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INTRODUCTION 

 

“Life originated in water, is thriving in water, water being its solvent and medium. It is the 

matrix of life.” a quote from Szent-Gyorgyi (1958) clearly illustrates that: The unique 

physical and chemical properties of water have allowed life to evolve in it. Earth is known as 

the water planet in our Solar system and water is the absolute requirement of life. Its 

distribution, quantity, availability, and quality are the controls for the development of 

agriculture, industry, rural, urban, and municipal use. As a consequence study of water 

pollution is noteworthy as it influences living or biological systems either directly or 

indirectly.  

There are several definitions of water pollution. In a report by the National Research Council 

Committee on pollution quoted by Warren (1971), water pollution was defined as “an 

undesirable change in the physiological, chemical, or biological characteristics of water that 

may or will harmfully affect human life or that of other desirable species, industrial 

processes, living conditions, and cultural assets, that may or will waste or deteriorate raw 

material resources”. Heath (1995) quoted a definition of water pollution given by Lloyd 

(1992), as “the addition by humans of something to the water that alters its chemical 

composition, temperature, or microbial composition to such an extent that harm occurs to 

resident organisms or to humans”. However, this study will follow the definition given by 

Mason (1981) who defined pollution as “the introduction by man into the environment of 

substances or energy liable to cause hazards to human health, harm to living resources and 

ecological systems, damage to structure or amenity, or interference with legitimate uses of 

the environment”.  Moriarty (1988) defined a pollutant as a substance that occurs in the 

environment at least in part as a result of man’s activities, and which has a deleterious effect 

on living organisms. Thus, we can say that a serious threat to water is ‘water pollution’and 

Water pollution means anything to add water which makes water dirty and unsafe not only 

for drinking and other human uses such as swimming, irrigation, and industrial use but it also 

makes water harmful for other creatures on the Earth such as marines, animals and plants. 

There are several causes of water pollution. These causes can be classified into two 

categories: direct or point causes and indirect or nonpoint causes. Both direct and indirect 

causes can add number of strange substances in water. Examples of these substances are 
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organic, inorganic, radiological and biological. Direct or point contact is the contact in which 

the pollutant/contaminant directly enters into the water at its occurring place. On the other 

hand, the indirect (nonpoint) cause of water pollution is defines as the contact in which the 

impurity occurs elsewhere and then later on, gradually, enters into the water through natural 

means. 

To meet the increasing demand for agricultural products, it is very common across the world 

to use more sophisticated cultivation methods and chemicals, such as fertilizers and 

pesticides, to get the higher yield. Although the use of chemicals and heavy machineries has 

increased the yield beyond over beliefs, the use of these chemicals is one of main causes of 

water pollution. Agrochemicals, such as, pesticides, fertilizers, organic manure, growth 

hormones, and nutrient solution, pollute water significantly when they enter into the water 

through rains (Kurian and Natarajan, 1997). Agricultural run-off affect groundwater and 

surface water sources as they contain pesticide and fertilizer residues. Fertilizers have an 

indirect adverse impact on water resources. Indeed, by increasing the nutritional content of 

water courses, fertilizers allow organisms to proliferate. These organisms may be disease 

vectors or algae. The proliferation of algae may slow the flow in water courses, thus 

increasing the proliferation of organisms and sedimentation. Pollution by agricultural run-offs 

has too main effects on the environment. Pesticides may be responsible for poisoning. They 

are especially difficult to remove from freshwater, and thus, can be found in municipal or 

bottled water, even after conventional treatment. A study from the Center for science and 

Environment (CSE) recently drew the alarm about the concentration in pesticides such as 

organochlorines and organophosphates that was exceeding the WHO standards in almost all 

the Indian brands of bottled water (Narain, 2003). 

In spite of these well known adverse effects, and the worrying growth of fertilizer and 

pesticide use in the India agricultural sector, these products are still subsidized by the 

government. Fertilizer consumption in India has increased significantly in the last three 

decades. As per the record of FAO (2000) fertilizer use has increased from 7.7 MT (1984) -

13.4 MT (1996) - 113.40 MT (2002) - 194.57 MT (2008) - 166.29 MT (2009), almost an 

increase to a range of more than 2000%.  

