , 𝑛 = 10, k = 0.2 

b a = -0.5 a = -0.75 a = -1 a = -1.25 a = -1.5 

0.2 1.016 1.048 1.076 1.101 1.126 

0.4 1.099 1.176 1.253 1.333 1.416 

0.6 1.174 1.297 1.427 1.569 1.724 

0.8 1.233 1.395 1.573 1.771 1.997 

1.0 1.272 1.459 1.666 1.902 2.175 

1.2 1.287 1.48 1.695 1.94 2.223 

1.4 1.278 1.461 1.663 1.891 2.151 

1.6 1.249 1.411 1.586 1.783 2.004 

1.8 1.205 1.339 1.484 1.646 1.828 

 

Table : 6.5.1.2               Relative Risk of  𝜷 𝑺𝑻𝟏 
   

  𝛼 = 1% , 𝑛 = 10, k = 0.4 

b a = -0.5 a = -0.75 a = -1 a = -1.25 a = -1.5 

0.2 1.009 1.037 1.06 1.081 1.101 

0.4 1.073 1.135 1.195 1.254 1.315 

0.6 1.134 1.231 1.329 1.433 1.543 

0.8 1.187 1.316 1.453 1.602 1.766 

1.0 1.229 1.385 1.554 1.743 1.956 

1.2 1.257 1.431 1.623 1.838 2.085 

1.4 1.271 1.452 1.652 1.878 2.136 

1.6 1.271 1.449 1.644 1.864 2.112 

1.8 1.258 1.425 1.606 1.807 2.032 

 

Table : 6.5.1.3               Relative Risk of  𝜷 𝑺𝑻𝟏 
   

  𝛼 = 5% , 𝑛 = 10, k = 0.2 

b a = -0.5 a = -0.75 a = -1 a = -1.25 a = -1.5 

0.2 1.026 1.062 1.094 1.124 1.153 

0.4 1.095 1.173 1.25 1.329 1.414 

0.6 1.158 1.276 1.402 1.538 1.689 

0.8 1.205 1.355 1.52 1.705 1.916 

1.0 1.23 1.397 1.583 1.793 2.033 

1.2 1.232 1.4 1.584 1.791 2.025 

1.4 1.214 1.368 1.535 1.719 1.923 

1.6 1.181 1.313 1.455 1.608 1.776 

1.8 1.138 1.246 1.361 1.485 1.621 
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Table : 6.5.1.4               Relative Risk of  𝜷 𝑺𝑻𝟐 
   

  𝛼 = 5% , 𝑛 = 20 

b a = -0.5 a = -0.75 a = -1 a = -1.25 a = -1.5 

0.2 0. 633 0.594 0.558 0.526 0.497 

0.4 0.859 0.834 0.808 0.783 0.76 

0.6 1.438 1.474 1.489 1.495 1.496 

0.8 2.497 2.744 2.935 3.094 3.234 

1.0 3.729 4.3 4.782 5.212 5.611 

1.2 3.597 3.91 4.12 4.279 4.411 

1.4 2.445 2.456 2.444 2.433 2.429 

1.6 1.574 1.525 1.487 1.464 1.453 

1.8 1.078 1.033 1.005 0.991 0.986 

 
 

Table : 6.5.2.1               Relative Risk of  𝜷 𝑺𝑻𝟐 
   

  𝛼 = 1% , 𝑛 = 10 

b a = -0.5 a = -0.75 a = -1 a = -1.25 a = -1.5 

0.2 1.02 1.053 1.082 1.11 1.137 

0.4 1.108 1.192 1.276 1.363 1.455 

0.6 1.181 1.31 1.446 1.593 1.757 

0.8 1.23 1.39 1.563 1.756 1.974 

1.0 1.25 1.422 1.609 1.818 2.053 

1.2 1.235 1.4 1.576 1.768 1.977 

1.4 1.188 1.329 1.472 1.617 1.758 

1.6 1.113 1.218 1.31 1.378 1.389 

1.8 1.018 1.077 1.099 1.033 0.71 

 
 

Table : 6.5.2.2               Relative Risk of  𝜷 𝑺𝑻𝟐 
   

  𝛼 = 5% , 𝑛 = 10 

b a = -0.5 a = -0.75 a = -1 a = -1.25 a = -1.5 

0.2 1.034 1.074 1.109 1.143 1.177 

0.4 1.106 1.188 1.27 1.356 1.446 

0.6 1.159 1.275 1.397 1.529 1.674 

0.8 1.18 1.312 1.454 1.609 1.778 

1.0 1.158 1.286 1.42 1.56 1.706 

1.2 1.095 1.198 1.295 1.38 1.443 

1.4 1 1.061 1.094 1.074 0.948 

1.6 0.883 0.887 0.817 0.58 0.515 

1.8 0.755 0.679 0.422 0.44 0.416 
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6.6 Shrinkage Testimator of  β  by Shrinkage towards an Interval 

