Chapter 1

Introduction

One of the objectives of a researcher in mathematics is to introduce/catch a func-
tion and study its various properties. The influence of such properties pervades
various branches of Mathematics in particular and those of Science in general. The
theory of functions were studied and enriched by many eminent mathematicians
right from the ancinet time to the recent era; the names of L. Euler, C. F. Gauss, G.
Szego, A. Erdélyi, H. W. Gould, L. Carlitz, W. A. Al-Salam, G. Gasper, M. E. H.
Ismail, M. Rahman, A. Verma, W. N. Bailey, T. M. Koorwinder, H. L. Manocha,
H. Exton are among the major contributors. The study of the Function theory
in the light of the Differential equations or Group theory or Generating function
or recurrence relation or Series/Intrgral Transforms influenced many branches of
Science such as Physical Science, Chemical Science, Life Science, Earth Science,
Space Science, Economics, etc.

The functions whose nomenclature become inevitable for the further study or
towards the application, constitute the class of functions known as the Special
Functions. Many of the functions belonging to this class are arising from a natu-
ral phenomenon or a physical phenomenon; most of such functions are found to be
the solution(s) of (Ordinary or Partial) Differential equations. The investigation
of many research problems in Special Functions remains incomplete without two
friendly functions : the Gamma function and the Beta function. They are exten-

sively used along with their various properties, and with this reason, they are also
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believed to be the member of class of Special Functions.

It goes without saying that the Special Functions are playing vital role in various
applied branches such as Heat conduction, solutions of Wave equations, Acous-
tics, Electrical current, Fluid dynamics, Moments of inertia and Quantum me-
chanics, study of Hydrogen atom, Potential theory, Orbital mechanics, Vibration
phenomenon. The displacement and rotations of the plate and a stiffener are

approximated by separate sets of the Jacobi polynomials.

Among various generalization of the well known Special Functions; in par-
ticular the polynomial functions, the family of Bessel function etc., an interesting
development took place during last decades of the 20" Century. The scalar func-
tion theory began to extend in matrix forms. The variable(s) treated as usual to
be real or complex, but the parameters were replaced by the square matrices. This
development received a good support from the literature like [24, 49]. The work
carried out in this direction also found the place in Statistics, Group representa-
tion theory [49], Scattering theory [31], Differential equations [50, 58, 79], Fourier
series expansions [19], Interpolation and quadrature [57, 99], Splines [22], medical
imaging [18] etc. There is a large number of eminent researchers who contributed
to the development includes L. Jodar, E. Defez, J. Cortes and J. Sastre [20, 21, 51—
54, 57-61, 86, 87], M. A. Pathan [76], Ayman Shehata [92-94, 96] and many others
[1, 25-28, 105, 108]. Beginning with the matrix analogues of Pochhammer symbol
and Gamma and Beta functions, the orthogonal polynomials such as those of La-
guerre, Hermite, Legendre, Gegenbauer, Jacobi etc., and also the Bessel function
and its associated functions were extended to matrix forms and various proper-
ties have been studied. Moreover, the classical polynomials were provided two

variables matrix forms and their properties were investigated (see [76, 105]).

It will be worth mentioning here that the theory of Infinite product and
Weierstrass definition of the Gamma function in [80, Ch-1] have been extended to
the matrix product and Gamma matrix function along with their various properties
(see [54]).

We list out the symbols, formulas, definitions in the subsequent section of "Matrix

Forms’.



Chapter 1. Introduction 3

1.1 Definitions, Notations and Formulae

In this section we provide the basic definition, formulas and notations which will
be appering in this thesis. We first glance through the preliminary of the scalar

forms.

1.2 Scalar Form:

It will be worth while to state the scalar forms of the formulas, definitions etc.
prior to their matrix forms. We begin with the symbol: (x),,.

For a € C\{0}, m € N, the product
ala+1)(a+2)...(a+m—1)

is denoted by («),,. This symbol is called the Pochhammer symbol, named after
L. A. Pochhammer (1890). In fact, A. L. Crelle (1831) used this notation earlier
but P. E. Appell (1880) nomenclatures («),, as Pochhammer symbol. It is defined
as follows [80].

