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2.1 Introduction

In this chapter, we establish a general inverse matrix series relation and thereby
deduce a matrix polynomial of general nature. For this polynomial, we obtain
the inverse series relation, generating function relations and summations formu-
las. This polynomial turns out to be a matrix analogue of the general class of

polynomials [75]:
{g5(z, 7, 8)In=0,1,2,3.}

where s € N,r € Z and c is arbitrary complex parameter.

This polynomial is generated by the relation [75]:

xt?
(1—1)

(1-t)G <—> - gg;(x,r,s)tn. (2.1.1)

1-—1%)

From this, the explicit representation occurs in the form [75]:

[n/s]
(C+ Tk)n—sk k
¢ (x) = E —_ . 2.1.2
gn(l',?”,S,SC) £ (’I’L—Sk’)' Ve T ( )

This polynomial contains the special polynomials such as the extended Jacobi
polynomial, Classical Jacobi polynomial, Lagurre polynomial etc. The inverse

series of the polynomial (2.1.2) is given by [101]

= Z“”SWWH(M/ D (1 ) (2.1.3)

k=0 (C)rn—sn+k+1(3n — k)'

In order to obtain the inverse series of the proposed matrix polynomial, we estab-
lish a general matrix inversion theorem as a special case of which we deduce the

inverse series relation of matrix analogue of (2.1.2).
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2.2 Lemma

The proof of inversion theorem uses the particular inverse matrix series relation

which we state and prove here as

Lemma 2.2.1. The following matrix series relations hold true.

Ay = Z(‘l)k@[) I'"Y(A+kB— NI+1) By (2.2.1)
- k=0
By => (-1)F (]IDF(A +NB—kI) (A+ kB —kI) Ay, (2.2.2)

where A and B are positive stable matrices in CP*P,

Proof. The proof runs as follows. We begin with substituting the values N = 0
and 1 and obtain the following inverse matrix relation.

For N = 0, the trivial relation holds. That is,
Ag=T"YA+1I) By & By =T(A)A A,.

For N =1, we have from (2.2.1),

A = Z(—1)k<i)r—1(,4 +kB—I+1) By

& B, = T(A+B)T ' (A) B, —T(A+ B) A,.
& B = D(A+BID Y ADAA Ay —T(A+B—1+1) A,
& B, = T(A+B)AA—T(A+B—I)(A+B—1) A;.

(2.2.3)

Thus for N = 0,1, the series (2.2.1) holds if only if series (2.2.2) holds.
The lemma is now proved for any N € N.

Part(I): The series (2.2.2) = the series (2.2.1). For that we assume that (2.2.2)
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holds true. If 77 stands for the right hand side of (2.2.1), then on substituting the

series for By from (2.2.2), we get

7 o= Z(—l)k<JZ> I Y(A+kB— NI+ 1)By

0

= > (-1 (JZ) I""(A+kB—-NI+1)

N
k=0

x Y (=) <l:> T(A+EB—il) (A+iB —il)A;.

=0

Now in view of the double series identity (1.3.27), we have

N N-—i .
7=y (-1)’“( N )(k;”)rl(AJrkBﬂB—NIH)
0

- k+1

x T(A+ kB +iB —il) (A+iB —il) A;

= AN+NX_:1]§(—1)’“( N )(k+i>F‘1(A+kB+iB—NI+I)

k+i 7
i=0 k=0 +

xT(A+ kB +iB —il) (A+iB —il) A;

N-1 N N—i N
- AN+Z<Z~>Z(—1>k< " )F‘l(A+kB+iB—NI+I)
=0 k=0

xI'(A+ kB +iB —il)(A+iB —il) A,
in which we used the identity:

) =000

We note that the simplification of the product of the Gamma matrix function and

inverse Gamma matrix function simplifies to the matrix polynomial in k.
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For illustration, let us take N = 5,7 = 2 and denote A + iB — il by C, then

[(C+ kBT H(C + kB —2I)
=T(C+kB—-I+1I""Y(C+kB-2I)
=(C+kB-DT(C+kB—-DT(C+kB-2I)
=(C+kB—-1(C+EkB-2NI'(C+kB 20" (C+ kB —2I)
= (C+kB)* = 3I(C +kB) +2I

2
=Y S K,
r=0

say, where Sy, = B2 # O. Thus,

N—i N — N—i—1
(—1)k( A ) Y T K| (A+iB—il)A,

N-—1 N N—i—1 N—i N i
_ k - r . .
_ AN+§j(,) T, 0(—1) < . )k (A+iB —il)A;.