Water pollution, has been increasing at an alarming rate due to rapid industrialization, 

civilization and green revolution. Urban, agricultural and industrial activities release 

xenobiotic compounds that may pollute the aquatic habitat. Industrialization and growth of 
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human population have led to a progressive deterioration in the quality of the earth’s 

environment. Schwarzenbach et al., (2006) reported that about 300 million tons of synthetic 

compounds seep annually into water systems (rivers, lakes and sea) leading to water 

pollution. Pollution of water sources due to chemicals plays a primary role in the destruction 

of ecosystems. To improve the quality of aquatic ecosystems, it is necessary to know how the 

rivers and lakes are impaired and what factors caused the environmental deterioration.  

Ecotoxicology is the science of the impact of toxic substances on living organisms, 

encompassing all levels of biological organization from single organisms to ecosystems 

(Fontanetti et al., 2010). It is a multidisciplinary field which integrates environmental 

chemistry, biochemistry, toxicology and ecology. It studies the effects of toxic chemicals on 

biological organisms, especially at the population, community, ecosystem level. 

Ecotoxicological studies are obligatory to establish that there are no unacceptable risks to the 

environment as it aids in identifying the most efficient and effective action to prevent or 

remediate any detrimental effect. This research is the basis for the development of tools that 

can be used in environmental regulation (Escher et al., 1997).  

To assess pollutant or a group of pollutants, ecotoxicologists and environmentalists have 

focused on the pollutant’s fate, persistence and toxic properties to the environment and man 

(Kroes 1988). Organic pollutants in the aquatic environment comprise a vast and ever-

increasing range of compounds, which includes polyaromatic hydrocarbons (PAHs), 

Polychlorinated Biphenyls (PCBs), dioxins, nitroaromatics, aromatic amines, 

organophosphate and organochlorine pesticides and phthalate ester plasticizers. A major 

theme in ecotoxicology today is finding the best way of achieving scientific, technical, and 

practical goals while organizing a congruent body of knowledge around rigorously tested 

explanations (Braunbeck, 1994). Considerable attention has been devoted in identifying 

various chemicals among which are commonly used pesticides and heavy metals, and 

assessing their effects on aquatic animals (Kroes, 1988). Because ecotoxicology is an applied 

science, ecotoxicologists take on different roles that are also not fully integrated. Some 

ecotoxicologists are concerned chiefly with scientific goals, that is, organizing facts around 

explanatory principles. Others focus on the technical goals, that is, developing and applying 

tools to generate high-quality information about ecotoxicological phenomena. Still others 

focus closely on resolving specific, practical problems such as assessing ecological risk due 

to a chemical exposure or the effectiveness of a proposed remediation action. The 

long‐lasting debate on the extrapolation of  laboratory‐based conclusions to natural 
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conditions may never be resolved (Kimball and Levin, 1985; Seitz and Ratte, 1991; Selck et 

al., 2002), but the importance of toxicant‐orientated, single or multiple compound tests is 

overwhelming within environmental risk assessment (Chapman, 2000; Breitholtz et al., 

2006).  

In order to verify whether a biological response does indeed occur when organisms are 

exposed, bioassays must be developed and thoroughly tested. Ultimately, inter‐calibration 

and standardization of new bioassays can be performed in order to validate their integration 

in regular surveillance monitoring and/or situation‐specific Environmental Risk Assessment 

(ERA). The goal of practical ecotoxicology is the use of existing science and technology to 

document or solve specific problems such as remediating harm done by a chemical spill. 

Much of practical ecotoxicology is currently done within the ERA framework. A retroactive 

ERA estimates the risk from an existing situation such as a contaminated site, whereas a 

predictive ERA predicts the same for a future situation such as the proposed licensing of a 

new agrochemical (Newman, 2008).  

PESTICIDES 

In the last 50 years, there has been a steady growth in the use of synthetic organic chemicals 

such as pesticides. These have considerable advantages over the natural products in that they 

are potent, selective and comparatively cheap (Connell and Miller, 1984). Among the 

pollutants, pesticides rank a very important position, since pesticides and technical organic 

chemicals comprise the most dangerous group of pollutants. It is realized that these 

substances are totally alien to aquatic organisms. Today, the use of pesticide is widespread on 

agricultural crops, rangelands, forests and wetlands and this undoubtedly exposed many 

wildlife species to chemical hazards. Many pesticides need to be resistant to environmental 

degradation so that they persist in treated areas and thus their effectiveness is enhanced.  This 

property also promoted long-term effects in natural ecosystems. The excess amounts of these 

pesticides and chemicals produce unwanted and unwarranted residues, which pose a great 

threat to aquatic organisms (Ramasamy et al., 2007). They find their ways into the fresh 