1, itm=0
(@) = (1.2.1)
ala+1)...(a+(m—-=1)), ifm>1

The Gamma function is defined as [80]:

(o) = /0 Tt v g Ra) > 0. (1.2.2)

The Beta function denoted by B(«, /), is defined as [80]:

%(a,ﬁ):/olta—l(l—t)ﬁ—ldt, R(a) >0, R(B) > 0. (1.2.3)
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The relation between the Gamma function and Beta function is given by

L(a)I'(5)

2D Ty

R(a) > 0, R(B) > 0. (1.2.4)

The connection between the Pochhammer symbol and Gamma function is

(@) = % (1.2.5)

This may be regarded as the definition of the Pochhammer symbol («),, for n € C.

The Gamma function is also expressible as follows [80].

n—1)! ne
I(a) = Jim 2D
n—00 (a)n

(1.2.6)

The following formulas are useful; their matrix analogues which appear in the next

section,
(@)nar = (@)n(a+n)g. (1.2.7)
(@) n = F(?(;)n) = (f__lgn (1.2.8)
(o
(@n—r = % (1.2.9)

(@)n = K" (a/R)al(@ + D/B)a((0 +2)/K)pr (@ + k= D/R)e (12.10)

As a generalization of the infinite geometric series, C. F. Gauss in 1813, introduced

the series which is denoted and defined by [80, 102]

%, 2] < 1. (1.2.11)

oFila, by c;x] = Z zgn)m

0

If |z2| = 1, then the series converges absolutely for (¢ — a — b) > 0. This is
well known as the Hypergeometric series or the Gauss series. The generalized

hypergeometric series is denoted and expressed as [80, 102]

Sy ayiby byt 2] = Z ig:izp)m;n: (1.2.12)

aJm

m=0
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1. If p < ¢, the series converges absolutely for all finite |z|.
2. If p = q + 1, series converges for |z| < 1 and diverges for |z| > 1.

3. If |z] = 1, the series converges absolutely for R(by) + - - - + R(b,) > R(a1) +
-+ R(ay).

1.2.1 Other Generalized Functions

The generalized hypergeometric function ,F;[z] has many generalized function
forms to which it would reduce when the parameters involved are specialized ap-

propriately. Some of such functions are stated below.

o ,R,(c, B; z) function: This function is defined as [23]

Y V2 -5,
qu(avﬁ;Z) = qu ! |Oé,/6;25
01.05...,0,

1 (Y)n(V2)n - - - ('Yp)n "
2 et B oo G i 1213

| [\

3

where o, 8 € C,R(«), R(B), N(vi), N(;) > 0 for all ¢ = 1,2,..p and
1=12 ..4q.

e The generalised M-series:

It is defined as [91]

n

A1 )p A2 )pn - - - (Ap)n2
pM;’ﬁ(a,l,...,CLp;b]_,...bq;Z) = ZF( ( 1) ( 2) ( p) , (1214)

=0 Dot B)(br)n(b2)n - (by)a

where 2z, a, f € C, R(a) > 0.
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e The Wright function

This function is defined by [106]

(0417 51)7 (0527 62) ) (O‘zv 6 )

p¥q z
(1 1) (25 p2)s - - -5 (gs g3
f: (oq +np)l(ag +nbs)..I(ay + npy)2" (12.15)
— T'(m + npa)U(nz + npz)..T(ng + npg)n!
o Mittag-Leffler function and its generalization:
The function

1.2.16
; I'(an+1) ( )

where 2, € C, R(a) > 0, is due to Gosta Mittag-LefHler [71] which is well
known as the Mittag-LefHler function.
Wiman [110] generalized this in the form:

Eap(z) =) —F(a; et (1.2.17)

This was further extended in different forms by T. R. Prabhakar [77]:

’I’L

E’7 ¥ R >0 1.2.18
D=3 g e 8 (12,19
and subsequently by Shukla and Prajapati [98]:
EXY(z D 1.2.19
nZ: ['(an + ﬁ ( )

where o, 3,7 € C; R(er, 5, v) >0and 0 < ¢ < 1.

Recently, there is introduction of a more general form [73]:

" S [(V)on]* 2"
B (255,7) ZFO”HB) Oyl (1.2.20)

n=
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where «, 3, v, A € C with R(«, 5,7,A) >0, §, p >0, € NU{-1,0} and
s € NU{0}. It is noteworthy that this function besides containing above
three functions, also includes some other functions namely,

(i) Bessel-Maitland function [69, Eq.(1.7.8), p.19]:

o0 zn
— 1.2.21
;Fy+n;z+1) n!’ ( )
(ii) the Dotsenko function [69, Eq.(1.8.9), p.24]:
= I + INGES "
oRy(a,byc,wyvyz) = atn ny) —, (1.2.22)

n%) n!

