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ABSTRACT. We propose a generalized Konhauser matrix polynomial and ob-
tain its properties such as the differential equation, inverse series relation and
certain generating function relations involving Mittag-Leffler matrix function.

1. INTRODUCTION AND NOTATIONS

Many of the Special Functions and most of their properties can be derived
from the theory of Group representations [12]. Their matrix analogues often occur
in Statistics, Number theory and in Lie Group theory [1, 5, 11]. In [6, 7, 10],
are studied matrix differential equations and Frobenius method for the Laguerre,
Hermite and Gegenbauer matrix polynomials. Interestingly in [10] is studied the
quadrature matrix integration process with the help of matrix Laguerre polyno-
mial. It is well known that the Konhauser polynomial

Iirm+a+1) « m x"m
Zml@ir) = (F(nj—i— 1_; ) Z(_l)n<n) F(rn+a+1) (R(e) > =1)

is the biorthogonal polynomial for the distribution function of the Laguerre polyno-

n=0

mial [14]. This can also be viewed as a generalization of the Laguerre polynomial.
In 2014, the above Konhauser polynomial Z2 (x;r) was further generalized by
Prajapati, Ajudia and Agarwal in the form [13, Eq.(5), p.640]:
(2]
Tlam+8+1) < (—m) 2"
L@h) oy = amn___Z 1.1

=) (2) -y 7;) Tlan+ B+ 1) nl’ (1.1)
where o, 8 € C,m,q € N,R(8) > —1 and [%] denotes the integral part of %. Here,
we define a matrix analogue of this polynomial and derive certain properties of it.

In what follows, the following definitions and notations will be used. Throughout,
we shall let A to be a matrix in CP*P and o(A) to be the set of all eigenvalues of
A. The matrix A is said to be positive stable matrix if R(A) > 0 for all A € o(A).
If Ag, Ay, As, ....A,, are elements of CP*P and A, # 0 then

Po(z) = Apaz™ + Ap_12" + Aoz 4+ Ay + Ay
is a matrix polynomial of degree n in z.
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110 RESHMA SANJHIRA AND B. I. DAVE

The 2-norm of the matrix A, denoted by ||A||, is defined by

A
1A= sup A7 N2 e /3 x e o(ara)),
8 e, >
where for a vector x € CP, ||z]l2 = (z7z) /? is Euclidean norm of z, and A*

denotes the transposed conjugate of A.
If f(z) and g(z) are holomorphic functions of a complex variable z which are
defined on an open set Q of the complex plane and if o(A4) C €, then from the
properties of the matrix functional calculus [3] it follows that

f(A)g(A) = g(A)f(A).
The reciprocal gamma function denoted by I'~!(2) = [I‘(z)}_1 = m is an entire
function of complex variable z [4, p. 253] and thus for any matrix A in C™*™, the
functional calculus [3] shows that T=1(A) is a well defined matrix function. If I
denotes identity matrix of order p and A + n/ is invertible for every integer n > 0
then [8, Eq. (6) and (7), p.206]

(A), = L(A+nD)(A).
For positive stable matrices C, D € CP*P, the Beta matrix function is denoted and
defined by [8, Eq.(9), p.207] (also [9])

B(C,D) = /tc—f(l —t)P~1at. (1.2)

Further, if CD = DC and if C + nI,OD +nl and C + D + nl are invertible for all
nonnegative integers n then [8, Theorem 2, p. 209

B(C,D) =T(C)T(D)I'"'(C + D). (1.3)
For A(k,n),B(k,n) € CP*P n k > 0 and m € N, there holds the double series
identities (cf. [16, Eq.(1.7), p.606])

oo [n/m]

SN Bl = Y05 Blkn k) (1.4)
n=0 k=0 n=0 k=0

and (cf. [2, Eq.(8), p.324])
mn z/m] n mn—mj
Y. Bl)=Y >, Bli+mjj). (1.5)
i=0 j=0 j=0 =0

For any matrix A in C?*? and for |z| < 1, the following series expansion holds [8].

(1 _ :E)iA _ i (A)nxn

n!
n=0
Also, we have the formula [16, Eq.(2.23), p.616]
(A4 (i)
__.mk — .
(At =" ] <T)k — A(m; A). (1.6)
In particular, for non negative integer n,
! - n+i—1
—1m=—1m’fL 1) . 1.7
(ns = (O™ T = [ ()
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GENERALIZED KONHAUSER MATRIX POLYNOMIAL AND ITS PROPERTIES 111

We shall denote the zero matrix by O.
2. GENERALIZED KONHAUSER MATRIX POLYNOMIAL
We propose the extension of (1.1) as follows.

Definition 2.1. For the matrix A in CP*P

m/s] k
rcA I+1 Axh)m
Zf(f*’h) (z";r) = (+77+) E (=mI) g T A+ rnl + I)( i') , (2.1)
’ n=0 ’

where r, A\, u € C, k € Ryg, s € N, m € NU{0}, R(\) > 0, R(u) > —1 for all
eigen values p € o(A) and the floor function |u| = floor u, represents the greatest
integer < u.

It may be seen that when r = k € N and s = 1, this polynomial reduces to

ZAN (21 k) = T(kmI + A+ 1) i %

n=0
studied by Varma, Cekim, and Tagdelen [18]. Further, if k = 1 then this reduces
to the Laguerre matrix polynomial [6]:

LAN (z) = zm: (_—1)n' (A4 D [(A+ 1) (Az)™

= nl(m —n)!

For the polynomial (2.1), we derive the differential equation and inverse series

I t(knl+A+1)

relation. Also, we show the relation of (2.1) with Mittag-Leffler matrix function
which will be used in the generating function relations derived here. At last, the
Euler(Beta) matrix transform is applied on this polynomial.
3. DIFFERENTIAL EQUATIONS

If {Ai;i = 1,2,...,p} and {Bj;j = 1,2,...,q} are matrices in C™*™ and
Bj +nl are invertible for all n =0,1,2,..., then it is known that the generalized
hypergeometric matrix function [16, Eq. (2.2), p. 608]:

pFy(A1, A, ... Ay B1,Bs, ..., Bg; 2)

= Y Ak (A [(BW T (B2l (Bl 2 (3.1)
k=0

satisfies the matrix differential equation [16, Eq. (2.10), p. 610]:

q P
0[J01+B; — 1) =20 + Ai)| ,Fy(2) = O, (3.2)
=1 i=1

where 6 = zd/dz and O is the zero matrix of order n. Here, if we express the
polynomial (2.1) in ,F, form then the equation (3.2) will readily yield the differ-
ential equation corresponding to the polynomial (2.1). In fact, assuming that the

matrices occurring here commute with one another, we have, for r, s € N,

m/s 1k
ané’)‘)(xk;r) _ F(A+TmI+I)F_1(A+I) Z ( mI)Sn(A—FI)Tn ()\.T )
m! o n!
L(A4+rmlI+1) R —m+i—1
R N (el
m! n=0 Ui=1 s n
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112 RESHMA SANJHIRA AND B. I. DAVE

ﬁ A+ 41 -1 1 Azkss\"
e r n | ! rr '

Hence, in (3.1), settingp=s, g =71, A; = (—m+i—1)I/s, B = (A+jI)/r, z =
As*z¥ /77, the equation immediately leads us to the differential equation for (2.1)

of order maz.{r + 1, s}. This is stated in

d
Theorem 3.1. If r;s € N and the operator © is defined by © f(z) = %f(:z)

El IS

then U = Z,(,fi’)‘) (x*;7) satisfies the equation

Z A4jI
9H<@ I+— —I)

j=1

—(i—) A ot {]:[1 (@ I+$I>}

4. INVERSE SERIES RELATIONS

For deriving the inverse series of the matrix polynomial (2.1), the following
lemma will be used.

Lemma 4.1. If {P,} and {Q,} are finite sequences of matrices in C™*™, then

— (=nl); — (—nl);

j=0 7 =0

Proof. Let us denote the right hand side of second series by T,,, then
n n k
I ) TN AR S LU (—kI);
T.=2 @ = Zk! (n—k)! IZ 5! Fi
k=0 k=0 j=0
" (—1)kn) k(Z1) K
= Z kv( (n)_T]L{;)lI Z g (k)— N
k=0 © =0 J

n—1 n n—j n ]
_ _ 1)k - )
= Pn+Z (J) > (-1 ( L > P;.
7=0 k=0
Thus, T,, = P, and hence, first series implies the second series. Here we have
used the simple fact that the inner sum vanishes being equal to (1 +a)" 7 P; with
a = —1. The converse part is similar hence its proof is omitted. O
Using this lemma, we now establish the inverse series relation in the next

theorem.

Theorem 4.2. For a matrix A € CP*P, r A€ C, s € N, m € NU{0},

Lm/s] k\j
A I+1 Azx”)!
2N gy = LATTmI 1) Tt ) 3 (cmD) T (A4 il + D) ;,) (4.1)
m! par !

if and only if
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GENERALIZED KONHAUSER MATRIX POLYNOMIAL AND ITS PROPERTIES 113

k\m ms
()\Tn') I= (A + Tml+ D Z —msI); T (A+rjl + I)Z(A A)(:zr i), (4.2)
and form # sl, | € N,
S (=ml); DA+ I+ 1) 2V (aRr) = 0. (4.3)
=0

Proof. We first show that the series (4.1) implies both (4.2) and (4.3). The proof
of (4.1) implies (4.2) runs as follows. Denoting the right hand side of (4.2) by
matrix =,,, substituting the series expression for Z J(A )(:10 ;7) from (4.1) and then

using the double series relation (1.5), we get

DA rmI 1) ™ sy o1 (A 4 gl + 1) 289 (b )

- (ms)! =
- DU $h et 1) T (A 4 il 4 1) A2
B (ms) Z Z —J sz + rol + ) ]
Jj=

_ iS:L%S:J (A+rmI+1) (—1)7s T~ (A""”I"‘I)(/\xk)i

j=0 i=0 (ms —j)! (j — si)!d!
- zm:ms—sz DA+rml + D) (Z1) DA+ il +1) ey
= i=0 j=0 (ms — si — j)! 5! il

kym m—1 . .

_ e ') Yy DA+ rml + DD (Asril +1) g

— (ms — si)! i!

ms—si s — si
X .
> ()
Here the inner sum in the second term on the right hand side vanishes being equal
. kym
to (1 + a)™*~%* with a = —1. Consequently, we arrive at =, = %I. Next,

to show further that (4.1) also implies (4.3), let us substitute the series expression
for ZJ(-*A’A)(xk;T) from (4.1) to the left hand side of (4.3). Then in view of (1.5),

we get
(=mI);T A+ rjI + 1) 23V (¥ )

j*

jm' Y (1) DA + il + 1)

— k\i
- : (G — si)l 4! (Az)
=0
m/ | m—si .
mF A+7’z+[) . (m — si
e i —1‘] =

if m # sl, | € N. This completes the proof of the first part. The proof of converse
part which uses the technique due to Dave and Dalbhide [2], runs as follows. In
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114 RESHMA SANJHIRA AND B. I. DAVE

order to show that the series (4.2) and the condition (4.3) together imply the series
(4.1), we use Lemma 4.1 with
P=jI T Y (A+rjl +1) Z

and consider one sided relation in the lemma, that is, the series on the left hand

A, )\)(,T T)

side implies the series on the right hand side. Then

Qu =Y _(=ml); T™Y A+ il + 1) Zi (@) (4.4)
implies =
NP I+1) &
24 (o) = HAT LD ZO( Y

Since the condition (4. 3) holds Qm = O for m # sl, | € N, whereas
Qms = Z(—ms[) YA+ I+ 1) 20N (@),

j=0
Also the series (4.2) holds true, whence it follows that
Qus = Y (=msl); D7V A+l + 1) Z{Y (aF;7)
§=0
_ (ms)! F_l(A'—FrmI +1) ()™,
m!
Consequently, the inverse pair (4.4) and (4.5) assume the form:
(AzFym  D(A4rml+1) < . )
(A,2)
XZ 5 (z*:7)
from which it follows that
Lm/s]
(AN k. A4 rmI+1) (=ml)s;
Z5 (%) = —_— Z T Qs;
7=0
lm/s] - .
_ I‘(A—FTW'”LI—FI) Z (—mI)s; T 1.('A—|—7"]I—|—I) (k)
m! — J!
subject to the condition (4.3). ! O

5. MITTAG-LEFFLER MATRIX FUNCTION
In 2007, Shukla and Prajapati [17] introduced a generalization of the Mittag-
Leffler function in the form:

ZFan+8 nl’ (5.1)

where «, 8,7 € C, R(«, 8,7) > 0, q € (0,1)UN. Here we allow ¢ to take value 0 in
which case the series retains convergence behavior. Also, if « is allowed to assume
value 0 then with ¢ = 0 and 8 = 1, the reducibility of (5.1) to the exponential
function e* occurs. Thus, with ¢ > 0, R(a) > 0, R(5,v) > 0 and 2z € C, (5.1)

yields an instance
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GENERALIZED KONHAUSER MATRIX POLYNOMIAL AND ITS PROPERTIES 115

- ;F(Ozn—i—ﬂ) n!’
We define here the matrix analogues of (5.1) and (5.2) as follows.