Here the inner two series are (N — )" difference of the polynomial of degree
N — i — 1, hence it follows from Lemma 1.5.1 that 1 = Ay + O.

Also, it may be seen that the diagonal elements (—1)NT"Y(A+NB—NI+1) of the
series (2.2.1) and those given by (—=1)"T'(A+ NB— NI+1) of the series (2.2.2) are
non singular matrices for every matrix A # —NB+ NI —jI,7=0,1,2,..., hence
the inverse of the block matrix corresponding to the each series in the statement
of the lemma, will be unique. Since (2.2.2)= (2.2.1), it follows that (2.2.1) <
(2.2.2). O

It is interesting to note that if either the sequence {A; : i = 0,1,2,...} or
{B;:i=0,1,2,...} is chosen to be {(?)I}, then the matrix series orthogonality

relation is obtained. This is stated as

Corollary 2.2.1. There holds the matrix series orthogonality relation:
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Proof. In Lemma 2.2.1 Putting A, = (Z) I, we get
0 al N
I=Y (-1 I"Y(A+kB—NI+1) By. 2.2.4
() Z<>(k) (A +1) B, (2:2.4)

Here By, is evaluated from (2.2.2) as follows.

By = ZN:(—U’f(]Z)F(A +NB—kI) (A+ kB —kI) Ay

_ ﬁ:(—l)’f@)F(A +NB—kI) (A+ kB —kI) (2)1

0
— I(A+nB)A. (2.2.5)
Using this in (2.2.4), proves the corollary. O

Now using the lemma, we prove as a main result, the general inversion

theorem in the next section.

2.3 Main Result

A general inverse matrix series relation is stated as

Theorem 2.3.1. Let A and B be positive stable matrices in CP*P such that A +
JB — LI # O for every non negative integers 3, ¢, and n # sm,m € NU{0},s €
N\{1}, then

In/s] (At kB —m
Fiw) = 3 (-1t ST oD g (231)

. (A4 kB — ](c;if‘_(i;— snB — kI) F(k) (23.2)
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and

" (A4 kB —kI)['(A+nB —kI)
(n—k)!

F(k) = O, (2.3.3)

in which the floor function |r| = floor r, represents the greatest integer < r.

Proof. (I) The series (2.3.1) = the series (2.3.2). Denoting the right hand side of
the series (2.3.2) by ¢(n) and substituting for F(k) from (2.3.1), we get

3(n) = (A+/€B—/€I)F(A+snB—kI)F(k)

— (sn — k)!

N (A+kB—kIT(A+ snB —kI)

— (sn— k)!
Lk/s] 1 .
I A+ siB—kI+1) ,
-1 k—si .
x Zl_o (=1) (k — si)! G(0)

Here using the double series relation (1.3.28), we further get

— s A+kB+b&B k[—.s&]) .
o(n) = z; kz: (n —si W)kl ['(A+ snB — kI — sil)
7 0

XY (A + siB — sil — kI +I) G(3)

n—1 sn—si k(A+]{;B+5iB—kI—S7;I>
(sn— si — k) k!

xD(A+snB — kI — sil )T (A + siB — sil — kI + 1) G(i)

= G(n)+ (=1)* (A+ kB + siB — kI — sil)

I'(A+4 snB — kI — sil)
k! (sn — si — k)!

YA+ siB — sil — kI +1)G(i)
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n—1 sn—si sn — si\ (A+ kB + siB — kI — sil)
LA (sn — si)!
- sn — si)!

xT(A+ snB — kI — sil) T7Y(A + siB — sil — kI + I)G(i).

Here replacing I'"Y(A + siB — sil — kI + I) by Ay in the inner most series, and

denoting this inner series by B, _s;, we have

Bos = (-1 (“m . ‘”) (A+ kB + siB — kI — sil)

k=0

xI'(A+ snB — kI — sil) Ay. (2.3.4)
In view of Lemma 2.2.1, the inverse series of this, is given by

Ay = 3 (~1)F (5” . ‘”) I Y(A+siB+kB—snl+1) B, (2.3.5)
k=0

where A is replaced by A + siB — sil in the lemma.
Now, the choice By = (](\),)I in the series (2.3.5) yields

A = 3 (1) (S” B SJ) TY(A+ siB + kB — snl + I) By
k=0

_ (1) (Sn;Sj)F_l(A+siB+kB—snI+l) (2)1
k=0
= I"Y(A+siB—snl+1). (2.3.6)

Thereby A, = I (A+ siB — sil — kI +1) is recovered. Thus, with these A, and

B,., the series (2.3.4) provides the matrix series orthogonality relation:

( : )I = Snii(—” (Sn;Si)(A—l—kB—i—siB—k:[—siI)

sn — St
k=0

xD(A+snB — kI —sil)l Y (A+siB — kI —sil +1). (2.3.7)
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Using this in (2.3.4), we finally find
- ~—/ 0 G(3)
¢n) = Gln)+ ; (sn — si) (sn— si)!”