n=0

(iii) a particular form (m = 2) of extension of Mittag-Leffler function due to

Saxena and Nishimoto given by [89]:

() kn z"

E, k(0. B))12; 2 Z Tam B Tem g e (12%)

and (iv) the Elliptic function [68, Eq.(1), p.211]:

1
K(k) =2 »F) i (1.2.24)

2

All these functions are tabulated below as particular cases of (1.2.19).
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Table-1

Function r | s| « B YO | A| p

Mittag-Leffler 01| « 1 111 - -

Wiman 011 a

g
Prabhakar 01| « 6] vy 1| - -
g

Shukla and 01 o
Prajapati

Bessel-Maitland | 0 | 0 1 v+11] -1 - - -

Dotsenko 11| w/y c all|Db|w
Saxena- 11| oy Ioh v | K| By | ao
Nishimoto
Elliptic 111 I S I N S |

1.2.2 Inverse Series Relation

Invers seires relations have been found useful in the study of the Combinatorial

Identities. The significance of an inverse pair is that
e cach pair implies an orthogonal relation which itself would generate one or
more identities
e cach identity in the inverse pair may be regarded as a companion of the other
e in the form of the inverse series, a new identity will be found

e particular choices of the variable/parameters in the inverse pair would yield

a new pair

e in proving the inverse series, a prover has a choice.

A series is said to be the inverse series of a given series if one of the series when

substituted into the other, simplifies to the expression involving the Kronecker
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delta :
0, if JF#i
1, if j=1

To illustrate this, consider the inverse pair

a, = Zn: (Z) br, by = i(—l)’”” (Z) . (1.2.25)

k=0 k=0

Here, if the second series is substituted into the first series then the inner sum

B0 () () =

k=j

simplifies to the form

thus proving one side of inverse relation. The poof of the converse part is similar.
It is interesting to see that the coefficient matrix of each series in (1.2.25) gives rise
to the square matrices which are inverses of each other. This can be illustrated as

follows by taking n = 0,1,2,3 in turn in (1.2.25).

Coefficient matrix of first series Coeflicient matrix of second series
1 111 1 -1 1 -1
1 2 3 1 -2 3
1 3 1 -3
1 1

The product of matrices of these arrays in either order, turns out to be the identity
matrix. This eventually proves the inverse series relations of the series in (1.2.25).
The application of inverse series relations can be seen in Coding theory [103], Par-
tition theory, Approximation theory, Distribution theory and Probability theory
[29].
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1.2.3 Polynomials and Their Inverse Series Relations

In this section, we state the pairs of inverse series relations involving certain or-
thogonal polynomials such as the Laguerre polynomial, the Legendre polynomial,
the Hermite polynomial, the Chebyshev polynomial, the Gegenbauer polynomial,
the Jacobi polynomial, Wilson polynomial, Racah polynomial etc. occurring in

the literature hitherto on the Special Functions (see [4, 12, 14, 65, 80]).

e Laguerre polynomial and its inverse series relation:

L@ mo(=DF (1 a), ot )
@)= kz—:() (1 + a)p(m — k) k!

=

A (D)l (A4 a)m )
_kzzo (L4 a) (m — k)] b (o) /

e Konhauser polynomial and its inverse series relation:

o m +a+1)(—1)7 27 \
Z5 (x, k Lm —
(. k) = E)F(k]+oz+1)( -

=

T (k 1
1)7 m!T(km + « + )Z(a)( ")
J+a+1)m—j) ! J

o
Zr(

Jj=0

e Hermite polynomial and its inverse series relation:

/2 (1) ml(22) 2 )
Hnle) = 2 o w
& ’
o™ A H,y, (@)
ml &= 27 (m — 2k)lk! )




11

Chapter 1. Introduction

e Legendre polynomial and its inverse series relation:

)

S (1) (12 (22)"

Fnle) = 2 (m — 2k)! k!

=

(22)" = /2] (2m — 4k + 1)m!Pm_2k(¢r).
5 Dk ]

e Gegenbauer polynomial and its inverse series relation:

\

2 (1) (0)o(20)"

On@) = 2 0 o

=

(2x)™ 2 (o +m — 2k)
Sl AT =) fa '
= S @kl O

e Jacobi polynomial and its inverse series relation:

PP () = (1+a)m i (=) (14 a+ B+ m)y <1_$)k \

m! = (14 a)ik! 2
=
(1—a)™ =”‘thﬂ+a+ﬂhﬂ+a+ﬁ+2mp@m@)
2n(1+Q)m 1= (1+a+ B)mirt1 (1 + )y k )

e Racah polynomial and its inverse series relation:

* | ~ & (m)(l 4ot B+ m(=2) )
RBu(x(z+0+7+1);a,6,7,0) = X (1+ozk)k(ﬁ+5+ 1)k(WI-Ci-1)k/§!