water bodies and have produced unexpected consequences on aquatic fauna. Generally water 

bodies of croplands are mostly often polluted. The pesticide concentration of water bodies 

can reach the magnitude of dozens of milligrams per liter. The levels of water pesticide 

pollution can be ranked as: cropland water > field ditch water > runoff > pond water > 

groundwater > river water > deep groundwater > sea water (Lin et al., 2000). 
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Pesticides include many specific chemical substances that can be grouped according to the 

type of pest they are intended to control. They represent artificial man-made materials, which 

are largely or entirely foreign to environment. A bewildering variety of pesticides, bought 

easily and used carelessly by farmers, are contaminating foodstuffs and posing health 

hazards, according to several surveys. Pesticides are poisons and would be expected to have 

adverse effects on any non-target organism having physiological functions common with 

those of the target that are attacked or inhibited by the pesticide. Physical, chemical and 

biological processes affect the distribution and fate of these substances in the environment. 

Such compounds are fat-soluble and are therefore readily taken up from the water, sediment 

and food sources into the tissues of aquatic organisms (Walker and Livingstone, 1992; Gil 

and Pla, 2001; Farah et al., 2004). Lipophilic nature of water-insoluble pesticides enhances 

its ability to cross the plasma membrane, when the pesticides come in contact with the 

aquatic organism. Due to their widespread distribution they have been shown to exert adverse 

effects on the associated organisms (Singh and Reddy, 1990).   

Pesticides have the potential to enter aquatic habitats from direct application, terrestrial 

runoff or wind-borne drift. Because there are thousands of different pesticides used around 

the world, data on aquatic contamination for any particular pesticide is usually quite limited. 

However, studies conducted in lentic and lotic systems have detected a variety of pesticides 

including the insecticides malathion, endosulfan and diazinon as well as the herbicides 

atrazine and glyphosate (Le Noir et al., 1999, Hayes et al., 2002; Kolpin et al., 2002 and 

Thompson et al., 2004). Interestingly, many pesticides found in aquatic systems are not 

intended or legally registered for application to aquatic systems, but they still appear (e.g. 

Thompson et al., 2004). The concentrations found in surveys of natural habitats are often 

lower than the concentrations used in experimental tests, although these surveys are typically 

snapshots in time that are not always designed to detect peak concentrations. In most cases, 

we simply lack extensive data on natural pesticide concentrations to properly evaluate the 

validity of concentrations used in experiments. Given that pesticides find their way into 

aquatic systems, the relevant question is whether they affect the species in these systems. It is 

therefore important to study a range of different biological variables in exposed and 

non‐exposed organisms, as well as a suit of additional environmental parameters, so that 

cause‐effect relationships between contamination and ecosystem response can be correctly 

established. A pesticide is any substance or mixture of substances intended for preventing, 

destroying, repelling, or mitigating any pest (insects, mites, nematodes, weeds, rats, etc.), 
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including insecticide, herbicide, fungicide, and various other substances used to control pests 

(EPA, 2009). The environmental pollution caused by pesticides in Asia, Africa, Latin 

America, the Middle East and Eastern Europe are now serious (Zhang et al., 2011), further 

the scientists have reported that globally 4.6 million tons of chemical pesticides are annually 

sprayed into the environment and that only 1% of the sprayed pesticides are effective; 99% of 

pesticides applied are released to non-target soils, water bodies and atmosphere, and finally 

absorbed by almost every organism. 

We surveyed the literature for ecotoxicological studies of pesticides in freshwater systems to 

understand the types of studies that have been conducted. As noted by Fleeger et al., (2003), 

the vast majority (80%) of aquatic toxicology studies are freshwater systems. The literature 

survey also exhibited a number of interesting patterns. For example, the number of 

ecotoxicological studies published annually has steadily increased from 1992 to 2006 with a 

large increase during the past few years. Across all years, 71% of studies have been 

conducted in lentic systems (lakes, ponds and wetlands) while 29% have been conducted in 

lotic systems (streams and rivers). Data from real-world applications of pesticides 

(Donaldson et al., 2002) indicate that herbicides were actually the most commonly used 

pesticides (52%), followed by insecticides (35%) and fungicides (13%). Relyea and 

Hoverman, (2006) in their studies have reported that of the scientists (80%) have examined a 

single pesticide with considerably fewer studies that compared different pesticides applied 

separately (8%) or mixtures of pesticides (8%). Among the single-pesticide studies, the major 

research focus has been on insecticides (65%), with a moderate focus on herbicides (33%), 

and a minor focus on fungicides (2%).  