Definition 5.1. For A, B € CP*? R(u) > —1 for all eigen values p € o(A4),r € C
and s € N,

Ea,B(Z) (52)

oo

Bfha(z) = Y (Bl " (A+rnl + 1) (5.3)

n=0
Definition 5.2. For A € CP*?, r € C, R(p) > —1 for all eigen values u € o(A4),
Errayi(z Zr A+m1+1) (5.4)

Putting B = —ml, where m € N and z = Ar¥ in (5.3), and comparing it with
the defined function (2.1), we obtain the relation:
E;’rxfll()\:l: y=m! T (A4 rml + I)Z,Sﬁ!” (z*;7).
The functions (5.3) and (5.4) will be used in the generating function relations
derived in the following section.
6. GENERATING FUNCTION RELATIONS
We derive the generating function relations for the matrix polynomial ané’/\) (x*;7)
in the form of Theorems 6.1, 6.3 and 6.5.
Theorem 6.1. Letr € C, s € N and A, B be the matrices in CP*P R(u) > —1
for all eigenvalues i € o(A), then for |t| < 1,

ST (B)w TN A+l + 1) 25 (aF5r) £
m=0

= (=07 P B, (b (=) (1 -1~

Proof. Observe that on substituting the series for Z( )‘)( r) from (2.1) on the
left hand side and using (1.4), we get

ST (B TN A+l + 1) Z5N (@) ¢

m=0

m=

T(A+ rmI+1) " (1) Ir =1 (At rnIaT)

m! — nl(m — sn)!

X

~—~~ O

Axk)ntm

—

ML

(=1)*™(B) T (A +rnl + 1)
n! (m — sn)!

(/\:L,k)ntm

I
NE

0

3
Il
o

I
M8
KR

(_1)Sn (B)m-l-snr_l(A +rnl + I)

n! m!

(/\xk)nthrsn

3
]
o
]
o

n

o= (B + snd)pt™ (=1)*"(B)sn I Y (A +rnl + I
ZZ( m!) (=1)*(B) ( )

n!

()\xk)ntsn

m=0n=0
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116 RESHMA SANJHIRA AND B. I. DAVE

oo _ sn —1
Z (1—1) “Bsn1 (=1) (B)snFn'(A+TnI+I) (Azkyrgsn

— -y Z A””I”) () (1 — 1)1y 6.1)

= (1-1) BEﬁﬁ;on<—w<1—w-“»
This completes the proof. O
Corollary 6.2. Ifr € N, then for s <r ors=r-+1,

(B)m (A+ D)% 200 @kr) 7 = (1178 x

m=0

-, by ; , ey —)\:B
s’ s s r r r

7 (B B+I Bi(s —1)I A+I A+21 A+rl s* ’“RS>

where R = (—t)(1 —t)~!
Proof. For r € N, the infinite series on the right hand side in (6.1) assumes the

form
1) TN A+ 1) (B)n(A+ 1), W;—?)n
n=0

In view of the formula (1.6) and the matrix function (3.1), this leads us to the

corollary. 0
If (B), is dropped from the left hand side of this theorem, then it takes the

following form.

Theorem 6.3. In the usual notations and meaning, there holds the generating

function relation:

Z YA+ rml + 1) Z5N (% r) ¢ = e Eppavr (A (—1)%).
Proof. The proof follows in a straight forward manner. In fact, by using the double
series relation (1.4), we have

ZF (A+rmI+1) Z(A/\)(x i)t

m*

o0 Lm/SJ

_ Z Z S"F (A—FTTLI—FI)()\:B yagm

m=0 n=0 —STL)'
= (1) (A I+1
- zz nﬁ T D) s gkyngnen

= e Erl,A-{-I (/\.23 (— )S)

Again, we have the following corollary. (cf. [16, Eq. (3.5), p. 619])
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GENERALIZED KONHAUSER MATRIX POLYNOMIAL AND ITS PROPERTIES 117

Corollary 6.4. Forr € N,

(A+ D)5k 25 (@) o
m=0
. ( A+T A+21 A+rl /\xk(—t)3>
= € OFT it B P ; .
r r r r’

The proof follows by proceeding as in corollary 6.2. Next, in the notations and

meaning of Theorem 6.1, we have

Theorem 6.5. Let a and b be complex constants which are not zero simultane-

ously, then there holds the generating function relation

k
A)\) . n —1 n
E Zy (—a+bn) )(a—i—bn) I (A+mI+1)t
= ea (1 —bte’®) ™t Brparr(Aa®(—t)%ebT).

Proof. Beginning with the left hand side, we have

s k
Z Z,(lf’)‘) (x—)’ 7") (a+bn)"T YA +rnl +1)t"

~ (a+bn)s
oo |n/s] sj T—1 ] kyi
—1)% T-1(A I+1 / j
== (n—sj)! 4!
) i i (=) z*)I T~ YA+ rjI + 1) (a + bn + bsj)" in (6.2)
n=0 j=0 ]' n' | |

We use here the Lagrange expansion formula [15, Eq. (18), p. 146]:

F@) . _
Tg()—z D @) emy s (= /9(@)

by taking f(z) = e(®t?5)® and g(z) = €**. Then we find that

(a+bsj)x 0 n
e . nt
T hicbe = nZ:O(a + bsj + bn) o

Thus (6.2) simplifies to

k
ZZ (4.3) (— ) (a+bn)"T A+ rnl +1) "

(a+bn)s
oo F_l(A + il + I) v elatbsj)z
= ) A"y ——.
‘ 4! ((=t)*A2%) 1 — bteb
7=0
In view of (5.4), this yields the desired form. O

We again have the following corollary. (cf. [16, Eq. (3.14), p. 621])
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118 RESHMA SANJHIRA AND B. I. DAVE

Corollary 6.6. For r € N, there holds the matrixz generating function relation:

oo k
Z Zf{f’k) <—(a —fbn)s;r> (a+bn)" (A+ D)1 t" = e (1 — bteb) ™!

k(_4\s bsx
- (__;A+I At2l Al dak(-t)re >

n=0

) 9 )
r r r r’

7. MATRIX INTEGRAL TRANSFORM
Using the integral formula (7.1), we define Euler (Beta) matrix transform as
follows.
Definition 7.1. For the matrices P,Q € CP*P  a Beta matrix transform may be
defined as

B{f(z): P,Q} = /xp71(1 —2)9 1 f(z) d. (7.1)
0

We apply this transform to the polynomial (2.1) in the following theorem.
Theorem 7.2. If A,P,Q € CP*P, P, QQ are positive stable matrices, for q =
0,1,2,..., the matrices P+ qI, @ are commutative, P+ ql,Q +ql, P+ Q + ql
are invertible and k,r,s,m € N, then

B {Z,(,ﬁ&)(tmk;r) : P7Q} — % F(Q)F_l(P)I‘_l(P L)
SS
X orkFppn A(s;—mlI), A(k; P); r_Tt |
A(r; A+1), Ak P+ Q);

where the notation A(j; C) carries the meaning as in (1.6).
Proof. From (7.1),
B {Z,(,ﬁ’)‘) (tzh;r) P,Q}

=11 - x)Q_IZ,(nﬁ’)‘)(txk;r)dx

— O

[m/s]
_ :ZTP_I(l _ x)Q—IF(Tm{n_'—'A +I) Z (_:Ln')sn F_l(Tn[ +A —|—I)(t.1?k)ndx
) ! = !
F(rm[+ A+ I) /sl (_m)sn /
= ' Z ' I (rnl+ A—l—I)t"/xk”HP_I(l —z)9 ldz
m! = n!
n= 0
I‘(rm[+ A+I) /el (_m)sn —1 n
— — > DT el + A4 1) " B(knl + P,Q)
n=0
I‘(rm[ + A + I) Lm/SJ (_m)sn —1 n
= —~ > Tl + A+ 1) 7 T(knl + P) T(Q)
n=0

Author's copy



GENERALIZED KONHAUSER MATRIX POLYNOMIAL AND ITS PROPERTIES 119

xT~Y(knl + P + Q)

lm/s] n
A e S ) (A D (P PHQIE @) (P
n=0 !

m!

(A+ D DP)D@QT (P +Q)
m!

SS

A(s;—mlI), A(k; P); —t

X s+kFr+k r’
A(r; A+1), A(k; P+ Q);

O

This theorem reduces to the Euler (Beta) transform given in [13, Theorem 9.4, p.
649] when the P,Q, A are scalars.

Acknowledgement. The first author is indebted to B. V. Nathwani with
whom she had useful discussions during the work.

REFERENCES

[1] Constantine, A. G. and Muirhead, R. J., Partial differential equations for hypergeometric
functions of two argument matrices, J. Multivariate Anal., 3 (1972), 332-338.

[2] Dave, B. I. and Dalbhide, M., Gessel-Stanton’s inverse series and a system of g-polynomials,
Bull. Sci. Math., 138 (2014), 323-334.

[3] Dunford, N. and Schwartz, J., Linear Operators, part I, General theory, Volume I, Inter-
science Publishers, INC., New York, 1957.

[4] Hille, E., Lectures on Ordinary Differential Equations, Addison-Wesley, New York, 1969.

[5] James, A. T., Special Functions of Matriz and Single Argument in Statistics, in Theory and
Applications of Special Functions, Academic Press, New York, 1975.

[6] Jédar, L., Company, R. and Navarro, E., Laguerre matrix polynomials and systems of second
order differential equations, Applied Numerical Mathematics, 15 (1994), 53-63.

[7] Jédar, L., Company, R. and Ponsoda, E., Orthogonal matrix polynomials and systems of
second order differential equations, Diff. Equations and Dynamic Syst., 3 (1995), 269-228.
&)

[8] Jédar, L. and Cortés, J. C., On the hypergeometric matrix function, J. Computational and
Applied Mathematics, 99 (1998), 205-217.

9] , Some properties of gamma and beta matrix functions, Appl. Math. Lett., 11 (1998),

89-93.

[10] Jédar, L., Defez, E. and Ponsoda, E., Matrix quadrature integration and orthogonal matrix
polynomials, Congressus Numerantium, 106 (1995), 141-153.

[11] Khatri, C. G., On the exact finite series distribution of the smallest or the largest root of
matrices in three situations, J. Multivariate Anal., 12 (1972), 201-207.

[12] Miller, W., Lie Theory and Special Functions, Academic Press, New York, 1968.

[13] Prajapati, Jyotindra C., Ajudia, Naresh K. and Agarwal, Praveen, Some results due to
Konhauser polynomial of first kind and Laguerre polynomials, Applied Mathematics and
Computation, 247 (2014), 639-650.

[14] Preiser, S., An Investigation of Biorthogonal Polynomials Derivable from Ordinary Differ-
ential Equations of the Third order, J. Math. Anal. Appl., 4 (1962), 38—64.

Author's copy



120 RESHMA SANJHIRA AND B. I. DAVE

[15] Riordan, J., An Introduction to Combinatorial Identities, Wiley, New York - London -
Sydney, 1968.

[16] Shehata, Ayman, Some relation on Konhauser matrix polynomial, Miskole Mathematical
Notes, 17 (2016), 605-633.

[17] Shukla, A. K. and Prajapati, J. C., On a generalization of Mittag-Lefller function and its
properties, J. Math. Anal. Appl., 336 (2007), 797-811.

[18] Varma, S., Cekim, B. and Tagdelen, F., On Konhauser matrix polynomials, Ars Combina-
toria, 100 (2011), 193-204.

Reshma Sanjhira

Dept. of Mathematical Sciences

P. D. Patel Institute of Applied Sciences
Faculty of Applied Sciences

Charotar University of Science and Technology
Changa-388 421, Dist: Anand, Gujarat, India;
& Research Scholar

Dept. of Mathematics, Faculty of Science

The Maharaja Sayajirao University of Baroda
Vadodara-390 002, Gujarat, India.

E-mail: reshmashah.maths@charusat.ac.in

B. I. Dave

Dept. of Mathematics, Faculty of Science
The Maharaja Sayajirao University of Baroda
Vadodara-390 002, Gujarat, India.

E-mail: bidavemsu@yahoo.co.in

Author's copy



Journal of the Indian Math. Soc. ISSN (Online): 2455—6475
Vol. 86, Nos. (1—2) (2019), 161—178. ISSN (Print): 0019— 5839

GENERALIZED MITTAG-LEFFLER MATRIX
FUNCTION AND ASSOCIATED MATRIX
POLYNOMIALS

RESHMA SANJHIRA, B. V. NATHWANI AND B. I. DAVE

ABSTRACT. The Mittag-Leffler function has been found useful in solv-
ing certain problems in Science and Engineering. On the other hand,
noticing the occurrence of certain matrix functions in Special functions’
theory in general and in Statistics and Lie group theory in particular,
we introduce here a matrix analogue of a recently generalized form of
Mittag-Leffler function. This function yields the matrix analogues of the
Saxena-Nishimoto’s function, Bessel-Maitland function, Dotsenko func-
tion and the Elliptic Function. We obtain matrix differential equation
and eigen matrix function property for the proposed matrix function.
Also, a generalized Konhauser matrix polynomial is deduced and its in-

verse series relations and generating function are derived.