Suppose „n‟ items are put to life test and the experiment is continued until „r‟ 

failures are observed. Let these failure times be rxxx .......,, 21  and suppose further 

that they follow Weibull distribution. Then following Thompson (1968,b) a 

shrinkage of  𝛽 can be defined as 

𝛽 𝑆𝑇1
= 𝑘  

𝑕 − 2

𝑡
 +   1 − 𝑘   

𝛽
1

+ 𝛽
2

2
  

which was proposed by Pandey and Singh (1984). The properties of this estimator 

were studied by minimizing the Mean Square Error. 

We propose another shrunken estimator of  𝛽 as follows: 

𝛽 𝑆𝑇3
=

 
 
 
 

 
 
 𝛽1           ,    𝑖𝑓   𝑡 >

𝑕 − 2

𝛽1
   

            

𝑘  
𝑕 − 2

𝑡
 +   1 − 𝑘   

𝛽
1

+ 𝛽
2

2
   , 𝑖𝑓   

𝑕 − 2

𝛽2
 ≤  𝑡 ≤  

𝑕 − 2

𝛽1 

            𝛽2           ,    𝑖𝑓   𝑡 <   
𝑕 − 2

𝛽2
                

  

Where  𝛽1 , 𝛽2    𝛽2  <  𝛽1  is the guess interval in which 𝛽 is supposed to lie. So, 

here we have proposed a shrinkage testimator for the shape parameter of Weibull 

distribution by shrinking the guess towards an interval. The shrinkage factor „k‟ 

lies between „0‟ and „1‟. We have derived the risk of 𝛽 𝑆𝑇3
 under an asymmetric loss 

function. L(∆) which is defined and discussed earlier. 

As Weibull distribution finds applications in many real life problems. This 

estimation procedure could find its place whenever the guess value of  β lies in 

some interval. One these could be estimation of pollutants in water (say) the 
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arsenic contents in the water lies in some interval  𝛽1 , 𝛽2  and then utilizing this 

guess interval a better estimate of  β can be proposed along the lines discussed in 

the chapter. The use of asymmetric loss will facilitate a proper control over the 

„risk‟ by choosing the degrees of asymmetry appropriately. 

 

6.7 Risk of Testimators  

The risk of  𝛽 𝑆𝑇3
 under   ,ˆ
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Straight forward integration of (6.7.2) gives     
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Where    dxxeppxI px

x

1

0

1);( 

   refers to the standard incomplete gamma 

function and  𝜙 =  
𝛽 

𝛽
 ; 𝑕 =  

2

𝑉𝑎𝑟  
𝑏 𝑠

𝑏
  

 ; 𝛽 =  
𝑕−2

𝑡
  ; 𝑏 𝑠  =  

   𝑥 𝑖  − 𝑥 𝑟  

𝑛  𝑘𝑟,𝑛

 
6.8 Relative Risk of 𝜷 𝑺𝑻𝟑 

A natural way to compare the performance of  𝛽 𝑆𝑇3
 is to compare its performance 

with respect to the unbiased estimator  𝛽  .  For this we obtain the risk of  𝛽   under 

L(∆) and the risk of  𝛽 𝑆𝑇3
 has already been obtained in the previous section. Now 

the risk of 𝛽  is defined as  

  𝑅𝐸 𝛽  = 𝐸 𝛽 | 𝐿  𝛽 , 𝛽     
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   A  straight  forward  integration of (6.8.1) gives  
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Now, we define the Relative Risk of  𝛽 𝑆𝑇3
   with respect to 𝛽  under L() as 

follows 
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The  expression for RR3 is given by (6.8.3) which can be obtained by using 

(6.8.2) and (6.7.3).  It is observed that 𝑅𝑅3 expression is a function of  „k‟, 𝛽1, 

𝛽2, ∅ , a, n and α. In order to study its behaviour numerically we have taken k = 

0.2 (0.2) 1.0, 𝛽1, 𝛽2, ∅  are taken as 0.2 ≤  𝛽1 ≤ 1.4, 0.4 ≤  𝛽2 ≤ 1.6  and  0.1 ≤ ∅ 

≤ 1.3, a = ± 3 to ± 1 and α = 1% , 5%. There will be several tables of 𝑅𝑅3 for the 

above values considered. Some of these tables have been assembled at the end of 

the chapter. However our recommendations based on all these tables are 

summarized as follows. 