Thus, ¢(n) = G(n) and hence (2.3.1) = (2.3.2).
(IT) The series (2.3.1) implies the series (2.3.3).
We denote the left hand side of the condition (2.3.3) by ((n) to get

n

_ D(A+nB — kI)
= A B—kI F(k).
) = YA+ — kDS )
k=0
Then substituting the series for F(k) from (2.3.1), we get
n [k/s] —si
- I'A+nB —kI) (—1)k=st
n) = A+kB— kI
Cn) = D (ATRB =K== 5= ) )
k=0 =0

xI YA+ siB—kI+1) G(i)

[n/s] n—si

B ZZ A+kB—|—szB kI — si)
(n—si—k)! k!

T'(A+nB — kI — sil)

=0 k=0

I YA+ siB— sil — kI +1) G(i)

[n/s] n—si
_ (—1)k (" . SZ) (A+ kB + siB — kI — sil)
=0 k=0
R . . G(2)
— S1):

1=0

wherein the last expression (n_osi) occurs from the series orthogonality relation
(2.3.7) when n # si,i =1,2,3....

Thus, the series (2.3.1) implies both series (2.3.2) and (2.3.3).

(III) The series in (2.3.2) and (2.3.3) imply the series (2.3.1).
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Put

o) = (A+ kB — fi)f($!+ nB — kI) F (k). 238)

then

o NS(A+kB—kDT(A+snB—kI)
Hlsn) = (sn—k)! F(k),

e
i
o

and from (2.3.3), ¥(n) = O for n # sm, (m = 1,2,3,...). Now, from Lemma 2.2.1

with N = n, the series (2.3.8) possesses the inverse series:

Fn) =3 (-1t ?nki;)!”[”) b(k). (2.3.9)

But ¢(sn) = G(n), hence from the inverse pair (2.3.8) and (2.3.9) we obtain

relation:
"N (A+ kB - kIT(A B —kI
Gln) = (A+k EII'(A+ sn k)F(k)
— (sn—k)!
implies
F(n) — L"X:/“(_l)n_skr—l(A HskB—nl+1) oo
B — (n — sk)! '
This completes the converse part and hence the proof of the theorem. O

Remark 2.3.1. It may be noted that s = 1, the theorem coincides with Lemma

2.2.1.

2.4 General Class of Matrix Polynomials

Let {M;;5 = 0,1,...,N} be a sequence of matrices in CP*? which may include

the scalars if any. Put G(k) = I'(A — rkl + ) M, z* and sB = —(r — s)[ in the
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theorem to get

[n/s] n—sk
—1 _

[n/s] . 1
_ E (_1)n—5k [(A rkI + I>—"7«+Sk] ]\/[k l‘k,
— (n — sk)!

since I'1(P — jI) and T'(P) commute for 7 =0,1,2,....
In view of the formula (1.3.18), we replace A by —A, n by rk and k by —n + sk
to get

(=A)k(=A+ 7kl = (_1)n_5k(_A)rk’[([ + A - T'k[)—n-ksk]_lv

that is, (=1)""*(I — A —rkI)=) 4 = (—A+rkl),_g.
Thus, we get
Py = 3 A
B — (n — sk)! B

This suggests a general class of matrix polynomials which may be denoted and

defined as follows.

Definition 2.4.1. For a matrizc C € CP*P, r € Z and s € N,

/5]
KI)n s
H,(C,r,s;2) = ) (C(Zisz)' MM R (2.4.1)
k=0 )

The inverse matrix series of this is obtained with the help of the same sub-
stitutions: A = —C,G(k) = T'(—=C —rkl +1I) My, 2%, sB = —(r — s)I in (2.3.2).

Hence using the above formulas, we get
[(-C —rnl +1) M, ="

B L (=C H k(—(r —s)I/s) — kI) '
— 2 (sn 1) I'(—=C — (r —s)nl — kI)H(C,r,s;x)
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~ (=C = (rk/s)I)
(sn—k)!