(Received: 16 April 2018, Accepted: 13 August 2018)

1. INTRODUCTION

The function

n

Ea(’z):zm7 (1.1)

n=0
where z,a € C, R(a) > 0, is due to Gosta Mittag-Leffler [17] which is well

known as the Mittag-Leffler function. Wiman [26] generalized this in the form

Ea,p(2) = n;) 7”&2: 5 (1.2)

This was further extended in different forms by T. R. Prabhakar [19], Shukla
and Prajapati [25] and others. Recently, Nathwani and Dave [18] studied the

2010 Mathematics Subject Classification. 11C08; 15A16; 15A24; 33C99; 33E12.
Key words and phrases: Mittag-Leffler matrix function, matrix differential equation,

Generalized Konhauser matrix polynomial, generating function.
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generalized structure given by

6n 2"

aﬁ)\u(z s,1) = Z T om+ﬂ) O (1.3)
wherein the parameters «, 8, v, A € C with ®(«, 3,7, A) >0, 6, u > 0, r €
NU{-1,0} and s € NU {0}.
As indicated in [18], the function in (1.3) includes the Bessel-Maitland func-
tion: J#(z), Dotsenko function : 9R1(a,b; c,w;v; 2), a particular form (m = 2)
of extension of Mittag-Lefller function due to Saxena and Nishimoto given by
E, k[(cj,Bj)1,2; 2] and the Elliptic function : K(k) = Z oF; (1/2,1/2;1;k%).
The Special matrix functions indeed appear in Statistics [7,13], Lie groups the-
ory [16], and in a series of works during late nineties, on matrix analogues of
Laguerre, Hermite and Legendre differential equations and the corresponding
polynomial families [6,8,11,12,22].
Motivated by the matrix functions’ study, we propose here a matrix analogue
of (1.3) and derive the matrix differential equation and matrix eigen function.
Also among certain specializations of this function, an extended Konhauser
matrix polynomial and hence the Laguerre matrix polynomial are illustrated
together with their inverse series relations and matrix generating function re-
lation.

2. PRELIMINARIES AND SOME FACTS

In what follows, the following notations and definitions will be used in the
work. We shall let a matrix A in CP*P and o(A), the set of all eigenvalues of A.
The matrix A is said to be positive stable matrix if ®(\) > 0 for all A € o(A).
If the matrices Ay, A1, Ao, ....A,, are elements of CP*P and A,, # O then

Po(z) = Apa™ + Ay 12"+ Ay 02 L+ Ay + Ag (2.1)

is a matrix polynomial of degree n in x.
The 2-norm of the matrix A denoted by || A||, is defined by

1A = sup 1A% 2 e /3 x € o(ar ), (2.2)
a0 || 2 o
where for a vector y € CP, ||y|l2 = (yTy)1/2 is Euclidean norm of y, and A*
denotes the transposed conjugate of A.
If f(2) and g(z) are holomorphic functions of the complex variable z which are
defined on an open set Q of the complex plane, and if c(A) C © then from the
properties of the matrix functional calculus [3], it follows that

f(A)g(A) = g(A) f(A). (2.3)
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-1

The reciprocal gamma function denoted by I'~1(2) = (I'(z))” = #z) is an

entire function of complex variable z [4, p. 253] and thus for any matrix A in
CP*P_ the functional calculus [3] shows that [ (A) is a well defined matrix.
If I denotes the identity matrix of order r and A + nl is invertible for every
integer n > 0 then [9]

A(A+ D) - (A+ (n— 1)) =T(A+nl) T"H(A).
The scalar factorial function
(a)p =ala+1)---(a+n—1),
where a € C,n € N, (a)p = 1, has matrix analogue ( [3], [10, Eq.(7), p.206]) :
(A, =AA+I) - (A+ (n— 1)),
where A € CP*P ne N, (A)y =T

Example 2.1. Let us evaluate I'(A), where
1 0
12|

I'(A) = / e A 1dt
0

A=

We have [1, Eq.(8), p. 64]

where t = ePlogt We first find ¢4, where

AI_[OO].
11

Since for n > 1,

00| [oo
1 1] |11l
and
>~ B"(logt)"
Blogt __
c _Z n! ’
n=0
we find that
0 0
A B Lo
t—1 ¢
Hence,
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()L

Alternatively, following [21], if f(s) is a scalar function which is analytic in

Consequently,

some region R of complex plane, then
(o)
f(s) = Z I s*.
k=0

Now if Pbe an nxn matrix with characteristic polynomial A(s) and eigenvalues
A; then f(s) may be written as f(s) = A(s)Q(s) + R(s), where R(s) is of degree
< n — 1. Now, from Cayley-Hamilton theorem,

ngzRngi;%ﬁ. (2.4)
k=0

This yields the system of simultaneous equations in o/ s. Thus for matrix func-
tion f(A), we have

n—1
f(A) = R(A) =) a, A"
k=0
The ) s are determined from (2.4). Thus, taking

0 0
11

)

P:A—I:[

we find the eigen values to be Ay = 0,A2 = 1. The corresponding system of
equations is 1 = o, + 0;¢t = o, + «,. This provides us o, = 1,0, =t — 1. Now,

1 0
t—1 t |’
Consequently,

L A P P |

For more details of matrix exponential, see [21].

tA=ePlost — g I+, P=

The generalized hypergeometric matrix function is defined as follows [24, Eq.

(2.2), p. 608].

Definition 2.2. If {A4;;i=1,2,...,p}, and {B,;j=1,2,..., ¢}, are sequences
of matrices in CP*P such that B; + nl are invertible for all n > 0, then the
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generalized hypergeometric matrix function is defined as

F (A17A2,...,AT;B17BQ,...,BS;$)
—Z n(A2)n - (An)n [(BU)n] M (Ba)n] ™ (B ™ — (25)

Here, the series converges for all x if r < s. If r = s+1, then the series converges
for |z| < 1. If r > s + 1, then the series diverges for all z # 0.

For any matrix A in CP*P and for |z| < 1, the following series expansion
holds [10].
A)n
(1-—z) 4= Z An 0 (2.6)

n'
n=0

Also, we have the formula:

A -DI
(A = H ( HED) — a4 (27)
k
In particular, for non negative integer n,
_ _ . \mk n! ok O —n4i—1
(=nD)mr = (1) s LAk ];[1 (—m I)k. (2.8)

In these notations, we define here a generalized Mittag-Leffler matrix function
as follows.

Definition 2.3.

5 Ozim) = Y[ A)sal 17 oI 4 B) (@l P (20)
n=0 '

where A, B, C are positive stable matrices in CP*P, o, A, z € C with R(«a) > 0,
d,p0>0,7€ {—-1,0} UN and s € {0} UN.

The matrix analogues of above stated functions (i)-(iv) are yielded by this
function which are given below.
(i) Bessel-Maitland matrix function (cf. [5, Eq.(1.7.8), p.19]):

oo

n — Zn
() = ()" T wl + npd + 1) 5
n=0

(ii) Dotsenko matrix function (cf. [5, Eq.(1.8.9), p.24]):

oRi(aL,blcl,whvz) = S D(al+nl)T(al) F(bI-l—n%I)
n=0

D7) (eI el + nD) =,
14 n
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(iil) Saxena and Nishimoto’s matrix function (cf. [23]):
> n

z
Byl B2zl = Y (WD knl~H(arnl + BT~ (agnl + Bs)—.

n=0

where z,7, o, 85 € C,R(o1 + a2) > R(K) — 1, R(K) > 0, and

(iv) the Elliptic matrix function (cf. [15, Eq.(1), p.211]):

1 1r 2
K(I;k):g2pl<2j{> 21, k )

3. DIFFERENTIAL EQUATION

Let us take
5% d g A+mI\]® .
=u, —=D, 2D=0, [ |(0r+ +m = ABAs)
a® pute dz o 0
a—1 B+ ir m
I1 <91+ J —1) =1, (3.1)
a
§=0

In these notations, we derive the differential equation satisfied by (2.9).

Theorem 3.1. Let o, pi,0 € N theny = EABC (A\z; s,7) satisfies the equation

al, 01l
1
(1,C5r) ~n (e, Bsl) 6°Az 5,4;8) | ,, _

Proof. We first assume that the matrices occurring here are commutative with

one another, then we have

vo= S Wl T el 4 B) (@) L
n=0

= Y T Al [(Blanl ™ (Ol B

- 2eme](3) ()] 1))

n=0

|
) ()
o IS e

(A2)"

n!
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Thus,
B = 1 §som ST/ A+ mI s
Yy = nz:or ( )a(m U nl;[()[( ) >n:|
a—1 B+j[ —1 pn—1 C-I—k[ 11" ()\Z)n
(), (I (57), ] )5 e
7=0 n k=0 n
Now take
§—1 s — p—1 —1
(N R
m=0 =0 n k=0 n

then the function (2.9) takes the form

B S B gt Ry 2
n=0
Now,
gy = Zu Po Q' By — 0 (A2)"

= I '(B) Zu P, Q;' R;! (A2)".

n=1

(n—1)! )

Further, for the matrices which commute with one another, we have

[e'e] a—1 .
(. Bi1) R O B+ jI
T 0ly = I'7(B) E U —(n—l)! | | 01 + - -1

n=1 7=0
X (Az)"
= L P Qi Ry B+ jI
= T7'(B)> u o) H(I )
n=1 ’ j=0
x (Az)"
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Finally,
T](CH70;T) T(aBl) 6Iy
> P, QR C+ kI r
= I'YB ut L Enelon [<6I+ I)] Az)"
()Zj1 CE] kljo ; (A2)
> P QR R C+ kI r
= I B nln¥nol n Knu —I)] Az)"
(); S 1:I ; (A2)
- P” Qn R;
= I(B)Z (nfll)l (Az)™.
n=1 :
Thus,

T](C;L,C;’r') Tga,B;l) 0 y = Ffl(B) Zun+lP7L+1 Q;l R:Ll

n=0
)\Z n+1
QDT (3.0
On the other hand,
NG,  peg S P Qi R [ (g At D]
Wty = Tt = 1]
n=1 m=0
x(Az)"
_ < P, Q'R A+tmI\]®
= T 1 B n 1N ¥n n I
oy S ] (e 25
x(Az)"
o
— -1 n —1 p—1 (A2)"
that is,
;S n _ )\Z n+tl
u()\z)AggA, ) y = B)Zu +p,. Rnl ( T)L! (3.5)
On comparing (3.4) and (3.5), we get (3.2). O

3.1. Eigen function property. In deriving the eigen function property for

the function (2.9), we will require the operators:

5—1 —s
m A I
o =] [(—eu +6m —I)} : (3.6)

m=0
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and

Qoir = ()t D @A) yidm) pleoBil), (3.7)
Theorem 3.2. Let o, i, € N then EQIEZICM()\Z; s,7) is an eigen function with

respect to the operator Qe.x. That is,

Qo.r (Eﬁ}ifw(g)\z; 877”)) = EﬁI%ICMI()\z; 8,7). (3.8)

Proof. We first note that

Az
w= BYEC (s = T7U(B)S ()" P Qi Ry @
n=0
Now in view of (3.1),
[e’s} 1 a—1 .
(a,B;1) _ Pn Q R B +]I
T; wo= Z 11 <9[+ 1
n=1 2o
(Az)"
n Pa Q "R T B+l
_ -1 B
- (B)Z IT (nr+ 2E8 1
7=0
x(Az)"
o0
_ _ Az
= B Y () Bt B D

Next

T(}AC;T) T(_a-,B;l) w

- B)Z(( yp Ll n fa Q’: = R M 1 KGH— Okl I)] (Az)"
_ B)nz:l(g )" M [( L Ok I)Y(Az)"

- A
= B @ Pl R ( ij .
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Further, from (3.6),

@7(’2,14;—3) TI(CMCV‘) T;CMB?l) w

= T74(B) Z(c
= I (B Z

x(A2)"
= 7B _(w"
x(Az)"

= I7(B) Y (Gw)"
n=0

n Pn QR
) R e S e

n—1 @%,A;—s)(Az)n
Rnll - A+mI o
H K—&I+ 5 —I>]
P Q;anan A+m[ )]

- 1 (A
Pn—l Qnil Rnil %

n!

Finally, using (3.7) we get

Qe (E(f}f;}c,ﬂz(@z; s, T))

= (W)™ 'D

= I7(B)

B YO P @iy Rk

@%,A;—s) fr](cﬂaci’f) TE_CMB?l) w

o0
- e _ 4
YB)> ") Pay Q1 Rnilsz

n=0

n—1

n=1

N S il 1 1 (M)

1 B);)g thy p, inRan
(B Y. ¢ P gyt Ryt O
n=0

¢ EfIEfHCM(C/\Z; s,7).

The properties corresponding to the special cases (i)-(iv) listed in section 2

may be deduced by suitably specializing the parameters involved in the above

derived properties.
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4. EXTENDED KONHAUSER MATRIX POLYNOMIAL

A generalized Konhauser polynomial due to Nathwani and Dave is given
by [18, Eq. (22), p. T1]

[n/m] :
(B.M) 1 k. . F(an+ﬁ+ 1) [(7Tl)m-]s kI
Bt = T 2 Fag i DT

We propose its matrix analogue as follows.

Definition 4.1. For the matrix A and B in CP*P,

Lm 5]
(A +rml + I
AP (ks p) = DAEIIED Sy
(ml)*
n=0
k\n
<[(B)E, ]! r—l(A+m1+I)M, (4.1)
mn.

where r € C; m € NU{0},s,p,k € Rsg, R(u) > —1, for all eigen values
p € o(A), Xis a complex number with ®(A) > 0 and the floor function |u| =
floor u, represents the greatest integer < w.

The Laguerre matrix polynomial [14, Eq.(10), p. 3]:

L) = ) N D (A D] (4.2)

| —n)!
= nl(m —n)!

occurs as a special case of this polynomial when y =0,k =d=r=s=1. We
now derive its inverse series and generating function relations in the following

sections.