6.9 Recommendations for  𝜷 𝑺𝑻𝟑     

1. 𝛽 𝑆𝑇3
 dominates 𝛽  for all the positive and negative values of „a‟ i.e., it 

behaves well in both over / under estimation situations. However its 

performance is best for a = -3 and a = +1. These values are observed for the 
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almost the whole range of „k‟ i.e. 0.2 ≤ k ≤ 0.8 and 0.1 ≤  ∅ ≤ 1.3. The 

magnitude of  𝑅𝑅3 values are higher for n = 5. 

2. As the level of significance is changed to 5% still 𝛽 𝑆𝑇3
 performs better but 

now the 𝑅𝑅3 values are slightly lower than those obtained for α = 1%. 

Suggesting a lower level of significance should be preferred. 

3. 𝛽 𝑆𝑇3
 performs better than 𝛽  for  0.3 ≤  

𝛽1+𝛽2

2
  ≤ 1.5 for all the values of „a‟ 

considered here. However the range in this case is slightly increased as 

compared to the performance of  𝛽 𝑆𝑇3
 under Minimum Mean Square Error 

(MMSE) criterion. (Ref: Pandey and Singh (1984)) where they have 

reported the range from (0.6 to 1.5). So the use of an asymmetric loss 

function improves the effective range where the proposed testimator 

performs better than the usual one. 

4. The performance of 𝛽 𝑆𝑇3
 is not good for higher values of  „n‟ and higher 

level of significance. 

 

CONCLUSION: 

A shrinkage testimator for the shape parameter of Weibull distribution is 

proposed and its risk properties are studied under an asymmetric loss function. 

It has been observed that the proposed testimator dominates the usual unbiased 

estimator for fairly large range of departures of parameter(s). The proposed 

testimator is useful for larger negative values of degrees of asymmetry in 

particular a = -3 and different positive values of „a‟ in particular a = +1. A 

lower sample size and smaller level of significance report the best performance 

of  𝛽 𝑆𝑇3
.  
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Tables  showing  relative risk(s) of proposed testimator(s) with respect to the 

best available estimator. 

 

 

Table : 6.9.1                 Relative Risk of  𝜷 𝑺𝑻𝟑      𝛼 = 1% , 𝑛 = 5, k = 0.2 

ɸ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.1 1.333 1.403 1.493 1.243 1.216 1.196 

0.3 1.438 1.507 1.593 1.341 1.308 1.283 

0.5 1.66 1.733 1.819 1.549 1.507 1.473 

0.7 2.436 2.532 2.639 2.275 2.207 2.147 

0.9 3.923 3.858 3.913 3.388 2.772 2.249 

1.1 2.245 2.253 2.261 2.228 2.219 2.21 

1.3 1.566 1.583 1.599 1.527 1.506 1.482 

 

 

 

Table : 6.9.2                 Relative Risk of  𝜷 𝑺𝑻𝟑      𝛼 = 1% , 𝑛 = 7, k = 0.2 

ɸ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.1 1.315 1.381 1.467 1.23 1.204 1.186 

0.3 1.413 1.478 1.559 1.321 1.29 1.267 

0.5 1.62 1.688 1.77 1.515 1.476 1.443 

0.7 2.331 2.42 2.521 2.18 2.117 2.061 

0.9 3.363 3.549 3.747 3.022 2.867 2.72 

1.1 2.258 2.266 2.274 2.241 2.233 2.224 

1.3 1.58 1.597 1.612 1.543 1.522 1.499 
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Table : 6.9.3      Relative Risk of  𝜷 𝑺𝑻𝟑  
   

  𝛼 = 5% , n = 5, k = 0.2 

ɸ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.1 1.319 1.386 1.472 1.233 1.206 1.188 

0.3 1.418 1.484 1.566 1.325 1.294 1.27 

0.5 1.628 1.698 1.78 1.522 1.482 1.449 

0.7 2.352 2.443 2.545 2.199 2.136 2.079 

0.9 2.986 2.799 3.164 2.868 2.499 2.548 

1.1 2.255 2.263 2.271 2.238 2.23 2.221 

1.3 1.577 1.594 1.609 1.539 1.518 1.496 

 

 

Table : 6.9.4      Relative Risk of  𝜷 𝑺𝑻𝟑  
   

  𝛼 = 5% , n = 7, k = 0.2 

ɸ a = -1 a = -2 a = -3 a = 1 a = 2 a = 3 

0.1 1.315 1.381 1.467 1.23 1.204 1.185 

0.3 1.413 1.478 1.559 1.321 1.29 1.266 

0.5 1.62 1.688 1.769 1.515 1.476 1.443 

0.7 2.33 2.419 2.52 2.179 2.116 2.06 

0.9 2.701 2.851 3.01 2.428 2.303 2.185 

1.1 2.258 2.266 2.274 3.242 2.233 2.224 

1.3 1.58 1.597 1.612 2.543 1.522 1.5 
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