D(—C — (r—s)nl — kI)H(C,r, s;x). (2.4.2)

k=0
Using the formula (1.3.18), that is

(Anr = (=1 0l (A)n [(I = A—nl)]™
with A = —C, k is replaced by sn — k and n is replaced rn, we obtain

[(=C —(r—s)nl —kI) = (=1)*"*I(=C —rnl)(I+C +rnl)*

k—sn

= [(—=C —rnl)(—=C —rnl) sy,
the equation (2.4.2) reduces to the form:
(—=C —rnl)I'(=C —rnl) M, x"

~ (=C = (rk/s)I)
(sn—k)!

IN(=C —rnl)(—=C — rnl) g, Hi(C,r, s; ).

k=0

That is,

~ (=C = (rk/s)I)
(sn —Fk)!

Mn "= (I —-C - rn[)sn—k—lHk(Ov T, S5 I) (243)

k=0

The equation (2.3.3) is assumed to hold.
Hence forth the condition (2.3.3) will be omitted while deducing the particular

inverse pairs.

2.5 Particular Cases

We begin with the special cases of the polynomial (2.4.1). In first place, we obtain

a matrix analogue of the extended Jacobi polynomial [104] which occurs with the
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help of the substitutions r — s =1 € NU {0} and
M = (=1)"T(C + kD) (A~ (Ap) (B ™"+ [(By)ul = /R,

where the matrices B;+jI are invertible for alli = 1,2,...,¢, and j € NU{0}. We
adopt the convention that (P) represents the array of finitely many parameters
Py, P,...P;, say. With these substitutions and notations, we find from H, (C,r, s; z),
the extended Jacobi matrix polynomial denoted here by I(C'+nl)Fg, [(A); (B) :

z]/n! in the form:

Ln/s)
FOLA); (B) ra] = > (=nD)a(C +nl )i (A (A
X(Bal ™ (B g (25.1)

The inverse series of this is deduced as follows.
We re-write the formula (1.3.18) by replacing n by sn, k by k 4+ 1 and A by
I — C —rnl, then we get

(I—=C—rnl)gn_p_r = (=) = C —rnl),[(C +rnl — snl)j1] "
Next, using the formula:
(I = A= (=1)*[(A)-]"
with A = C + rnl and k = sn, the product (I — C — rnl),, assumes the form:
(I —C —rnl)gp_j1 = (—=1)*"™T(C +rn) D HC + (r — s)nl + kI +1).

Hence in view of the inverse series (2.4.3), we find the inverse series of the poly-

nomial (2.5.1) in the form:
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= ((;;;[;if (C'+ LEI + KI)[(C + kD) ini1] " F[(A); (B) 1 2],(25.2)

where L =1/s,l =1 —s.
The particular case r = s ( that is, [ = 0) of (2.5.1) leads us to the matrix form of

the Brafman polynomial [8, Eq.(52), p. 186]:

Ln/s] k
Bus[(A); (B) szl = Y (=nd)a (A~ (Ap) [(BO] ™+ (Bl ™ %

The inverse series of this follows at once from (2.5.2) in the form:

(A (Ao (B [(Bal o = 3 5 Dhg 1), (B) - a.

n! — (sn)l kI

A worth mentioning instance of (2.5.1) is the matrix analogue of the Jacobi poly-

nomial. This may be obtained by taking C = A+ B+1I,p=0,q=1,B; =B+1

1
and z — ((14x)/2). With this, the matrix polynomial F,‘:;ff” {—; B+ I —g L

reduces to the extended form of the Jacobi matrix polynomial: (—1)" [(B +
I, nl Péif)(x) which is given by (cf. [21, Eq.(16), p.793] with s = 1 and
[=1)

[n/s]
PPy = (DS E0ek ) pnr iy,
) k=0 )

(B + 1] (1‘2”)k (2.5.3)

This evidently extends the classical Jacobi polynomial stated in [80, Eq.(3), p.
254].

The inverse matrix series:

[(B+ 1) (1“3)” 3 (_SnI>k(A+B+Lk:I+kI+I)

n! 2 — (sn)!

X[(A+ B+ kI + Dipya] (B + 1) PP ()
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which is believed to be new, follows from (2.5.2) with the same substitutions.
The Gegenbauer matrix polynomial turns out to be a particular case of (2.5.3)
which occurs when A =B =F — é We straight away obtain the polynomial (cf.
(80, Eq. (15), p.279]):

[n/s] &
Crlj($§l,5) = (=1)" [(F +n{/2)n] Z (_7;![>Sk(2F+n[)lk[(F+[/Q)k]_l (1—12—x> .

With the same substitutions, we get the inverse matrix series:

[(F+1/2),]7" (Hx)” _ i(_l)k(_snl>k(2F+Lk1+k1)

n! 2 — (sn)!
X[(2F + k)] H(F +1/2))7'CE (51, 5).