5. INVERSE SERIES RELATIONS

In deriving the inverse series of the matrix polynomial (4.1), the following

lemma will be used.

Lemma 5.1. If{G,} and {H,} are finite sequences of matrices in CP*P, then

 (=nl); ~ (=n);
H, =Y i Gj@Gn:ZOTHj.
j:

=0
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Proof. Denoting by matrix T}, the right hand side of second series, we have
~ (nt)k
r, = 3 e g,
k=0

Yen! 1 ldj
- L SR

n

(1Pl T G~ (1) K
K (n =k 25 (k=) J

k

- S0 5o (W)

J

e () Eerl) e

k=0

0

Thus, T,, = G,, and hence, first series implies the second series. The converse
follows along the same line hence omitted. O

Using this lemma, we now establish the inverse series relation for s =1 in

Theorem 5.2. For A, B CP*P and § =2,3,...,

Lm/3]

ZABRD (g1 ) = M 3 (~mD)sn
n=0
B B /\CL‘k n
X[(B)E, ] T A+ rnl + I)( n!) . (5.1)
if and only if
Az®)m  T(A+rmI+ 1) m |
1 = W(B) m Y _(=mdl);
7=0
XD A+ gl + 1) 28020 (a1, p), (5.2)
and form # 6l, | € N,
ST (=ml); YA+ il + 1) Z5 PR (a1, p) = 0. (5.3)

=0

Proof. We first show that the series (5.1) implies both (5.2) and (5.3). The
proof of (5.1) implies (5.2) runs as follows.
Denoting the right hand side of (5.2) by some matrix Z,,, and then substituting
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AB
for Z( e T)()\xk; 1,p) from (5.1), we get

mo
_ T(A+rmI+ 1T . _ .
=, = DA+ rml+ 1) Col ) (B) Y (—mdD),T ™ (A+rjl + 1)

XZ‘E;A’BJLVT')()\I]C; 17p)
Li/3]
D(A+rmI+1 - 5 i -
_ W( B)!,, Y (-mdD); Y (—iD)si (B),!

§=0 i=0

(A+mI+I)(>\I i

ms 3/9] (_1)J+MF(A +rml + I)(B)ﬁm (B);zp

) ;); (md — ) (5 — 0i)! d! T At il )
m MO0 (_1)ID(A+rmI+ 1) (B o (B)f _

- z; Zo (méd — di — j)! 4! d! (A+ril+1)
X()\xk)i

= (>\$ ) mz: A+rmﬂi;1)&()!32?m(3);fr_l(z4+Tz'I—i—I)

mo—di

<O 3 - ().

Here the inner sum in the second term on the right hand side vanishes, conse-
quently, we arrive at =, = ~~——~—1.
In order to show further that (5.1) also implies (5.3), let us substitute for

Z;?’B’”’r)(Amk; 1,p) from (5.1) to the left hand side of (5.3), we then get

ST (=mI) TN A+ L+ 1) 25550 (ak; 1, p)
=0

m it 9 (1) (B |
) Z%I 2 %Flﬂwﬂﬂ)(w)’

j=0 © S0 Ll

Lm/o) o (B);iPF—l(A+ri+I) m—8i S
T = (m — di)! 4! Z (=1 < ‘ )
=0

if m # 6l, | € N. Thus completing the first part. The proof of converse part
which uses the technique due to Dave and Dalbhide [2], runs as follows. In
order to show that the series (5.2) and the condition (5.3) together imply the



174 RESHMA SANJHIRA, B. V. NATHWANI AND B. I. DAVE
series (5.1), we use Lemma 4.1 with
A . A,B,u,
Gj = T YA+ rjl+ 1) 2510 (dak; 1, p),

and consider one sided relation in the lemma that is, the series on the left hand
side implies the series on the right hand side. Then

Z YA+ I+ 1) Z28PP (AR Lp) (5.4)
=
ABr T(A+rmI+ 1) <~ (—ml);
ZEHP) (\aki 1, p) = - ) S — )s H;.  (55)
J

Since the condition (5.3) holds, H,, = 0 for m # dl, I € N, whereas

md
Hp5 = Z(—m(ﬂ)j T Y A+rjiI+ 1) Zg-f"B’”’r)()\:z:k; 1,p).
j=0

But since the series (5.2) holds true,

(m&)! T=YHA +rmI+ 1)
m!

Hmé = ()\l’k)m

Consequently, the inverse pair (5.4) and (5.5) assume the form:
md
(Azh)m - T(A —|— rml+ 1) -1 )

xng’B’”’r)(/\x 1, p)

=
(AB,jr) (. I'(A+ rmI+ 0 I)s;
Zj* (/\I ;17p) Z (5 )| H51
Lm/bJ
xDYA+rjl + 1) (Azk)ﬂ,
subject to the condition (5.3). O

If 6 = 1, then Theorem 5.2 takes the following form.
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Corollary 5.3. In the usual notations and meaning,

ZGB 0 (ki 1,p) = W i (=mlI),
n=0
<[(B)2) " TH A+ rnl + 1) (Afj)”, (5.6)
if and only if
(Az*)"I = T(A+rml+I)(B),, i(—ml)j
j=0
XD~ (A +rjl + 1) ngiB’“”‘)(Axk; 1,p). (5.7)

This is an evident consequence of Lemma 5.1 with
Hy =T YA+ rml + Dm! ZS554 0k 1, p)

and
Gm =T (A+rmI+I)[(B),,] " (Aa™)™.
The Konhauser matrix polynomial and its inverse [24, Eq.(3.2) and (3.29),

p.618, 626] follow from from the Corollary 5.3 when p = 0. Further, if k = 1,
then we obtain the inverse pair for the Laguerre matrix polynomial (4.2) [14, Eq.

(26), p. 5].

6. GENERATING FUNCTION

We obtain here a matrix generating function relation involving the L-
exponential function

o0 n

o0 =3 G

n=0

of order k, due to Ricci and Tavkhelidze [20].

Theorem 6.1. In the usual notations and meaning, there holds the generating

function relation:

> (A+ Dk Z5ePHD (ks s, p) 17 = e (19)

m=0

B\? B+ (u—1DI\? A+1T A+rl
B (= () (R AT A,

1 1 r ooy
where Y = (—t)%% Xz* /r" pip.
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Proof. Beginning with the left hand side, we have

DA+ ZEEED (ks e

m=0

o |m/é] < _

(_1)adn(A+I) 1 B X

= n B p)\, ntms

m; n;) nl [(m—onye (Dun (A7)

o N DA D ek 5
= rn B P(\x ntms+ sn

> > LUl Dol et

e ms X -1 sén A+I;n1 3 N
_ (m')s ( ) 51' ) (B)l”};()\ﬂjk) t55n7

which is the right hand side expression. g

When § =1 =r =s =k and u = 0 then this reduces to the generating

function for LG (z) stated in (4.2).

[

2]
(3]

(4]
(5]

(6]
(7]

8

[9

(10]
(11]

(12]

REFERENCES

Abul-Dahab, M. A., Bakhet A. K., A certain generalized gamma matriz functions and
their properties, J. Ana. Num. Theor. 3(1) (2015), 63—68

Dave, B. I. and Dalbhide, M., Gessel-Stanton’s inverse series and a system of q-
polynomials, Bull. Sci. Math. 138(2014), 323—334

Dunford, N. and Schwartz, J., Linear Operators, part I, General theory, Volume I,
Interscience Publishers, INC., New York, 1957.

Hille, E., Lectures on Ordinary Differential Equations, Addison-Wesley, New York, 1969.
Mathai, A. M., Haubold, H. J., Saxena R. K., The H-function: Theory and Applications,
Centre for Mathematical sciences, Pala Campus, Kerala, India, 2008.

Herz, C. S., Bessel functions of matriz argument, Ann. of Math. 61(1955), 474—523
James, A. T., Special Functions of Matriz And Single Argument in Statistics, in Theory
and Applications of Special Functions, Academic Press, New York, 1975.

Jédar, L., Company, R., Ponsoda, E., Orthogonal matriz polynomials and systems
of second order differential equations, Differential Equations and Dynamic System,
3(3)(1995), 269—228

Jédar, L., Cortés, J. C., Some properties of Gamma and Beta matriz functions, Appl.
Math. Lett., 11(1)(1998), 89—93

Jodar, L., Cortés J. C.; On the hypergeometric matrix function, Journal of Computa-
tional and Applied Mathematics, 99(1998), 205—217

Joédar, L., Defez, E., Ponsoda, E., Matriz quadrature integration and orthogonal matriz
polynomials, Congressus Numerantium, 106(1995), 141—153

Jédar,L., Legua, L., Law, A. G., A matriz method of Frobenius and applications to

generalized Bessel equations, Congressus Numerantium, 86(1992), 7—17



(13]
(14]
(15]

[16]
(17]

(18]
(19]
20]

(21]

[22]
[23]
[24]
[25]

(26]

GENERALIZED MITTAG-LEFFLER MATRIX FUNCTION... 177

Khatri, C. G., On the exact finite series distribution of the smallest or the largest root
of matrices in three situations, J. Multivariate Anal., 12(2)(1972), 201—-207

Jédar, L., Sastre, J., On Laguerre matriz polynomsal, Utilitas Mathematica, 53(1998),
37—-48

Luke, Y. L., The Special functions and their Approximations, Volume I, Academic Press-
New York, London, 1969.

Miller, W., Lie Theory and Special Functions, Academic Press, New York, 1968.
Mittag-Leffler, G., Sur la nouvelle fonction eq(z), C. R. Acad. Sci., Paris, 137(1903),
554—558

Nathwani, B. V., Dave, B. 1., Generalized Mittag-Leffler function and its properties,
The Mathemaics Student, 86(1-2)(2017), 63—76

Prabhakar, T. R., A singular equation with a generalized Mittag-Leffler functlion in the
kernel, Yokohama Mathematical Journal, 19(1971), 7—15

Ricci, P., Tavkhelidze, 1., An introduction to operational techniques and special polyno-
miaals, Journal of Mathematical Sciences, 157(1)(2009), 161—189

Rowell, D., Computing the matriz exponential the Cayley-Hamilton method,
Massachusetts  Institute of Technology Department of Mechanical En-
gineering, 2.151 Advanced System Dynamics and Control (2004), 1-5
web.mit.edu/2.151 /www/Handouts/CayleyHamilton.pdf

Sastre, J., Defez, E., Jédar, L., Laguerre matriz polynomial series expansion:theory and
computer application, Math. Comput. Modelling, 44(2006), 1025—1043

Saxena, R. K., Nishimoto, K. N., Fractional calculus of generalized Mittag-Leffler func-
tions, J. Frac. Calc., 37(2010), 43—52

Shehata, Ayman, Some relation on Konhauser matriz polynomaial, Miskolc Mathemati-
cal Notes, 17(1)(2016), 605—633

Shukla, A., Prajapati, J. C., On a generalization of Mittag-Leffler function and its
properties, J. Math. Anal. Appl., 336(2) (2007), 797—811

Wiman, A., Uber de fundamental satz in der theoric der funktionen eq(z), Acta Math.,
29(1905), 191—-201

RESHMA SANJHIRA,
Assistant Professor, Department of Mathematical Sciences, P. D. Patel Insti-

tute of Applied Sciences, Faculty of Applied Sciences, Charotar University of
Science and Technology, Changa-388 421, Dist: Anand, India
Research Scholar, Department of Mathematics, Faculty of Science, The Ma-

haraja Sayajirao University of Baroda, Vadodara-390 002, India

e-mail address: reshmashah.maths@charusat.ac.in

B. V. NATHWANT,
Assistant Professor, Ramrao Adik Institute of Technology, Sector 7, Nerul,
Navi Mumbai-400706, India

e-mail address: bharti.nathwani@yahoo.com



178 RESHMA SANJHIRA, B. V. NATHWANI AND B. I. DAVE

B. I. DAVE,
Professor, Department of Mathematics, Faculty of Science, The Maharaja Saya-
jirao University of Baroda, Vadodara-390002, India

e-mail address: bidavemsu@yahoo.co.in

e-mail for correspondence: bidavemsu@yahoo.co.in



DE GRUYTER Mofhennfico
Slovaca

DOI: 10.1515/ms-2017-0469
Math. Slovaca 71 (2021), No. 2, 3015316,

A GENERAL INVERSE MATRIX SERIES RELATION
AND ASSOCIATED POLYNOMIALS - 1II

RESHMA SANJHIRA

(Communicated by Marek Balcerzak)

ABSTRACT. We propose a matrix analogue of a general inverse series relation with an objective
to introduce the generalized Humbert matrix polynomial, Wilson matrix polynomial, and the Rach
matrix polynomial together with their inverse series representations. The matrix polynomials of Kiney,
Pincherle, Gegenbauer, Hahn, Meixner-Pollaczek etc. occur as the special cases. It is also shown that
the general inverse matrix pair provides the extension to several inverse pairs due to John Riordan [An
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1. Introduction

Let
n n
Ap = g (677% bk7 by, = E ﬁn,k Qf
k=0 k=0

be the given series. They are said to form a pair of inverse series relation if one of the series when
substituted into the other, yields the expression involving the Kronecker delta:

5o — 0, it k#n
k=Y 1, ifk=n.