X(z+7+0+ 1)

&
(—m)i(1+a+ B+ 2k)

— ™z +v+5+ 1), B
0 (L+a+ B+ k)nik!

(
(1+C¥ m(ﬁ+5+1)m(7+1)m k

NIE

XRp(x(x+0+v+1);a,8,7,9).
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e Wilson polynomial and its inverse series relation:

P (2?) B i (—m)pla+b+c+d+m—1); )
(a+b)m(a+c)mla+d),m = (a+b)p(a+c)r(a+d)g

(a+ix)i(a —iz)y
(a+b+c+d+k—1)p41k!

=
(a+iz)i(a — i)y B i (—m)pla+b+c+d+2k—1),
(a+bmla+c)mla+d)n, = (a+b)ila+c)ila+ d)k!

XRk(:c(:v+5+7+1);a,ﬁm/,5)
(a+b+c+d+k—1Dpey

e Hahn polynomial and its inverse series relation:

o & (mp(l4+ o+ B +m)p(—x) \
nlrien BN =2y (1+ a)u(—N)ih!
=

(=2)m o (=mhh(I+a+ 8+ 2k) .
T @M~ 2 (at Bt Ryt SN

e Dual Hahn polynomial and its inverse series relation:

Ru(e(e +a+ 6+ 1a,8,N) = 35 Cmell ¥ ot f oz

= (1 + a)e(=N)pkt
o

e Extended Jacobi polynomial and its inverse series relation:

. . o [m/s] (—m)sk(c 4+ m)y (aq)g -+ (« )Mk 3
aslon o B By el = 3 GGkl

=
(@)m - (p)m 2™ & (=sm)y (c+ Kk + (Ik/s))
(BU)m - (B)mml = (sm)V kb (e + k)t

X Fipslan - ap; Br--- 5y 2]
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e Generalized Humbert polynomials and its inverse series relation:

[n/m] )
Pulm . m,0,6) = 35 (5 ek
k=0
o4
(—ma)" [/ L (= n+mk)cnhe
! POy ey S AR CRUR )
x P¥ . (m,z,mn,c).

e Humbert polynomial and its inverse series relation:

[n/m] (ma)nmk
IR = —1)*
(@) kZ::D( ) ['(—y—n+mk—Fk+1)(n —mk)! k!
o 4
(—ma)r  I/ml oy nmk T(—y —n+k+1)
- Y (~1 I :
e The Kinney polynomial and its inverse series relation:
[n/m] " (mx)n—mk A
kn(m, x) = kZ::O (=1) D(—(1/m) —n+mk — k4 1)(n — mk)! k!
=

(—maz)" /] —(1/m)—=n+mk I'((=1/m) —n+k+1)
n! kz::o (=1 —(1/m)—n+k k!

X kﬂ_mk (m, ZL')

e The Pincherle polynomial and its inverse series relation:

pu(T) = [712/?](—1)’“ (1/2)n—2k

n—3k
PO s I

=
(3x)" W ((1/2) +n — 3k) 1
W2 (2 = k) (D, D)

/
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e Meixner polynomial and its inverse series relation:

g

e Krawtchouk polynomial and its inverse series relation:

n —n —X 1 ;
Kalwsp, N) =3 w <5>

b (3) = 3 o Kt )

p k=0 J
General class of polynomials due to R.Panda [75] and its inverse series relation[101]:

/sl (¢ 4+ 1k m—sk )
c . — m—s k
Gon (37 5) iz (m—sk)! Tkt

=

- sm (_1)5m_k(c+ (Tk/S))(C)rm Slrir. s
Tm —kz::() (C)rm—sm+k+1<8m_k)! gk( o ) /

Another general class of polynomial studied by Singal and S.Kumari [100] and its

inverse series relation are given by

m/ml /¢ — nr 4+ mrk
f£($7 Yy, T, m) = kZ: ( k )yk Wn—mkxn_mk
=0

=

=0 c+nr—=k

g—mk (L Y, T, m)

c+nr—mrk<—c—nr—|—k>
k

1.2.4 Riodan’s Inversion Pairs

John Riordan [82] studied and classified a number of inverse series relations. For
example, he classified certian inverse series relations into Simplest classes, Gould

classes, Simpler Legendre classes, Chebyshev classes, Simpler Chebyshev classes
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and Legendre-Chebyshev classes. Many of these inverse pairs are reducible to
certain polynomials; for example, the Laguerre polynomial, Legendre polynomial
etc.