The immediate instance F' = I/2 of this polynomial is the extended Legendre
matrix polynomials which is denoted here by P, ;(x), is given by (cf. [80, Eq.
(3), p.166])

[n/s] nl) o 2\ F
Puate) = (11 Y Sl (157

which possesses the inverse matrix series:

()] (1+I>n _ i(_l)k(_‘m])k(L/dJrlirI)

n! 2 — (sn)!

X [(kl + I)ln+l]_l[(I)k]_lpn,lﬁ(x)'

This is believed to be new.

Another extended matrix analogue of the Legendre polynomials: P,(z,C) given
in (cf. [93, Eq.(2.3), p. 439] with r = 2, s = 1) which can be deduced from (2.5.3)
by putting A = —C'+ I and B = C' — I. The explicit representation together with
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its inverse series is given below.

25 D) ok
PC, (o) = (O S~ D p 4oy (1 )

and

() - > D8 L T 1Y 4 D] (O] P (0)

n! 2 (sn)!

The further reducibility with A = C'— I, B = —C'leads to the eztended Chebyshev
matrix polynomials: (C),T,, s(z,C)/n! [21, Section 6, p.801].

The Laguerre matrix polynomial however occurs from the theorem directly. In
fact, the choice B = O (thereby A # (1,0 =0,1,...) and F(n) = T} A —nl +
I(A+1),'F(n) and G(n) = (A+1),!G(n) transform the theorem into the form:

[n/s] (_1\n—sk )
Fin) = 32 0S4 DA+ Da) ! Gl
o= £ GEmarndt rw.

where A+ ;1 are assumed to be invertible for j € N. From this, we get the extended
Laguerre matrix polynomial (cf. [52, Eq.(3.7), p.58] with s = 1) along with its
inverse (cf. [61] with s = 1):

[n/s] (_l)nfsk Mok
LN (@) = Y = (A+ D [(A+ D] 5
W)= & S A DulA+ Dl S
A sn (A—{—])sn 1 (AN
= A+ 1)t L) .
nl = (STZ — ]C)' [( + )k] k,s (SE)
Re-writing (2.5.3) and its inverse as
(4.B) (B +Da] &K (=nl)a, L (1—x\"
P @) = =y A Bl + Dul(B+ 1 —— )

k=0
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sn

[(B+n{)n]—1 (1;:)” _ ;(_I)k%m+3+ml+m+n

X[(A+ B+ KL+ D] (B + D] P (),

and putting A = —B—1, we obtain an extended matrix version of the non constant
Chebyshev polynomial of first kind denoted by T, ,;(x, B) which is stated below

along with inverse series.

/) D) —2\*
Tosi(z,B) = [(B;;[)”] Z( k?s (n[)lk[(B+1)k]_1(1 5 ) ;

[(B+ 1] <1—fc>" - i(_l)k(_m”’f(mum

n! P (sn)!

<[(kDins1] (B + D] Tsa(, B).

Also putting A = B = —1/2, we obtain an extended matrix version of the non
constsnt Chebyshev polynomial of first kind denoted by 7, s ;(z); whereas putting
A = B = I/2, this reduces to the extended matrix version of the Chebyshev
polynomial of second kind denoted by U, s;(x). They are respectively stated below
along with their inverse series (cf. [80, Eq.(1) and (2), p.301] with s = 1,1 =1).

[(1/2)n] L%SJ (=nd)s

L Tnsal2) = nl o is K

UﬂhdU/%d‘l(lgx)k;

[(I/2),]7" (1 —2\" & p (—snd ), ~

= -1 LEI + EL)[(KD)pmsa]

2 (55) = Eenr kD)
X[/ TS @),

Here we have used the double series identities (1.3.31) and (1.3.32).

For n =0, Ty s(z, B) :== I and Tp4,(x) := 1.

[(31/2),] L%” (=nd)sh

2. Unsal®) = n! k=0 k!

(0L + 20 [(31/2)] ! (1 - x) y

(31 /sl)n]_ <1 ~ f”) _ kz; (—1)F (_(f:)l')’“ (LK + kI + 2D)[(kI + 21 )1ns1] "

X [(3]/2)k]_1 Uk7s,l(I)~
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90

2.6 Wilson Matrix Polynomial and Racah

Matrix Polynomial

The inverse pair of the theorem is capable of providing the matrix analogues of

the well known orthogonal polynomials in 4F3-function forms; namely, the Wilson

polynomial and the Racah polynomial (or 6-j coefficients) [110, Eq.(1.1.1) and
(1.2.1), p. 24 and 26] (also [5, Eq. (a), (b), p. 47]). For deducing these matrix

polynomials, the following inverse pair is first obtained from the theorem with the

aid of the substitutions r — s = [,sB = —II, and F(n) — (=1)"I'"""(A — nl +

IF(n)/nl.
[n/s] N
F(n) = kz::() (—=nd)sk[(A = nI + 1)) G(k),
Gy = 3> Dk 4 sV — kYA - KT+ DsrmrF (k).