3

To illustrate this, consider the pair of the series

~ (-1)* ~ (D"
f(n):Zm g(k), g(n):Zm f(k).
k=0 k=0
Here, if the second series is substituted into the first series then the inner sum simplifies to the
form ‘
I
2 ln R (g
which proves the one sided inverse series relation. The other part follows similarly.
It appears from the literature that the inverse series relations were systematically studied by
H. W. Gould (see [5/12H14] and subsequently by L. Carlitz (see [3H5]).
For last few decades, the theory of hypergeometric function and its various generalization were
provided matrix extension from varied point of view due to their applications in Physics, Statistics,

2010 Mathematics Subject Classification: 15A16, 15A24, 33C45, 33C99.
Keywords: Matrix inverse series relation, matrix polynomials, Riordan’s matrix inverse pairs.
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Group representation theory, Engineering, Probability theory, Control theory, Lie theory, Medical
imaging etc. (see |2L[6L[8L{TOLTTL17L[21]).

In this paper, our objective is to obtain a matrix analogue of Gould’s general inverse series
relation |14 by means of a general matrix inversion pair(GMIP) and thereby deduce the generalized
Humbert matrix polynomial together with its inverse series. The matrix analogues of the particular
polynomials belonging to this generalized matrix polynomial follow readily along with their inverse
series relations. Besides this, we also deduce matrix inverse pairs by means of GMIP which extend
the Riordan’s inverse pairs belonging to the Gould classes, Simpler Legendre classes and Legendre-
Chebyshev classes (see |23} Ch. 2]).

We first list out in the following, the notations and basic formulas for the matrix case.

1.1. Preliminaries

Throughout this paper, the notation CP*P stands for the linear space of all square matrices
with in general complex entries.

Let Ag, Ay, A, ..., A, be the matrices in CP*P and A, is a non-zero matrix. Then a matrix
polynomial of degree n in x is given by [18]
Plx)=Apz" + Ap_ 12" P+ Ay g2 2 4+ A1z + Ay, (1.1)
The 2-norm of a matrix A denoted by ||Al|2 is defined by
A
| A= sup |” xH”2 = max{VX: X € c(A*A)}, (1.2)
x=0 X 2
where for a vector u € CP,||lullz = v/(uTu) is the Euclidean norm of u, and A* denotes the

transposed conjugate of A. The spectrum o(A) denotes the set of all eigenvalues of A. For a
complex number «, the notation R(«a) indicates the real part of a.

DEFINITION 1. A square matrix A is said to be positive stable matrix in CP*? if A satisfies the
condition:

R(u) >0 for all i1 € o(A), (1.3)

where o(A) is the set of all eigenvalues of A and p is in general, a complex number.

For a positive stable matrix A, the gamma matrix function exists as an Euler integral (see [24]
and [25: Ex 2.1, p. 164]). Also, if f(z) and g(z) are defined on an open set G of the complex
z-plane and they are analytic on G and if G D 0(A), then from [9], we have

f(A)g(A) = g(A)f(A). (1.4)
Moreover, if B in CP*? is a matrix for which o(B) C G, and AB = BA , then
f(A)g(B) = g(B)f(A). (1.5)

The reciprocal gamma function ﬁ = (I'(z))"" =T1(2) is an entire function of complex variable

z (see |16} p. 253]) and thus for any matrix A in CP*P, the functional calculus [9] shows that
I'~1(A) is a well defined matrix.

If I denotes the identity matrix of order p and A + nl is invertible for every integer n > 0 then
([[L9))

I A)=AA+T)---(A+ (n—1DI) TH(A+nI). (1.6)
From this, the functional equation of the gamma matrix function
AT(A) =T(A+1) (1.7)
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follows readily for n = 1. For a matrix A in CP*P  the Pochhammer matrix symbol is defined by
[19] (A)n:{ {4, oo
(A+I)---(A+(n—-11I), iftn>1.
Also, if I — A — nlI is invertible for all n > 0, then
(A)p—r = (=1)* n! (A), (I — A—nl); " (1.8)
If A — nl is invertible for all n > 1, then in view of the product
(—A+D(A-I) Y A-2)" - (A—nD) = (-1)" I,

we define
(A p=A-D"A-2D) - (A—nD) ' = (-1)"(~A+1),*.
Hence,
T(A-nDTHA) =(A)_, = (-1)"(-A+ 1), (1.9)
For A(k,n) € CP*P n,k >0 and m € N, there hold the double series identities [22]:
oo 00 oo J
DA G) =D > Ak G — k), (1.10)
j=0 k=0 §j=0 k=0
and
N N—k N j
k=0 j=0 j=0k=0

We shall denote the zero matrix by O.
We define the action of two operators, namely the shift operator F¥ and the forward difference
operator A on a matrix polynomial function (1.1)) as follows.

DEFINITION 2. Let P(z) be a matrix polynomial of degree n in = of the form ([1.1}), then (see |15}

p. 175])
E(P(x)) := P(x + h) (1.12)
and
AP(z):= P(x+h) — P(x), (1.13)
where h > 0.

Also, for r € N, E"P(z) = E(E""Y)P(z), and A"P(z) = A(A""Y)P(z). For r = 0, E° := 1,
A% =1

We now illustrate that how a particular matrix polynomial and its inverse matrix series are
deduced from a general inversion pair. For that we consider the generalized Konhauser matrix
polynomial and its inverse series (see |25} Cor. 5.3] and [27: Eq. (3.2) and (3.29), pp. 618, 626]),
with p = 0) given by

Adrnl +1) 3~ (‘Z{)’“ [(B)l) ™ T (A4 rkI + 1) (Az”),

k=0

ZABm (\g*;1,1) = I

n!

(Aa*)" I =T(A+rnl +1) (B)L, > (~nl)y D7Y A+ vkl + 1) ZZPHD (0 1,1),
k=0

where [, s, u € Ry, 7 € C, and a general matrix inversion pair:

un) = @nivlk), v(n)=>_ B, ulk). (1.14)
k=0 k=0
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Then the substitutions v(j) = (Az*)/[(B)! ;] 'T" YA+ rjI + I)/j!, @n; = (=1)7/(n—j)! = B,
and u(j) =T~ YA+ rjl + I)Z](A‘B’“"")(Axs; 1,1) provide the above generalized Konhauser matrix
polynomial and its inverse. Further, if s = 1 and r = 1, then this matrix polynomial and its inverse
get reduced to the Laguerre matrix polynomial and its inverse |18} pp. 3,5].

2. Auxiliary results

The following is the matrix analogue of an nt" difference of a matrix polynomial of degree less
than n.

LEMMA 2.1. If P(x) is a matriz polynomial of degree less than n then

n

Z(—l)"‘k<Z>P(a+hk) -0 (2.1)

k=0
where n > 1 and a, h are constants.
Proof. Since the deg[P(x)] < n, in view of the Definition [2| we have
A"P(z) = 0.
Now (|15t p. 177]),
O=A"P(z)=(E—-I)"P(z)

- {E” L (T)E"—l + <Z>E"‘2 +ok (<) | P(a)

= B"Pla) ~ () BV P@) 4 (11 P@)

= P(z +nh) — (”

1)P(x +(n—1Dh)+ -+ (-1)"P(x)

I
=
i M:
(e}

(—1)nk (Z) P(x + kh),

a. O

which leads to the lemma for x

In the similar notations of ([1.14)), we prove the following lemma which will be useful in the proof
of the GMIP in Section 3.

LEMMA 2.2. For a positive stable matriz A € CP*P,

£, — Z(_nk(i)r(/x_ (nr —mrk +k — j)I) g (2:2)
k=0

—

g = Z(—l)k@) YA+ Q—nr+mrj—j+k)I) (2.3)
k=0
X (A — (nr — mrk)I) f.
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Proof. We prove that the series in (| = (2.2). For that we assume that the series in
holds true. If F; stands for the right hand side of (2.2) then on substituting the series for gy, from

, we get |
F; = zj:(—l)’“(i)l“(/l — (nr —mrk +k —5)I) Zk:(—ni(’;)

k=0 =0
A4 (1 —nr+mrk —k+i))(A— nrl +mril)f;.

Using the double series relation (1.11)), this becomes

i=0 k=
x T7HA+ (1 —nr+mr(k+14) —k)I) (A—nrl +mril) £

=Z<J)Z FG) e g iresn

0 k=0
xT7HA+ (1 —nr+ (k+i)(mr — 1) +9)I) (A —nrl +mril) f;

J=1 , .\ j—i .
J k() —? . . .
= ] -1 F(A—(nr—mr(k+i)+ (k+i) —j)I
S (1) 2 () rs et 4 e -
YA+ (1 —nr +mrk +mri — k)I) (A —nrl +mril) £ +f;.
Here the product of the matrix gamma function and the inverse matrix gamma function simplifies

to a matrix polynomial in k, that is,

(A — (nr—mr(k+i)+ (k+13) —5)I)
YA+ (1 —nr +mrk +mri — k)I) = Z ak?®,

where the coefficient matrices @; = @s(A, m,n,r,i). For illustration, let us take j = 5;4 = 2 and
denote A — nrI —mril by B and (mr — 1) by N then we have

I'(B4+EN +30)I"Y(B+kN+1)=(B+kNI+2I)(B+kNI+1)
2
= k’N?+ k(2NB +3N) + (B> +3B+2I) = Y 5k
r=0
say, where 55 = N2 # O. Hence from , we have
- N .
J—1 — s .
P, =, +Z( )[Z ( ) > = = mriyn .
Here, the two inner series on the right hand side are (j — )" difference of the polynomial of degree
j —i— 1, hence in view of Lemma 2.1} F; = f;.
We see that the diagonal elements I'"*(A — nrl + mrNI — NI + jI) of the block matrix
corresponding to the series (2.2)) and those given by I'(A—nrI+mrNI—NI+;I) of the block matrix
2.3

corresponding to the series (2.3) are non singular matrices for every matrix A # nrl — mrNI +
NI —jI,j=0,1,2,..., hence the inverse of each block matrix is unique. Since (2.3)) = (2.2), it
O

follows that (2.2) < (2.3).
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3. Main result

Consider the series

M M
a) = Zﬁn’kv(a + bk), v(a) = Zﬁn,ku(a + bk),
k=0 k=0

where M is a non negative integer or infinity depending upon whether b is a negative integer or
a positive integer. In particular, let a be a non negative integer n. If b is a negative integer —m,
m € N, then M = [n/m] and if b is a positive integer then M = cc.

As a main result, we derive the inverse matrix series relations in

THEOREM 3.1. Let A—sI, s € {0} UN, be a positive stable matriz in CP*P then

YA+ (1 —nr —brk — k)
Z T (A - bk = KD 5y, 1 k) (3.1)
if and only if
M
A— brk)I
= Z(—n)’“ (A — (nr —k)I) —%U(n + bk). (3.2)
k=0 )
Proof. Throughout the proof, we let n to be a non negative integer. We first choose b = —m, m €

N, then M = [n/m)].
Now, if U denotes the right hand member of the series (3.1), then on substituting the series
from (3.2) for V(n — mk), we get
nokp-1
B T~ HA+ (1 —nr+mrk—k)I)
U= Z k!
mk=0 mj=0

x (A= (nr —mrk —mrj)[)U(n — mk —mj).
From the double series relation (1.11]), we further have

U= i (=) zj:(_nk <‘]7€> YA = (nr —mrk + k — 1))

n—mk

—IT(A — (nr — mrk — §)I
3 (=n)’T(A—( )

4!

|
mj=0 k=0 (3.3)
x T(A—(nr—mrk+k—j)I)(A— (nr —mrj)[)U(n — mj).
Now, for r,s =0, 1,2,..., the matrices A —rI and I'(A — sI) are commutative, where the matrices

A — sI are positive stable, hence

YA~ (nr —mrk+k—1)DT(A— (nr —mrk +k — j)I)
i1 i1

H —(nr —mrk+k+1) ):ZZSkS,

=1 s=0

_ Jj=1 — .
where (o = [[(A—nrl —il), {;_; = (mr —1) "I and for 0 < s < j —1,
i=1

j—1 s

¢, = Z {H(Am“]—i—uil)}.
Uy ,u2,... us=1 =1

wiFuaF e Fus
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Therefore from (3.3)), we get

(=n)’
I

U=Un)+ >
mj=1 k=0

In view of Lemma [2.I] the second term on the right hand side will be a null matrix for all j > 1;
consequently U = U(n). With this, the proof of the first part is completed.
In order to prove the converse part, let us take

R N A ~ (mr — _
V= Z o T'(A— (nr—k)I)(A— (nr — mrk)I)U(n — mk),
mk=0 ’

then substituting the series (3.1) for U(n — mk) and using the double sum (1.11)), we arrive at

L

V= Z ”—' i(—l)k(]z)l“‘l(A + (1 —nr+mrj—j+k)I)
mj=0 J: k=0
x T(A— (nr—Ek)I)(A— (nr—mrk)[)V(n —mj).

(3.4)

We now show that the inner series in (3.4) is equal to d;,. Here, denoting the inner series in (3.4))
by g;, and replacing I'(A — (nr — k)I) by fi, then in view of (1.4) and (1.5)), we get

g = Z(—l)k (i)F_l(A—F (1—=nr+mrj—j+k)I)
k=

0 (3.5)
x (A — (nr — mrk)D)fy.
The inverse series of this occurs from Lemma in the form:
J .
J .
f; = kz_:o(—l)k (k)F(A_ (nr —mrk+k—j)I) g. (3.6)

If

- ()

is set in the inverse series (3.6)), then we obtain f; = I'(A — (nr — j)I) (as before), and using the
same substitution in (3.5)), there occurs the matrix series orthogonality relation:

DI

x T'(A— (nr — k)I)(A — (nr — mrk)I).