Here we list out (Table 1.1) those classes of inverse series relations which can be
extended to the matrix forms.

The following tables enlist them.

TABLE 1.1: Gould classes of inverse series relations

F(n) =3 Cux G(k);  G(n) =32(=1)""* Dy F(k)

Sr.no A Bk
(1) (") e ()
(2) | HEam () (et
(3) (") e ()
(@) | ) (")
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TABLE 1.2: Simpler Legendre classes of inverse series relations

F(n) =3 Cox G(k);  G(n) =32(=1)""* Dy F(k)

Sr. no Chk Dy, e
(1) (") )
(2) () ()
(3) (") e (i)
(4) (20 reried QRN
(5) (") e QA
6) | B () (")

TABLE 1.3: Legendre-Chebyshev classes of inverse series relations

F(n) =32 CogG(k);  G(n) = 32(=1)" Dy yeF (k)

Sr. no Ch Doy
5 G| R
(2) (B pron (prekhon-1y
(3) (P gi_gi (et
(4) (B zi_gi (p-l—cnk—lz:k—l)
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Continue
Sr. no Ch.k Dy, 1.
() | s () ("
6) | mham () ("5
ORI = === { (A0 I I (i
® | S ) (")

1.3 Matrix Form:

1.3.1 Preliminaries

Let CP*P be a family of square matrices of order p having in general, complex

entries. For a matrix A in CP*?_ let o(A) be the set of all eigenvalues of A. The

matrix A is said to be positive stable matrix if R(\) > 0 for all A\ € o(A).

A matrix polynomial of degree n in x is a polynomial of the form:
F(z) = Pya™ + Py_12" ' + Py 02" 2+ ...+ Pix + P,

where the matrices Py, P1, P, ..

.. P, are in CP*? and P, is a non-zero matrix.

(1.3.1)

Let A, B be matrices in CP*? and r € C. Then the 2- norm has the following

properties:

LifrAl=Irl A

2.]| A||=0if and only if A =0
3 A+B<[ Al + B
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Al AB <[l Al B
5. || Ipxp 1= 1
We illustrate the following types of the norm of a square matrix [88]. The Column

norm of a matrix A denoted by || A ||; is defined by
| Alli= mjaxz; |ai]. (1.3.2)
The Row norm of a matrix A denoted by ||Al|« is defined by
| A o= mZaXZ |aij]. (1.3.3)
J

The 2- norm or the Euclidean norm of a matrix A is denoted and defined by

| A |l2= sup”f;—x||2 = maz{VX: X € o(A*A)}, (1.3.4)
=0

(R

where A* denotes the transposed conjugate of A and for any vector u in the p-
dimensional complex space, || u ||a= (u*u)? is the Euclidean norm of u.

Example 1. Consider the matrix

123
A=14 56
78 9

We find that
| Ay =max[l+4+7,24+5+834+6+9] =max[l12,15, 18] = 18,

[Alla=12+22+ 32+ 42+ 52+ 62+ 72+ 8 +9%)1/2 = 16.88,

| Alloo = maz[l +2+43.445+6,7+ 8+ 9] = max[6, 15, 24] = 24.
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Example 2. If we consider the matrix

1+ 26
A=1 2 |,
1

then we have
| A lla = (1 —20)(1 4 2i) + (—2i)(2i) + 1) = V10.

Now, if f(z) and g(z) are holomorphic functions of the complex variable z which
are defined on an open set € of the complex plane, and if o(A) C €2 then from the

properties of the matrix functional calculus [24], it follows that

f(A)g(A) = g(A) f(A). (1.3.5)

f(A)g(B) = g(B)f(A). (1.3.6)

Exponential Matrix function is defined as follows [11, Eq.(6), p.2]

A2 A3 At
A _
A=A+ (1.3.7)
where A is positive stable matrices in CP*P,

We note that

LEI — eIlog;:z:
I"(logz)” = (logz)"
TLTa TR
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Hence, 24 = 2(IA) = zA for A # O.
Also, we have [13, p.379]

le?]] < ellAll
Using the Schur decomposition of A, it follows that [107]
1/2t

et < et Z ”A”r t>0. (1.3.8)