k=0 (sn)! )

Now in view of the formula (1.3.18),

(A —nI+ D] = (D F A+ nl) g,

and

(A~ KL+ D oot = (- DA+ kD) i)

Thus, the above pair changes to

[n/s] )
F(n) = kZ::O (—nd)s(—A +nl)y G(k),
> .
G(n) = 55 0 (At (ko)D)= A+ D] F (R, |

(2.6.1)

Now if A, B, C' and D are the positive stable matrices in CP*?P and the inverse of the

each of the matrices A+ B+jI,A+C+j1, A+ D+ I exists for all j =0,1,2,...



Chapter 2. A General Inverse Matriz Series Relation ... 51

then with A and G(n) are respectively replaced by A+ B+ C + D + I, and

(A +izD)p(A —izl),

! [(A+B)] (A +C)u) A+ D))

the inverse pair (2.6.1) yields an extended Wilson matrix polynomial:

[(A+ B)a] ' [(A+ C)a] " [(A+ D)u] ™! Pogs(a?)

Ln/s]
—nl), . :
-y ( 7];) “(A+ B+ C+D+nl+Ii(A+ixl)(A—izl),
k=0 )

x[(A+B)] A+ C)] T (A+ D)l

and its inverse series

(A+izl), (A —ixl),
n!

_ (_(EZ;')k(A+B+C+D+<T/S)k[+]>

X[(A+B+C+D+El+ 1)) (A4 B A+ O)] ™t
< [(A+ D)y " Pyys(z2). (2.6.2)

(A+B), [(A+C)a] [(A+ D))

sn

Next, in (2.6.1) if A is replaced by A+ B + I and

Gk = DI B Dy 4 2B+ B4 D7D+ 1

then we find the extended Racah matrix polynomial:

wis(@(@l + D+ E+1);A B,D,E)

—nl),
_ Z< Zl)’“(A+B+n1+J)lk(—xl)k(g:1+D+E+I)k

x:[ A+ D] (B4 E+ D] ' [(D+ D] ™"

whose inverse series is

(—zD)p(xl + D+ E+1),
n!

(A+ D) " (B+E+D,;'[(D+1),]"!
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— i%(A%—B—{— (rk/s)I + 1) [(A+ B+ kI 4+ Ipy1] "

X Reys(x(zl + D+ E+1);A B, D, E), (2.6.3)

wherein the matrices A+ jI, A+ B+ jI,B+ E+ jI and D + jI are all assumed
to be invertible for j =0,1,2,....

Since the Wilson polynomial and Racah polynomial encompass several polynomials
belonging to Askey scheme; namely the polynomilas of Hahn, dual Hahn, Meixner,
Krawtchouk, Charlier, Jacobi etc. (see [5, p. 46| for complete reducibility chart),
their extended matrix polynomials’ versions would follow directly from these two

matrix polynomials together with their inverse series relations.

2.7 Application

In this section, the matrix generating functions will be derived from the first
series of the inverse pair (2.6.1); whereas from the second series, certain matrix

summation formulas will be obtained.

2.7.1 Generating Function Relations

Theorem 2.7.1. For a positive stable matriz C' in CP*P and |t| < 1, the following

generating function relation holds.

S G pioyer = (1- 970 (O o ((i_—i)) |

n=0 ’ k=0

Proof. Taking A = C in the first series of (2.6.1), we have

00 o0 Ln/SJ
. TLI sk C’—i—n[)lk
> -y > ,L. Ry
n=0 n=0 k=0
oo /sl (_pyak

= > Z "*““G(k)tn

n=0 k=0
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35 U Ot e

n!
=  (C +rkl sk
= ;@m(:()( — ) >G(k)(—t)
= SO (1) T Gk (1
— 1= 03O 60 ()

Corollary 2.7.1. For |t| < 1,

gF(n (1—1) Igrk'G ((E_t)lf))k

This corollary is the immediate instance C' = I of Theorem 3.7.1.

Theorem 2.7.2. For the invertible matrices C' +nl, n=0,1,... and |t| < 1,

i:o;F t” g Yok 1EL(C + kL C + skI; ) [(C)a] ™ G(E)(—t)%.