(—1)k (j>F‘1(A + (1 —nr+mrj—j+k)I)

Thus (3.4) becomes
n J
V=vm+ > T

mj=1""

V(n—mj)djo,

giving V = V(n). This completes the proof of the converse part and hence the proof of the theorem
when M = [n/m].

The proof for the case M = oo runs almost parallel to the above proof. We assume that the
sequences {U(n)} and {V(n)} are such that |[U(n)|| < co and ||V(n)|| < co. In order to prove the
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first part, we denote the right hand side of (3.1) by R and substitute the series for V(n — mk)
from (3.2)), to get

= NPT YA+ (1 — nr — brk — k)T)
n
R=>> i 5!
k=0 j=0
x T(A— (nr+brk —j)I) (A— (nr+brk + brj)I)U(n + bk + bj).

This, with the help of (1.10]) takes the form

R= > (1)) (-1)f (é) T A+ (1 —nr—brk — k)I)
Jj=0 k=0
(A— (nr+brj)l)

xT'(A— (nr+brk —j+k)I) S
J!

U(n + b))

=U(n) + Z(—l)jnj Z(—l)k <i> YA+ (1 —nr —brk —k)I)

7j=1 k=0
(A= (nr+brj)I)
7!

xT(A—(nr+brk —j+k)I) U(n +bj).

Since the inner series in this last expression is resembling with the inner series occurring in (3.3)),
it follows that the expression (3.7) yields the relation R = U(n). Conversely, let us put

i (_kn')kl"(A — (nr—k)I) (A — (nr+brk)I)U(n+ bk) = S.
k=0 '

Then on making use of the series (3.1) and (1.10]) in turn, we find that

(3.8)

Again, that the inner series in (3.7)) is of the similar form as that of (3.4)). Thus following the same
arguments, we find the following orthogonal relation implied by the inner series in (3.7)).

<Q)I = Zj:(—l)’“ (i)r—l(/x + (1 =nr—brj—j+k)I'(A— (nr — k)I)

J = (3.9)
x (A = (nr+brk)I).
With this orthogonal relation, the expression gives
S =V(n); (3.10)
this completes the proof of the second part and hence the proof of the theorem. O
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4. Particular cases

In Theorem [3.1} putting r = 1 b= —m,m € N, V(n —mk) = (—maz)*~mkcA-(n—mk)l
(n— mk) and replacmg n by ne=!, an explicit representation of the generalized Humbert polyno-
mials PA(m,z,n,c)T YA +1) = U(n) occurs in the form:

[n/m] —(n—(m-1)k)I
PA(m,x,n,c Z n" m I YA+ (1 —n+mk—E)DD(A+I)(—mz)""™ (4.1)

and its inverse series in the form:

[n/m]

(—mx)™ it a(A—nl +mkI)(A—nl+kI)™!
I = l;) (_n)k nI—kI-A - (42)

xTD(A+ (1 +k—n))PA (m,x,1,c).

n!

The formula (1.9) provides the alternative form of the polynomial (4.1)), given by [28: Eq. (37),
p. 3626]

A _ _ —(A+(n=mk—t)1) (CA)n—mk+k -
Pn (m7$77770) kZ:O ( 77) c (n — mk)’ k_' (mx) . (43)
The inverse series
[n/m] 3 o
A—nl+mkI)(A—nl + kI)~terI—kI-A
( Z " 5 £l ) (AL P (myx,m,e)  (4.4)

follows similarly. With ¢ =n = 1, (4.3) and (4.4)) yield the pair of Humbert matrix polynomial:
I3 ,,(x) and its inverse in the form [28; Eq. (40), p. 3626]:

[n/m]
- (_A)n—mk: k n—m
I . (z) = ;_0 (—1)km (ma)"
il (4.5)
noo bl . B
(Tr;a;) I kz: (A—nl+ kl)k(!A I+kI)™! (CA)-1 1A (@)
=0

In fact, this polynomial constitutes the class {II;}, (z);n = 0,1,2,...} of polynomials which in-
cludes several well known polynomials as well as not so well known polynomials. The following are
amongst them.

If A= #I , then 1' reduces to the pair of Kinney matrix polynomial and its inverse series
relation as follows.

[n/m]
((_l/m)I)n—m n—m
K, (m, z) kz:% (=1 (n — mk)! e (ma)r
<~
)" (/ml 11 _ o —m 17 (p— -1
! =0 !
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For m = 3, and A = —%I the pair 1| yields the pair of Pincherle matrix polynomial and its
inverse series relation in the form [22} p. 212] :

/3]
B (DDt o
Pale) = 3 (0 g B0
—
N %) " n—k)I)™"
(3;) -y ((1/2)1 +( 3/€)I)k('(1/2>”( DD (12010, Paan @),
: k=0 '

The Gegenbauer matrix polynomial and its inverse are the special cases m = 2 of (4.5 which occur
in the form [26; Eq. (15), p. 104]:

[n/2]
_ (_A)n— n—
cﬁ@)—g(fl)km (22)" 2
—
no /2 - o V)1
el y B DAL 0 E R oy o)
P |

5. Alternative forms of theorem — 1

In this section, several alternative forms of Theorem [3.1| are deduced which will be used in the
next section for deducing the matrix versions of the Wilson polynomials, Racah polynomials and
Riordan’s inverse pairs. We begin with Theorem and substitute n = 1 and replace V(n) by
T(A—nrl+1)V(n) to get

M
Un) =Y DA = (ur bk = DD oot g 4 (1= e — bk — K)D)V (1 + bk)

= k!

— (5.1)
M A — (nr+brk)l 1

V(n) = kZ:O(—l)k( ( 1 ) )I‘(A — (nr — k)T~ (A — (nr — 1)HU(n + bk).

This pair enables us to obtain some more alternative pairs. In fact, on multiplying both the relation
in by A —nrl and putting (A —nrI)U(n) = Uy(n) and (A —nrI)V(n) = Vi(n), we obtain
the pair:

M

Uy () = 3 HA- (";+ DRV bt (A = (et bk + - 1))

k=0 ’

x (A —=nrl) Vi(n+ bk) (5.2)
<~

M T(A—(nr—k)I)__,
Vi(n) = ;;)(_l)k o I~Y(A —nrI)U, (n + bk)
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Further on replacing A by A+ I and r by —r, (5.2) gets transformed to

MDA+ (nr + brk + 1)1)

Uy(n) = u I~YA+ (nr+brk —k+2)I)
k=0 ’
X (A+nrl+I)Vi(n+ bk) (5.3)
e
M
Vi) = S (-peLATE ("TJ R4 DD bt (4 el + 1)U, (n 4+ b).

k=0

Using the formula (1.9) in (5.1]), we obtain the pair:

-~ (=D"
Uy(n) =) (—A+ nrl + brkI)Va(n + bk)

!
= k!
— (5.4)
M
Va(n) =3 A= (”’;C'* TRV (A~ el 4+ BD)"N(—A+ e D)=L Us(n + bE).
k=0 ’
Also, applying the formula (1.9) in (5.2)) and then replacing —A by A, we get
- (—1)F
Up(n) =) (A nrD)(A+nrl +brkl + kI)~!
k=0 ’
X (A4 (nr+brk +1)I), Va(n + bk) .
— (5:5)
M -1
(A+nrl+1)”
Vi(n) = Z o EUs(n + bk).

=

=0

6. Application

6.1. Wilson matrix polynomials and Racah matrix polynomials

In Theorem 3.1 putting b = —1, n = 1, 7 = 2 and reversing the series and assuming that A— NT
is invertible for all N > 0, we obtain

I YA—-nl—kI+1I)

Un) =Y O V (k)
k=0 ’
<
n _1\n—k _ —nl — —1 —nl —
Vin) = Z (-1) (A—2kI)(A (nI_ kl;.'f) rA IT—kI+1) Uk).
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Replacing U(n) by U(n)I (A + I), we find

Un) = Z r—(A- nl(;flk;-' nrA+ I)V(k)
k=0 ’
—
n _1\n—k o —nl — -1 —(n o -1
V(n)zz( 1)k (A — 2kI)(A — nl ](ﬂi)_kggA (n+k—1)I0)C (A+I)U(k)
k=0 ’

In view of formula (|1.9)), this pair may be written in the form:

U(n) = Zn: %V(;ﬂ)

prs (n—k)!

—

Vi =y E T M)((:__;S'I — D A .
k=0 '

V(n) = T (=)RF(= /(1”‘"_22;)( A)n}rkﬂ U(k).

Finally, using the formulas (A),,4, = (A) (A +ml),and (=1)¥(n!))I/(n — k)! = (—nl)g, we get
the pair:

Jn i —A+nl), V(k)
k=
= (6.1)

(=)

V(n

Zn: k(2kI — A)(—A+nl); L, Uk).

This inverse pair readily provides us the matrix polynomials of Wilson as well as those of Racah.
In fact, the Wilson matrix polynomials together with the inverse series relation are obtainable from
the pair (6.1]) if A is replaced by A+ B+ C + D — I and

Vi) = VA ieD(A i),

— (A+B); YA+ C); Y (A+ D)t

With this choice, (6.1]) yields the Wilson matrix polynomials:
Poys(x*)(A+B), Y (A+0) Y (A+ D) *

n IS
Z sk (A4 B4+ C+D+nl+ Dy,

(A +izl)g(A—izD)p(A+ B); " (A+ C) H(A+ D)
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The inverse series occurs from the second series of (6.1)) in the form:

(A+izl), (A —ixl),

n'

(A+B); Y (A+C),; " (A+ D);*

=> (-1 ) (A+B+C+D+2kI 1)

k=0

x(A+B+C+D+kI—1),{1(A+B); (A+C); (A+ D); ' Preys(2?).
Similarly, replacing —A by A + B + I and putting
(—xl)p(xl + D+ E+1),

n!

V(n) = (A+ DY B+E+1;Y(D+1I);!

in (6.1)), we obtain the following pair of inverse series relation of the Racah matrix polynomials.

Rn(x(xI+D+E+I);A,B,D,E)
_Z A+ B+nl + Di(—2)p(zl+ D+ E + Dyp(A+1); !
X (B+E+I),;1(D+I),;1;

(—xl)p(xl + D+ E+1),
k!

(A+ D, Y B+E+DY(D+1),]"

- —nl
= Z(_n"—k(z—')’“m +B+2kI+1) (A+B+kI+1),},

X Ri(x(xl + D+ E+1I);A,B,D,E).

Since the scalar polynomials encompass several polynomials namely the polynomilas of Hahn, dual
Hahn, continuous Hahn, continuous dual Hahn, Meixner-Pollaczek, Meixner, Krawtchouk, Jacobi
etc. (see |1} p. 46] for complete reducibility chart), their extended matrix polynomials’ versions
would follow directly from these two matrix polynomials together with their inverse series relations.

2. Riordan’s matrix pairs

John Riordan [23; Ch. 2] studied and classified a number of inverse series in to several classes.
In this section, the Gould classes, simpler Legendre classes and the Legendre-Chebyshev classes
are extended to the matrix series forms with the help of the alternating inverse pairs of Section 5.

7. Conclusion

It is seen that the main result, that is Theorem is found useful in inverting the matrix
polynomials and also, some of the Riordan’s inverse pairs. It is noteworthy that there exist many
more inverse series relations in [23; Ch. 2] which can be extended further in matrix forms. Besides
this, the inverse pairs derived by H. W. Gould [12| and those by L. Carlitz (|3H5]) can also be
extended to matrix forms for further study. Coming to the generalized functions, there is studied
the Mittag-Leffler matrix function in [25]. By means of this function, a generalized Konhauser
matrix polynomial was defined and some properties were studied. Since there are many generalized
functions exist in the literature, there is vast scope of developing the matrix theory by extending
such functions to the matrix forms.
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(hr,s =qr—s, B=A+1)
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Gould matrix classes F(n) = Y Cp 1 G(k); G(n)

S(=1)""F Dy F(k),

Inv. pair
(a=n) | b r A | Chk Dy, i
_ _ P(B+ hieil) 1 (A+ (hik)]) a
XF(A+ (hn,k)f)
B B (B+ hnnd) DN(B+hnil) 4
f 1lg—1] A NCEO (B + hikI) e 'Y (B+ hn,nl)
xI™HB + (hi,n + 1))
_ (A+ (hnn)I) LB+ hnnl) o
5.5 1 |¢g—1| A i), (A + (hgn)I) T =)l "B+ hnil)
xl"—l(B+ h;%kf)
. _ F(B + hk’nI) _1 (B =+ hk’kI)
-1 xI 7B + (hn + 1))
TABLE 2. A. Simpler Legendre matrix classes-I F(n) = > C, 1, G(k);
G(n) =3 (-1)""" Dy F(k) (B=A+1)
Inv. pair
a=n b r A | Chk Dy, 1
[T [ tBrnl kD (B + 2kI)
ﬂ) 1| 2 A S s T = (B+2kI) RCEE (B + 2nl)
-1 X(B+nl+kI)"'T"YB+nl +kI)
1 (A +2nl) (B +2nl) .,
ﬂ) 1| 2 A e D(A+nl+kI) NCEDIN I~ (B+nl+kI)
xI'~Y(B + 2kI)
' (B + 2nl) TU(B+nl+kl) _,
ﬂ) 1 2 A N (B + 2kI) EECET '~ (B + 2nl)
xTD7HA +nl + kI +2I)
' B (B +2kl) __, (A + 2kI)
ﬂ) 1 21 A o I (B+nl+kI) RO T(A+nl+kI)
x[D(A+nl + kI T~YB +2nl)

Acknowledgement. Author is thankful to her guide Prof. B. I. Dave for his guidance during the
preparation of the manuscript. Author also sincerely thanks the referees for their useful suggestions

for the improvement of the manuscript.