If A is matrix in CP*P such that R®(\) > 0 for all eigenvalues A of A, then
['(A) is well defined as

['(A) = /e%A_I dz, 247 = exp((A—I)lnz). (1.3.9)
0
The reciprocal gamma function denoted by I'"1(z) = (I'(z)) " = T) is an entire

function of complex variable z [45, p. 253] and thus for any matrix A in CP*P the
functional calculus [24] shows that T''(A) is a well defined matrix.
If I denotes the identity matrix of order p and A+n/ is invertible for every integer

n > 0 then ([54])
D' A)=AA+I) - (A+(n—1)DHT Y(A+nl). (1.3.10)

From this, the functional equation of the gamma matrix function occurs in the

form
AT(A)=T(A+1) (1.3.11)

which readily follows for n = 1. For a matrix A in C?*?, the Pochhammer matrix

symbol is defined by [54]

1, if n=0
(A)n = (1.3.12)
ALA+I)---(A+(n—1)1), if n>1
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If we denote by p(A) the logarithmic norm of A, and by fi(A) the number —p(—A),
then
w(A) = max{z;z € o[(A+ A7) /2]}, (1.3.13)

and

fi(A) = min{z; z € o[(A + A7) /2]}. (1.3.14)

If A and B are positive stable matrices in CP*P, then the Beta function is defined

as
1
B(A,B) = /tA—f(1 — )8~ at. (1.3.15)
0

Let A and B be commutative matrices in C?*? such that A, B and A + B are

positive stable matrices, then
B(A,B) =T(AT(B)I'"Y(A+ B). (1.3.16)
For an arbitrary matrix A in CP*P,
(A)mir = (A)m (A +mI). (1.3.17)
Also, if I — A — nl is invertible for all n > 0, then
(A= (=1)"nl (A), (I — A—nl);". (1.3.18)
If A —nl is invertible for all n > 1, then in view of the product
(“A+D(A-DYA-2D)" - (A=nl) = (-1)" 1,
we define

(A) o =A-D*A-2D)" - (A—nD) = (=D)"(-A+1);" (1.3.19)
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Hence,
D(A—n)I7HA) = (A)_, = (=) (=A+ 1) (1.3.20)

For any matrix A in CP*? and for |z| < 1, the following series expansion holds
[53].
o.¢] A n
1—a2) =) (Ao (1.3.21)

If A € C™" is a positive stable matrix and n > 1 is an integer, then the

gamma matrix function can also be defined in the form of a limit as [54]

I'(A) = lim (n — 1)!(A); ' n?. (1.3.22)

n
n—o0

It is to be mentioned here that the notation A is used to denote the forward

difference operator, hence we adopt the notation < m; A > for

()i =m™ [ ] <w>k (1.3.23)

. m
=1
In particular, for non negative integer n,
—1)"k nl o (—n+i—1
Lol e (=) = I1 (L 1) . (1.3.24)
: k
The generalized hypergeometric matrix function is defined as follows [94, Eq. (2.2),

p. 608].

Definition 1.3.1. If {A;;i=1,2,...,¢}, and {B;;j = 1,2,...,m}, are sequences
of matrices in CP*P such that B; + nl are invertible for all n > 0, then the

generalized hypergeometric matriz function is defined as

oFo (A1, Ag, ..., Ay By, By, ..., By 1) (1.3.25)
=S A (A (B B (B
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Here, the series converges for all x if ¢ < m. If ¢ = m+1, then the series converges
for|z| < 1. If £ > m + 1, then the series diverges for all x # 0.
7!
The notation (;) will stand only for the binomial coefficient W, but
r—s)ls!
will not be used to denote the column matrix.

For Q(k,n) € CP*? n k > 0 and m, s € N, there hold the double series identities
[76, 80:

(k/

3

SN QUGE) =D Q3 k+my), (1.3.26)
k=0 j=0 k=0 j=0
N N-k N J
k=0 j=0 J=0 k=0
mn [k/m] n mn—mj
DD Q) = Q(k +mj. ), (1.3.28)
k=0 j=0 j=0 k=0

D2 QR =2 > QG.i+k) (1.3.29)

> YQUk =Y > QUK ). (1.3.30)

k=0 j=0 k=0 j=0
n k n n—j

> Qk,5) = Q(k +34,7), (1.3.31)
k=1 j=1 j=1 k=0

> ZQ(M’) => Q(k.J). (1.3.32)