Proof. From the first series of (2.6.1), we have the left hand side

o i oo |n/s)

Z Z Z T?[ sk C+T?I>lkG( )

n=0 n=0 k=0

o Lo/s) (_qyen

>y E e e

n=0 k=0

- ZZ = sn! Lot [(C)npsk) " G(R)E"HF

n=0 k=0

= YO (Z CxEDnc v skr), ) t“)

n!
[cm G(k)(—t)*
= > (C)i 1Fy (C + kI C + skI;t) [(C)a] " G(k)(—t)*.
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Now G(n) = M,z" implies F'(n) = H,(C,r, s,x), and thereby Theorem 3.7.1

yields the generating function relation:

n!
n=0 k=0

Z (C>n [_[n(cf7 7'7571-) t" = Z(C)Tk (1 — t)_C Mk ((xl<:tt);r> .

From Corollary 2.7.1, we get

[o.¢] (o) t)sl‘
H,(C,r s x)t (1—t)1y (rk)' M
2t e (2

where |t| < 1, and from Theorem 3.7.2, we have

o0 tn o0
> Hy(C.r.s, 1) = > (C)wi 1F1 (C+ kI C + sk )
n=0 k=0

X[(C)at] ™ M, (1))

The generating function relations of the extended Wilson matrix polynomial and
extended Racah matrix polynomial may be deduced as follows. Taking A + B +
C‘I—D—I = R,A+Zl‘[ = le,A—Zl’I = ZQI,A+B = Al,A—{—C = AQ,A+D = Ag,

then the generating function relation occurs.

S A [(A)] (A Prgoa)
> Ln/s] (R + n[)lk

- Ztn Z( 1)Skm(Zlf)k(zzf)k[(Al)n]_l[(Az)n]_l[(A?»)n]_l
o tn [o.¢]

= Z n' F(R +nl +rkDT YR+ nl + skI)(z1D)p(22D)[(A1)n] M [(A2)n]

SNE o
= Z t Z_: (R+nl)x(R+nl), ( I)k(ZQI)k[(Al)n]_l[(A2)n]_l[(A3)n]_l%
= ii—nl ri2Fops(R s R4nl = 20, 1< s; R+nl =, Ay, Ag, Az (—1)°),

n=0

where r < s+ 1 orr = s+ 2 and |t| < 1 for convergence. On the other hand, if
r—s=1,A+B+I1=0Q,Q+nl =Q,,D+E+I =By, A+ = By, B+E+1 = Bs,
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and D + I = By, then the generating function relation holds.

n

t
ZRMS (zI + D+ E), A,B,C,D,E)ﬁ

=2 Z o (@ DDl + BB

(Bs)k H(Bai] ™
L

= 0(Q +nl + kDT HQ + nl + skI)(—zI)i(x] + By

n.

00 [n/s] ( 1>8k
I~

x|

(—t)Sk

X [(Ba2)] " [(Bs)e] M (Ba)s] ™

k!
= YIS QD@ + nd)g (Dl + Bl(Ba)e]
n=0 k=0
_ +\sk
(B (B
= Z tn| T+2FS+3<< T Qn s T[7T[ + Bl; < S; Qn - BQ, Bg, B4; (—t)s)
n=0

(2.7.1)

in which r < s+ 1 or r = s+ 2 and |t| < 1 for convergence.

2.7.2 Summation Formulas

The inverse series (2.4.3) with the assumption that the finite sequence {M,} of

matrices in CP*P contains all invertible matrices, is rewritten as

] = i[Mn]-l (EC=URSD 16 pl)an i

= (sn = k).

X Hy(C,r, s;1). (2.7.2)

Now, multiplying this by 1/n! and then taking the infinite sum, it gives

2" ol N\ — (rk/s)I)
; —I ="l = nz; kz; (o Pl (I —C —rnl) g1

X Hp(C,r, s;1). (2.7.3)
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From this, a number of particular sums can be deduced by assigning particular

values to x. For instance, z = 0 in (2.7.3) furnishes the matrix sum:

I = i[M”]_liW(I —C —rnl)gn—k—1 Moﬂ

e po (sn — k)! (n)2’

Next, assuming |z| < 1, and taking summation n from 0 to oo in (2.7.2), then

there occurs the sum:

sn

( -1 )1 = S S CERED e

l—=zx e — (sn —k)!

xH(C,r,s;1). (2.7.4)

Here also, by assigning the different values to x from (—1, 1), a number of particular

1
summation formulas can be deduced. For example, for x = 37 it reduces to

Ny ot N (O R/ 9)T) ,
_2[—;}[]\4”] gw(l—o—T’ﬂ[)sn_k_lHk(C,’/‘,S,l/Q).
The summation formulas involving the Wilson matrix polynomial and the Racah
matrix polynomial are obtained from their respective inverse series (2.6.2) and
(2.6.3). They are stated below.
With A+ B+ C + D+ 1 = R, and applying »_ " both sides in (2.6.2), gives

sn

oF s (A+ixl,A—ixl; A+ B, A+ C, A+ D;t)
t

Y (=sn)p(R+ (r/s)KD[(R+ kD] [(A+ Bl ' [(A+ O] !