314



A GENERAL INVERSE MATRIX SERIES RELATION AND ASSOCIATED POLYNOMIALS - Il

TABLE 2. B. Simpler Legendre matrix classes-II F(n) = > C, G(n — 2k);

Gn) =3 (-1)kD, 1, F(n—2k) (B=A+1I)
Inv. pair
(a=n) | b A | Cuk D i
5.5 -2 A M;ﬂ (A + 2nl — 3kI) W I'™Y(B +2nl — kI)
- xT7Y(B + 2nI — 4kI)
5.4 -2 _a | LB QZ'I = 3k1) I™Y(B + 2nI — 4kI) W(Bﬂnf — kNt
- -1 xT(B + 2nI) T~ (B + 2nl — kI)

TABLE 3. Legendre-Chebyshev matrix classes F'(n) = > Cp 1 G(k);

Gn) =3 (-1)""*D, yF(k), U=A+cnl, V=A+ckl; U+I=C, V+I=D

Inv. pair

a=n) | b | A | r|Cus Do
sy | —1] A | ¢ WF_I(D) (Tf(_clz)!r*(U—nukHz)
55) | 1| A | e %"i)r—l(p) (lf(—cn),)! I 1(C = kI + nl)
51) | 1| A | —c % DD + kI — nl) 4 F([(Jnt”kg!_ B 10
5.1 1] A | —c G _Dn)!F_l(D—kI+nI) Wr—l(m
5.4) | —1]-A | ¢ Wr—l(p) ﬁi—f))!r—l(c—nukfﬂ)
) |1 |-Al c WF_1<D) (IZE(S))' P=YC 4l — kI 4+ 1)
5.3 -1 A | ¢ (Cnl:(f))' LD —nl+kI+1) WF”(C)
53) | 1] A | ¢ %T;;DF*(D—&-nI—kI—kI) F(C%mrl(m
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On the matrix function ,R,(A, B; z) and its fractional
calculus properties

Ravi Dwivedi *and Reshma Sanjhira '

January 30, 2020

Abstract

The main objective of the present paper is to introduce and study the function
»Ry(A, B; z) with matrix parameters and investigate the convergence of this matrix
function. The contiguous matrix function relations, differential formulas and the inte-
gral representation for the matrix function ,Rq(A, B; z) are derived. Certain proper-
ties of the matrix function , R, (A, B; z) have also been studied from fractional calculus
point of view. Finally, we emphasize on the special cases namely the generalized ma-
trix M-series, the Mittag-Leffler matrix function and its generalizations and some
matrix polynomials.

Keywords: Hypergeometric function, Mittag-Leffer function, Matrix functional cal-
culus.

AMS Subject Classification (2010): 15A15, 33E12, 33C65.

1 Introduction

Special matrix functions play an important role in mathematics and physics. In particular,
special matrix functions appear in the study of statistics [7], probability theory [28] and Lie
theory [13}[16], to name a few. The theory of special matrix functions has been initiated by
Jédar and Cortés who studied matrix analogues of gamma, beta and Gauss hypergeometric
functions [I7, [I§]. Dwivedi and Sahai generalize the study of one variable special matrix
functions to n-variables [10]-[12]. Some of the extended work of Appell matrix functions
have been given in [4]. Certain polynomials in one or more variables have been introduced
and studied from matrix point of view, see [1]-[3],[6} 8, 24, 26]. Recently, the generalized
Mittag-Leffler matrix function have been introduced and studied in [23].

It appears from the literature that the function , R, (v, 8; z) were systematically studied
in [9]. In this article, we introduce a new class of matrix function, namely ,R4(A, B; z) and
discuss its regions of convergence. We also give contiguous matrix function relations, inte-
gral representations and differential formulas satisfied by the matrix function , R, (A, B; z).
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dwivedir999@gmail.com

fDepartment of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda,
Vadodara-390002, India: Department of Mathematical Sciences, P. D. Patel Institute of Applied Sci-
ences, Faculty of Applied Sciences, Charotar University of Science and Technology, Changa-388 421, India
E-mail: reshmasanjhiral508@gmail.com (Corresponding author)



The matrix analogues of generalized M -series ng’ﬁ (Y1,--+5 VpyO1,...,0q;2), Mittag-
Leffler functions and its generalizations have been presented as special cases of the matrix
function ,R,(A, B; z). The paper is organized as follows:

In Section 2, we list the basic definitions and results from special matrix functions
that are needed in the sequel. In Section 3, we introduce the matrix function ,R,(A, B; z)
and prove a theorem on its absolute convergence. In Section 4, we give contiguous matrix
function relations and differential formulas satisfied by ,R,(A, B;z). In Section 5, an
integral representation of the matrix function ,R,(A, B;z) motivated by the integral of
beta matrix function has been given. In Section 6, the fractional order integral and
differential transforms of the matrix function ,R4(A, B; z) have been determined. Finally,
in Section 7, we present the Gauss hypergeometric matrix function and its generalization,
the matrix M-series, the Mittag-Leffler matrix function and its generalizations and some
matrix polynomials as special cases of ,Rq(A, B; z).

2 Preliminaries

Let the spectrum of a matrix A in C"™*", denoted by o(A), be the set of all eigenvalues of
A. Then, for a matrix A € C™*" such that A is positive stable, that is, S(A) = min{ R(z) |
z € 0(A) } > 0, the gamma matrix function is defined by [17]

[(A) = / et dt
0
and the reciprocal gamma matrix function is defined as [17]
A =AA+I)...(A+(n—1)NOI ' (A+nl), n> 1. (2.1)
The Pochhammer symbol for A € C"™*" is given by [I§]
1, if n =0,
(A)n = . (2.2)
AA+I)...(A+(n—1I), ifn>1.
This gives
(A), =T (A) T(A+nl), n>1. (2.3)

If A e C"*" is a positive stable matrix and n > 1 is an integer, then the gamma matrix
function can also be defined in the form of a limit as [17]

T(4) = lim (n—1)! (4);" 0™ (2.4)

n

If A and B are positive stable matrices in C™*", then the beta matrix function is defined
as [17]

B(A,B) = /OltA—f (1—t)P~1dt. (2.5)

Furthermore, if A, B and A+ B are positive stable matrices in C"*" such that AB = BA,
then the beta matrix function is defined as [17]

B(A,B)=T(A)I(B)T"Y(A+ B). (2.6)



Using the Schur decomposition of A, it follows that [15] [29]

r—1
A 1/2t k
HetAH < eta(A)Z (” ”2' ) . t>0. (27)
k=0 ’
We shall use the notation T’ ( g ’ "’gp > for T(Ay)---T(Ap) T (By) - T7(By).
1.5 Dyg

3 The matrix function ,R,(A, B;2)

Jédar and Cortés [I§] defined the Gauss hypergeometric function with matrix parame-
ters denoted by 2F1 (A, B; C; z), where A, B, C' are matrices in C"*", and determined its
region of convergence and integral representation. A natural generalization of the Gauss
hypergeometric matrix function is obtained in [I0] by introducing an arbitrary number of
matrices as parameters in the numerator and denominator and referring to this general-
ization as the generalized hypergeometric matrix function, ,F, (A1, ..., Ap; B1,..., By 2).
We now give an extension of the generalized hypergeometric matrix function. Let A, B,
Ciand Dj, 1 <i<p,1<j<gq, bematrices in C"" such that D; 4 kI are invertible for
all integers k > 0. Then, we define the matrix function ,R,(A, B; z) as

Ci,...,C
qu(A,B;z)—qu<DLW7D’; \A,B;z)
=S "r'(nA+B) (cl)n...(cp)n(pl);l...(Dq),;l% (3.1)

n>0

In the following theorem, we find the regions in which the matrix function ,R,(A, B; z)
either converges or diverges.

Theorem 3.1. Let A,B,C1,...,Cp, D1,..., D, be positive stable matrices in C™*". Then
the matriz function ,R4(A, B;z) defined in (3.1) converges or diverges in one of the fol-
lowing regions:

1. If p < q+ 1, the matriz function converges absolutely for all finite z.
2. If p = q+ 2, function converges for |z| < 1 and diverges for |z| > 1.

3. If p=q+2 and |z| = 1, the function converges absolutely for 3(D1)+---+ 5(Dg) >
a(Cy) + -+ a(Cp).

4. If p > q+ 2, the function diverges for all z # 0.

Proof. Let Uy(z) denote the general term of the series (3.1). Then, we have
q

z
10 < T nA+B||HH n||Hu 2

Cln Ci(n —1)!
(n—1)!

<




q

<11

J=1

(D), tnPin Pi(n —1)!
(n—1)!

2"
— (3.2)

The limit definition of gamma matrix function (2.4) and Schur decomposition (2.7)) yield
[UAE)) < N S ((n = 12 p2in 2075 PO o, (3.3)

where N = [[I=H(Cy)| - - [ITH(Cp) [IT(Dy)]] - - - IF(Dg) || and

L max{[[Cll,. . (Gl Dl [ Dgll} ¥ mm)e )
S:<Z IS IERE) plls IS IEREE) q ) ) (34)

k!

k=0
Thus, it can be easily calculated from (3.3) and comparison theorem of numerical series
that the matrix series (3.1)) converges or diverges in one of the region listed in Theorem 3.1.
O

4 Contiguous matrix function relations

In this section, we shall obtain contiguous matrix function relations and differential for-
mulas satisfied by the matrix function ,R,(A, B; z). The following abbreviated notations
will be used throughout the subsequent sections:

R:qu(A,B;z):qu< gi’:::’%; |A,B;z),

R(CZ’*):PR‘?(Cl’m’Ci_BSZfﬁ)?H"”’Cp |A’B;z>’
R(Ci_):qu<01,...,02-_11),3—-’11,3?41,...,C,, \A,B;z),

w0 =28 by, Oy 1485
qu(A,BJrI;z):qu(gi:::::g’; \A,B+I;z>,
qu(A,B—I;z):qu(gi:::::g’; |A,B—I;z). (4.1)

Following Desai and Shukla [9], we can find (p+¢—1) contiguous matrix function relations
of bilateral type that connect either R, R(C1+) and R(C;+), 1 < i < p or R, R(C1+)
and R(D;—), 1 < j <gq. Let C;,1 < i < p be positive stable matrices in C"™*" such that
CiCL=CC;,1<k<pk<i, CGA= AC; and C;B = BC;. Then, we have
= 3 CTH(Ci+ DT (A + B) (Ci)a-++ (Co)n (D1); - (D) =
n>0 ’

(4.2)



If § = 2L is a differential operator, then we get

dz
(0+COR =3 (Ci+nD)T A+ B) (€l (Gl (D) (Dy), 2 (43)
n>1 ’
Equations and together yield
(9+CZ)R: CZ R(Cri-), 1= 1,...,p. (4.4)
In particular, for ¢ = 1, we write
(0 +C1)R = Cy R(Ch+). (4.5)

Similarly for matrices D; € C"™*",1 < j < ¢ such that D;Dy = DyD;,1 <k < ¢,k > j,
we obtain a set of ¢ equations, given by

O R+ R(D; —I) = R(D;—)(D; — I). (4.6)

Now, eliminating 6 from (4.4)) and (4.6|) gives rise to (p+¢— 1) contiguous matrix function
relations of bilateral type

CiR—R(Dj—1)=C;R(Ci+)—R(Dj—)(D; —I), 1<i<p1<j<q. (4.7)
Equations and produce (p — 1) contiguous matrix function relations

(Ch —Ci))R=C1R(C1+) - C;R(Ci+), i=2,...,p. (4.8)
Furthermore, Equations and leads to ¢ contiguous matrix function relations

CiR—R(D; —I)=CR(Ci+)—-R(D;—)(D; - 1), 1<j<q. (4.9)

The set of matrix function relations given in (4.8)) and (4.9) are simple contiguous matrix
function relations.
Next, we give matrix differential formulas satisfied by the matrix function ,R,(A, B; z).