Chapter 1. Introduction

24

1.3.2 Examples

Example 1.3.1. Let us evaluate I'(A), where

The eigen values of A are 1,2.
Now, we have [1, Eq.(8), p. 64]

We first find t4~1, where

00
A-1T=
11
Since forn > 1,
00 00
11 11
and
=, B"(logt)"
Blogt __
e” ¥ _Z ol
n=0
we find that
00
AT _y L1 _ 10
t—1 t
Hence,
ot AT _ e’ 0
e t(t—1) te?
Consequently,
10 10
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Alternatively, following [83], if f(s) is a scalar function which is analytic in

some region R of complex plane, then
/ (5) = Z /Bk s*.
k=0

Now if P be an n x n matrix with characteristic polynomial A(s) and eigenvalues
Ai then f(s) may be written as f(s) = A(s)Q(s) + R(s), where R(s) is of degree

<n — 1. Now, from Cayley-Hamilton theorem,

f\) = R(\) = nz_: a, \F. (1.3.33)
k=0

This yields the system of simultaneous equations in o s. Thus for matrix function

f(A), we have
f(A) =R(A) =) a, A"
k=0

The o s are determined from (1.3.33). Thus, taking

we find the eigen values to be Ay = 0,\y = 1. The corresponding system of
equations is

1=0a,+0;
t=qa, +a,.

This provides us o, =1, ¢, =t — 1. Now,
th=ellst —q I+, P =

Consequently,
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Note 1.3.1. The above example illustrates that if the eigen value A of a matrix
A has real part positive, then T'(A) is defined; otherwise, I'(A) will not be defined.
The following example illustrates this. Thus, whenever we encounter the Gamma

matrix function, we must have the associated matriz to be positive stable.

31
Example 1.3.2. Consider the matriz A =
6 2
2 1
Its eigen values are 0,5. Here A — I = = P, say. Hence, we have to
6 1
find matriz representation of t©. The eigen values to be A\ = 4, Ay = —1. The
corresponding system of equations is
th = o, +4ay;

-1 _
U =a,— .

th 4t th—t!
Solving this system, we find o, = +T and o, = e
Now,
1| 3t +2t7t ¢t -t
tA:ePIOgt:&OI_i_alP:— 5
6t* — 61 2t" + 3¢

Hence,

3 1 I I

r = —/e_ dt. (1.3.34)

6 2 > 6t* — 611 244 4 3t

Since

o0
/ e~ dt
0

is divergent for ®(z) < 0, hence one of the integrals occurring in (1.5.54)

o0

[

0

will be divergent because R(z) = 0.

Thus, for the given matriz A whose eigen value are 0 and 5, I'(A) is not defined.
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1.4 Matrix Polynomials

As mentioned in earlier section, we enlist the explicit representations of the matrix

polynomials below.

e Laguerre matrix polynomial [52, Eq.(3.7), p.58]:

LN () =Y nl(_—l) (A+ D [(A+ D) ™" (A2)™ (1.4.1)

Konhauser matrix polynomial [108, Eq.(27), p.197]:

209 (k) = DlkmI 4 A+ )Y —((_1)”(”)%

n=

-1
TR I (knl+A+1). (1.4.2)

Hermite matrix polynomial [55, Eq.(12), p.14]:

[m/2]

k
Hy(x, A) = m! Z T 1)%) (zV/2A)™ 2, (1.4.3)

Jacobi matrix polynomial [21, Eq.(16), p.793]:

B+1),] & I
P&A7B)(:I;) = (=)™ It ;;' Z m) (A-I—B—l—m[-l—])
k=0

x[(B + )] <1;$) . (1.4.4)

The Gegenbauer matrix polynomials [90, Eq.(15), p.104]:

[m/2]
CA(z) = Z(—nk% (22)™ 2. (1.4.5)

Legendre matrix polynomial [97, p.355]:

m k
Z kl”;‘; kli)(A) (i“) . (1.4.6)

k=0
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e Chebychev matrix polynomial of first kind [20, Eq.(36), p.115]:

Z o ”;f;_k,l) P(A)D(A+ kD) (1 — z)*. (147)

e Chebychev matrix polynomial of second kind [70, Eq.(2.3), p.1040]:

/2 Ve — B
Up(z, A) = Z<(;)_<2k)! Z!)'(z\/ﬂ)m—%. (1.4.8)

The Generalized Humbert matrix polynomial in two variables has been stud-
ied by M.A.Pathan [76, Eq.(2.3), p.210] which coincides with Generalized