(sn)!
—+ D)k]_lpk,l,s(th). (275)

Similarly, considering ) ¢" both sides in (3.6.2), yields the sum:

oFy(—2l,2l + D+ E+LA+I,B+E+1,D+I;t)

sn

S S DA+ B (/)T + 1) [(A+ B b+ D)

|
— (sn)! —

XRys(w(xl + D+ E+1);A B, D, E). (2.7.6)
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Here it is noteworthy that for the particular values of x, a number of sums may

be obtained. For example, for x = 0, the sum (3.7.3) simplifies to

[e.e] sn

— Z (tn ' Z —snI)p(R+ (rk/s)D)[(R+ kI )] ™"

Lk/s]
y Z = Jf)* (R+ kD) (A);(A);[(A+ B)) 7 (A +C),) (A + D), ™!

- ZZ S 0 (" ) o (R /T i

X[(R4 kL + sj1)ima] (R + kI + s51);5[(A);]P[(A+ B);] A+ C);] !
(A + D) -]_1t”

_ Z 'ZZ k(STl)kk_F!—J‘.S!j)!(R_{_(r/s)ij—{—T’jI)

=0 k=0

X (R + k[ + 550y (R KT+ s71)5[(A);P[(A+ B);] (A + O)) ™
x[(A+ D))

On the other hand, when = = 0, then since R,,;+(0;A, B,C, D) = I, the sum
(3.7.3) gets reduced to the elegant form:

sn

i (;:,)l Z(—Sﬂ])k(A + B+ (rk/s) I+ 1) [(A+ B +kI + 1))

n=0

2.8 Matrix Analogues of Riordan’s Inverse Pairs

The Gould classes (1) and (2) [82, Table-2, p. 52] and the Legendre-Chebyshev
classes (3) and (7) [82, Table-6, p. 69] due to John Riordan can be extended to
the matrix forms by means of Theorem 3.3.1. The matrix form of the Gould class
(1) occurs from the theorem when G(k) — I'(A + skB — skI + I)G(k); whereas
the Legendre-Chebyshev class (3) occurs if B = C + [ is taken in the theorem.

The Gould class (2) and the Legendre-Chebyshev class (7) are yielded by the
following alternative form of the theorem. It is obtained by replacing first A by

A+ I and then F(n) by (A4+nB —nl +I)"'F(n) and G(n) by I'(A + snB —
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snl + ING(n). With these, the inverse pair of the theorem changes to
[n/s] )
F(n)= Y (=1)"**(A4+nB —nl + I)I'"Y(A + skB — nl +2I)
k=0
k
><F(A+skB—skI+[)L, (2.8.1)
(n — sk)!
sn F k
Gn)= Y. T"YA+snB —snl +I)T['(A+ snB — kI + [)#
k=0 (sn— k)" )

This pair itself is the Gould class (2). The Legendre-Chebyshev class (7) is the
case B = C+ I of (2.8.1). They are tabulated in Table-2.

QK

Table-2. F(n) =3 skl G(k); g(n) =S (—1)"* Gon Bl F(k)
Theorem / Matrix
Inv.Pair B p K bn, k analogue of
No. Class (No.)
Theorem YA+ skB—nl+1) YA+ snB—snl+1) Gould
1 B xT(A + skB — skl + 1) (A + kB — kI) Class (1)
xT'(A+ snB — kI)
(A+nB—nl+1) I YA+ snB—snl+1) Gould
(281) | B «D YA + skB — nl +2I) (A +snB — kI + 1) Class (2)
xI'(A+skB —sklI+1)
Theorem I YA+ skC+ skl —nl +1) YA+ snC+1) Legendre
-1 C+1 xT'(A+ skC +1I) X(A+ kC) -Chebyshev
xI'(A+ snC + snl — k) Class (3)
(A+nC+1) I YA+ snC+1) Legendre
(2.81) |C+ 1| xI YA+ skC+ skl —nl +2I)| xI'(A+ snC + snl — kI + I)|-Chebyshev
xT'(A+ skC +1I) Class (7)