4.1 Matrix differential formulas

Theorem 4.1. Let A, B, Cy, ...,Cy, D1, ...,Dq € C™*" such that each Dj+kI,1 < j <gq
is invertible for all integers k > 0. Then the matriz function pR,(A, B;z) satisfies the
matriz differential formulas

a\’ L Ci+rl,...,Cptrl '
<£> DR (A, B;2) = (C1)p -+ (Cp)y qu(Dle-”’DqHI |A,rA+B,z>

X (Dl);l e (Dq);l, C,C,, = C,C,, CiA= AC;, C;B = B(j,
DZ'DJ' :DjDZ',l Sl,mﬁp, 1 SZ,] Sq; (4.10)

a\" b Chy...\Cy '
<£> (pRq(A, B; 2)2™ )—qu<Dly...,Dj—lyDj—TI,Dj+17...,Dq | 4,B; 2
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x (1) 2P~ VI(1 — D}),, D;D; = D;D;;  (4.11)

d T
(22 —> (zci_(r_l)Iqu(A, B;z))

dz
= <0i)rzci+”qu< S Ty |A,B;Z) GiCj = G
Dy,...,D,

Proof. Differentiating the Equation (3.1]) with respect to z, we get

d Zn—l
(A, B; I''(nA+ B) S o (DY (D)
dZ Z T; 7’L + (Cl) (Cp) ( 1)n ( q)n (n_ 1)]
=> T (nA+ A+ B) (Coni1--- (Cplnt1 (D1)yiy - (Do)t %
n>0 ’
. Ci+1,...,C,+1
(Cl)l"'(cp)lqu<D1+I,. D41 \AA+Bz>
X (D1)yt - (D) (4.13)

Proceeding similarly r-times, we get the required relation :4.10|i. Using the commutativity
of matrices considered in the hypothesis and the way (|4.10‘ is proved, we are able to prove

(@ 11) and [@.12). | ’ |

Theorem 4.2. Let A, B, Cy, ...,Cy, D1, ...,Dq € C™*" such that each Dj+kI,1 < j <q
is invertible for all integers k > 0 and A, B—1I are positive stable. Then the matrix function
pRq(A, B; z) defined in (3.1) satisfies the matriz differential formula

ZAdiz pRe(A, By z) = pRy(A,B—1;2) — (B—1),Ry(A,B;z), AB=DBA. (4.14)

Proof. Using the definition of matrix function ,R4(A, B; z) and zdizz” = nz" in the left
hand side of (4.14)), we get

d _ _ 1 2"
2A—pRy(4, Biz) = ;OnAr A+ B) (Ci)n - (Coln (D1) - (D) —
=3 "I A+ B~ 1) (Cia-..(Cy)n (D)5 (D)7 =
n>0 n
(B=1)Y T (nA+ B)(Ci)n-.. (Cp)n (D1)," ... (Dy)y!
n>0
ZTL
X —, AB=DBA
n!
— \R (A, B—1;z) — (B—1),R,(A, B;>2). (4.15)
This completes the proof of . O



5 Integral representation

We now find an integral representation of the matrix function ,R,(A, B;z) using the
integral of the beta matrix function.

Theorem 5.1. Let A, B, C, ...,Cp, D1,..., Dy be matrices in C"*" such that Cp,D; =
D;Cy,,1 < j < q and Cp, Dy, Dy — C,, are positive stable. Then, for |z| < 1, the matriz
function R, (A, B; z) defined in (3.1) can be presented in integral form as

1
Cl,...,C -1 o - -~
pR"(A’B;Z):/o potllacs ( Dy Dy |A’B;tz> 1011 — )P Co-lay

Dy
XF(CP,Dq—Cp>' (5.1)

Proof. Since Cy, Dy, D, — C), are positive stable and C,D, = D,C,, we have [I§]
1 D
(Cp)n(D)t = < /0 tCrt(n=DI(q —t)Dq_Cp_Idt> r( c,. qu— c, ) . (5.2)
Using in , we get
(4,32 =3 [T+ B) @ Gt (D (D)7

n>0
2" Ot (n=1)T (1 p\Dg—Cp—T D,
x 2t (1 )Pa=Co dtP( DG, ) (5.3)

To interchange the integral and summation, consider the product of matrix functions

Sn(1) =T A+ B) (O (Cp1)a (D)t -+ (Dg 1)y 2y 00!

D
x (1 —t)Pa=C=I 1 < a ) ) 5.4
( ) C,. D, — C, (5.4)

For 0 <t <1 andn >0, we get

1S (2, 1)l
< | < C’p,l;)q— c, )‘ ‘F—l(nA +B)(C1)n- (Cp_1)n (D)t (Dq_1);1 %
x eI = )P (5.5)

The Schur decomposition (2.7) yields

r—1
(\cp,—1 r/2 Int
€9 (1 = PeCrT | < (011 - £)Pe=C)- (Z (e =1 >>
k=0 )

r—1 _ _ P12 In (1 — $))*
X<Z<qu Gl ln t>>>, 56)
k=0




Since 0 < t < 1, we have

Hth*IH H(l _t)Dq*Cp*I” < Ata(cp)*l(l _t)a(Dq*Cp)*l7 (57)
where
r—1 2
max{||C, — I|,|| Dy — C, — I||} r'/?)*
A (Z( (IS, = 11I, | 2= Cy I} 72 ) | (5.8)
k=0 ’

The matrix series I (nA + B) (C1)n -+ (Cp—1)n (D1)t -+ (Dg—1)5 ! Zn—T converges abso-
lutely for p < ¢+ 2 and |z| < 1; suppose it converges to S’. Thus, we get

D 1Sn(z )] < f(£) = NS AL )= (1 — ¢)oPaCr)=L, (5.9)
n>0

Since «(Cyp), a(Dyg— Cp) > 0, the function f(t) is integrable and by the dominated conver-
gence theorem [I4], the summation and the integral can be interchanged in (5.3)). Using
Cp,D; = D;Cp,, 1< j<gq, we get (p.1). O

6 Fractional calculus of the matrix function ,R (A, B; z)

Let x > 0 and g € C such that ®(u) > 0. Then the Riemann-Liouville type fractional
order integral and derivatives of order u are given by [19, 27]

W) = s [ o=t pey 6.1)
and
DY f(x) = (I D" f(x)), D=, (6.2

Bakhet and his co-workers, [5], studied the fractional order integrals and derivatives of
Wright hypergeometric and incomplete Wright hypergeometric matrix functions using the
operators (6.1)) and (6.2]). To obtain such they used the following lemma:

Lemma 6.1. Let A be a positive stable matriz in C"™*" and p € C such that R(u) > 0.
Then the fractional integral operator (6.1]) yields

1" (241) = D(AT YA + pl)zA+T =1, (6.3)

In the next two theorems, we find the fractional order integral and derivative of matrix
function , R4 (A, B; 2).

Theorem 6.1. Let A, B, Cy, ...,Cy, D1,..., Dy be matrices in C"™" and p € C such
that D;D; = D;D;,1 <i,j < q and R(p) > 0. Then the fractional integral of the matric
function ,R,(A, B; z) is given by

I"[,R,(A, B; 2)z"i71]

C1,....C .
=l S A, Bz ) 2Pt =1
. q<Dla""Dj—laDj+,uI,Dj+1,...,Dq ’ ’ 7Z)Z

X F(Dj)F_I(Dj + NI) (64)



Proof. From Equation (6.1), we have
I, R,(A, B; 2)2Pi71]

1 /Z ~1 DI
= — z— )" R (A, By t)t7i T dt
F(,u) 0( ) p q( )

= i 2 (€ [y 2l (D1 (D

n>0

= (- (O (1P (D) (D

n!’
n>0

Using the Lemma [6.1] we get

._ 1 _
P Ry(A, B )2 = s S (G (Cplal(D; +nI)T ™ (Dy 4 nl + )
n>0
« ZD]-I—(n—&-,u—l)I(D )—1 (Dq)T_Ll i'
n
_ Ci,...,Cp )
_qu < Dl,...,Dj_l,Dj +/LI,Dj+1,...,Dq | A’B7z)
x DI (DAT YD, + ul). (6.6)
This completes the proof. O

Theorem 6.2. Let A, B, Cy, ...,Cy, Dy,...,D, be matrices in C"™*" and pp € C such
that D;D; = D;D;,1 <i,j < q and R(p) > 0. Then the fractional integral of the matric
function p,R,(A, B; z) is given by

D*[,R,(A, B; z)sz_I]

_ i N
_qu(D17...7Dj_l7Dj_MI7Dj+17---7.Dq ’A;B7Z>Z J
< D(DYEND; - ), 67)

Proof. The fractional derivative operator (6.2)) and Theorem together yield
D*[,Ry(A, B; 2)zPi1]
d T Ol e Cp D. o
~\dz ' ’ A. B: i+ (r—p—1)I
<d2’) qu(D17”"Dj_l’Dj+(T_M)IaDj+17--.,Dq ’ ) 7Z>Z
x T(DHTY(D; + (r — p)I). (6.8)

Now, proceeding exactly in the same manner as in Theorem [4.1} we get . O

7 Special Cases

The matrix function ,R,(A, B; z) reduces to several special matrix functions. These matrix
functions are considered as matrix generalizations of respective classical matrix functions
such as the generalized hypergeometric matrix function, the Gauss hypergeometric matrix



function, the confluent hypergeometric matrix function, the matrix M-series, the Wright
matrix function and the Mittag-Leffler matrix function and its generalizations. We also
discuss some matrix polynomials as particular cases.

We Start with the special case, A = B = I and C, = I. The matrix function
»Rq(A, B; z) reduces to

Cro G 1 . _ —1 1 2"
qu( Dl,..-,p_Dq ’17—[72) ;)(Cl)n-..(cp—l)n(Dl)n ...(Dq)n m
:p_qu(Cl""’Cp_laDlv"'7Dq;Z)7 (71)

which is known as generalized hypergeometric matrix function with p—1 matrix parameters
in the numerator and ¢ in the denominator [10]. For C; = A;,Cy = B1,C3 =1,D1 =C
and A = B = I, the matrix function ,R,(A, B; z) reduces to the Gauss hypergeometric
matrix function 9 F;(Ay, B1; C; z). Similarly, for Cy = A1,Co =1,D1 =Cand A=B =1,
pRq(A, B; z) reduces to the confluent hypergeometric matrix function 1 Fy(Ay; C; 2).

For C, = I, the matrix function ,R,(A, B;z) leads to the matrix analogue of the
generalized M-series [25].

Cl,...,C_l,[ .
qu< Dl,...,qu yA,B,z) Z:Or (nA+B)(C1)n - (Cp—1)n

X (D1)gt . Do)yt 2"
:p_lMéA’B)(Cl,...,Cp_l,Dl,...,Dq;Z). (72)
With p=1,¢ =0, C; =1 and B = I, the matrix function ,R,(A, B; z) reduces to
1Ry < f | A, T; z) > T7HnA+1)z" = Ea(2), (7.3)
n>0
for p=1,¢9 =0 and C; = I, the matrix function ,R,(A, B; z) gives
1R < i ‘ A,B;Z> ZF nA+B EA,B(Z), (74)
n>0
with one matrix parameter, C, = C, ,R4(A, B; z) becomes
Ro( € 14,B:2) = T (A + B) (O 2 = FS 5(2) (7.5)
g | , B; 2 = Fip )
and for two numerator matrix parameter, C; = C, Cy = I and one denominator matrix
parameter Dy = D, ,R,(A, B; z) reduces to
C I —1.n __ C,D
2Ry | A,B;z) =) T ' (nA+ B)(C)n (D), '2" = E{5(2). (7.6)
n>0
We define the matrix functions obtained in (|7.3)-(7.6) as the matrix analogue of the clas-

sical Mittag-Leffler function [20], Wiman’s function [30], the generalized Mittag-Leffler
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function in three parameters [2I] and the generalized Mittag-Leffler function in four pa-
rameters m, respectively.

For p = ¢ = 0, with replacement of B by B + I and z by —z, the matrix function
»Rq(A, B; z) turns into the generalized Bessel-Maitland matrix function [23]

oRo ( T | A,B+T; —z> =3 PimA+ B+ D) (=2)" _ JB(2). (7.7)

n!
n>0

The matrix polynomials such as the Jacobi matrix polynomial, the generalized Kon-
hauser polynomial, the Laguerre matrix polynomial, the Legendre matrix polynomial, the
Chebyshev matrix polynomial and the Gegenbauer matrix polynomial can be presented
as the particular cases of the matrix function ,R,(A, B; z).The matrix polynomial depen-
dency chart is given below:

Figure 1: Special cases

pRq(A, B; 2)
|
Jacobi The Konhauser
matrix polynomial matrix polynomial
Legendre Gegenbauer Chebyshev Laguerre
matrix matrix matrix matrix
polynomial polynomial polynomial polynomial

More explicitly, we say that the Jacobi matrix polynomial can be written in term of

the matrix function ,R,(A, B;z), for p =2,¢q=1,Ci = A+ C+ (k+1)I, Cs
D1:C’—|—I,A:O,B:C+Iandz:l+7”, as

—1)k A+C+ (k+1)I,—kI 1+z
x IT'(C + (k+ 1DI). (7.8)

Forp=2,¢=1,C = (k+1)I,Cy =—-kI, D; =D, A=0and z = 1;2”, the matrix
function , R4 (A, B; z) reduced into the Legendre matrix polynomial

(k+1)I,—kI 1 —x)_ (7.9)

Pk(va)ZQRl( D ‘Oan 2

Similarly, the Gegenbauer matrix polynomial in term of the matrix function ,R,(A, B; z)
can be expressed as

(2D)}, 9D + kI, —kI 1-z
w2 D+1ir1 |0, B; A

CP(x) = (7.10)

11



The Konhauser matrix polynomial in term of the matrix

26 (2, k) = r(c;($T$1)I)IRO< o xk> (7.11)

The Laguerre matrix polynomial can be obtain by taking k£ = 1 in Equation ([7.11]).
Note that the properties of these matrix functions and polynomials can be deduced
from the corresponding properties of the matrix function ,R,(A, B; 2).

Acknowledgments. The authors thank the referees for valuable suggestions that led
to a better presentation of the paper.
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