Humbert matrix polynomial in one variable given below, when a =y = 1.

e Generalized Humbert matrix polynomial:

., [n/m] kCA_(n—(m—l)k)I .
Pn(m,x,n,c) = kZ:%T] mF (A—l—(l—n—l—mk—k)])

xD(A+ I)(—maz)"™*. (1.4.9)

e Humbert matrix polynomial [76, Eq.(2.8), p.211]:

[n/m] _
I, (z) = go (—1)’6% (ma)"mk. (1.4.10)

e Pincherle matrix polynomials [76, Eq.(2.10),p.212]:

2 (1) () (Br)

Pl(z) = 1.4.11
DD IR (L4.11)
e Kinny matrix polynomials (cf. [14, Eq.(1.2.27), p.12]):
[n/m] -1 Do
Kj(m,x) =Y (—1)* (=L D mik (ma)n—mk, (1.4.12)

=0 (n —mk)! k!
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1.5 Operators £/ and A

It is well known that the forward difference operator A on a real function f(x) is

defined as [44, Eq.(5.2.1), p.175]

Af(x) = flz +h) = [f(z),

where h is the length of sub intervals of a given interval [a, b], say. Similarly. the

shift oprator E is defined as [44, Eq.(5.2.3), p.175]

Ef(x) = f(z+h),

wherein the number A is same as specified above.
We now consider the action of these two operators on a matrix polynomial function

(1.3.1). They are defined as follows.

Definition 1.5.1. Let P(x) be a matriz polynomial of degree n in x of the form
(1.5.1), then

E(P(z)) = P(z+h) (1.5.1)
and
AP(z) = P(x + h) — P(x), (1.5.2)
where the constant h > 0 is difference of the equidistant values of x.

Also, forr € N, E"P(z) = E"'(EP(z)), and A"P(x) = A" '(AP(z)).
Forr=0,E° =7, A" := T, the identity operator.

1.5.1 Auxiliary result

We prove the following Lemma which will be used in the derivation of inverse

matrix series relation in the next chapters.
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Lemma 1.5.1. Let P(z) be a matriz polynomial in x of degree less than n, then

Z(—l)n_k (Z) P(a+kh) =0, (1.5.3)

where n > 1 and a, h are constants.

Proof. 1f the deg[P(z)] < n, then in view of Definition 1.5.1, A" annihilates P(x)
(cf. [44], p. 179). To see this, take P(x) = Ajx + Ay, a linear matrix polynomial,
then

A’P(z) = A*(Ajx + Ag) = O

as A%z = (0. This may be generalized easily. Thus,
A"P(z) = O.

Now, A = E — 7 [44, Eq.(5.2.11), p.178], hence using the operator binomial

expansion,

A"P(z) = (E—1I)"P(z)

— {En — (Tll) EM (Z) E" %4 .+ (=1)"T | P(z)

= E"P(x) — (?) E"'P(x) + ...+ (=1)"P(x)

= P(z+nh)— (71’) P+ (n— Dh) + ... + (—=1)"P(x)

_ zn:(—n”—k (n " k) P(x + kh).

k=0

Thus,

which leads to the lemma for z = a. O
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1.6 Fractional Order Integral and Derivatives

Let > 0 and p € C with ®(x) > 0. Then the Riemann-Liouville type fractional

order integral and derivatives of order p are given by ([6], [85])

W) = 5o [ =0 e (1.6.1)
and
DLf(r) = (I, “D"f()), D= (1.62)

Using these operators, Bakhet and et.al.[6], studied the fractional order integrals
and derivatives of Wright hypergeometric matrix function and incomplete Wright
hypergeometric matrix function.

We define the fractional order integral of z# as follows [6].

Definition 1.6.1. Let A be a positive stable matriz in CP*P and p € C' such that
R(p) > 0. Then, the Riemann-Liouville fractional integrals of order u may be
defined as follows

) = o /:(x A, (1.6.3)

Lemma 1.6.1. Let A be a positive stable matriz in C**? and p € C with R(p) > 0.
Then from (1.6.3),

(24 1) = T(A)T YA + pl)zA+ =D, (1.6.4)
Proof. Using the definition, we have

() =
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t
Now, putting u = —, this gives
x

1;4($A—I)

! " — ) Huz)* M du
m/ox(l 1 (ux)” du.

:UA—i-(u—l

T
- 1 — ) A Tdu.
w0

5 Bul, A)

T(A)T YA 4 pul )T =DI,

(1.6.5)