INSECTICIDES 

The insecticides constitute a group of pollutants, both synthetic and natural, which contribute 

to the environmental problems. Continuous use of chemical inputs such as pesticides has 

resulted in damage to the environment, caused human ill-health, negatively impacted on 

agricultural production and reduced agricultural sustainability (Pimentel et al., 1992; 

Pimentel and Greiner, 1997). Fauna and flora have been adversely affected (Pimentel and 

Greiner, 1997). At present, it seems that the problem is more conspicuous in developing 

countries, where lately there has been an increase in the use of insecticides as a means of 

increasing agricultural productivity (Tilman, 2001; FAO, 2001), without much concern to the 

consequences of indiscriminate application and have been found to be highly toxic to non-

target organisms that inhabit natural environments close to agricultural fields. The main 
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environmental impacts of agriculture come from the conversion of natural ecosystems to 

agriculture, from agricultural nutrients that pollute aquatic and terrestrial habitats and 

groundwater, and from pesticides, especially bioaccumulating or persistent organic 

agricultural pollutants. Small fractions of the pesticides used in agricultural or urban settings 

end up moving with surface runoff into streams, rivers, and lakes (Clark  et al., 1999); 

leaching to the groundwater systems (Kolpin et al., 2000); or volatilizing to the atmosphere 

(Majewski et al., 2000; Foreman et al., 2000; Tilman et al., 2002). The presence of 

insecticides in the environment, due to extensive use in agriculture and their low degradation 

capacity, are of potential toxicological concern because, once these pesticides leave their 

point of use they change from being “crop-protection” and “pest control” chemicals to being 

environmental contaminants that are suspected sources of stress to aquatic plants and animals 

(Battaglin and Fairchild, 2002).  

In spite of these concerns, there has been relatively little research directed at determining the 

risk of pesticides to non-target aquatic organisms. Aquatic environments receive direct and 

indirect pesticide inputs, inevitably exposing aquatic organisms to pesticides. While 

pesticides elicit a variety of acute and chronic toxicity effects on these organisms, they also 

have the capability to accumulate, detoxify, or metabolize pesticides to some extent. 

Insecticides have been found to be highly toxic not only to fish, but also to organisms which 

constitute the food of fish (Anderson, 1960). According to WHO, the incorrect use of some 

insecticides is responsible for a great number of cases of acute poisoning, characterized by 

the development of cholinergic syndrome and multiple chronic complications, with 

neuropathy being one of the most presented symptoms. These complications are very 

important because their frequency is progressively increasing and they may go unnoticed 

(Sharom et al., 2002).  Study on the neonicotinoid insecticides would help in determining 

their fate in the environment and possible implications to biota.  The neonicotinoids are a new 

insecticide class which include the commercial products imidacloprid, acetamiprid, 

nitenpyram and thiamethoxam and are important to agriculture because of their activity 

against sucking insects and some Heteroptera, Coleoptera and Lepidoptera (Stark et al. 1995; 

Yamamoto and Casida, 1999; Suchail et al., 2000; Iwasa et al., 2004). In 2006, the 

neonicotinoid family accounted for worldwide annual sales of around $US 1.56 billion, 

representing nearly 17% of the global insecticide market (Jeschke and Nauen, 2008). Toxicity 

data for these new group of insecticides for aquatic invertebrate are far from enough 

(Tomizawa and Casida, 2003; Beketov and Liess 2008; Pestana et al., 2009; Barbee and 
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Stout, 2009; Stoughton et al., 2008; Lukancic et al., 2010; Azevedo-Pereira et al., 2011; 

Malev et al., 2012), however, very less data exists for these chemicals on non-target 

organisms, especially those inhabiting fresh water aquatic systems are either in sufficiently 

known or not reported yet.  

IMIDACLOPRID (IMI) 

Imidacloprid was first registered for use in the U.S. in 1992 and is possibly the most widely 

used insecticide of the group. It has a wide range of target pests and sites, including soil, 

seed, structural, pets, and foliar treatments in cotton, rice, cereals, peanuts, potatoes, 

vegetables, pome fruits, pecans, and turf. It is a systemic with long residual activity and 

particularly effective against sucking insects, soil insects, whiteflies, termites, turf insects, 

and   Colorado potato beetle. Products are available in dusts, granules, seed dressings as 

flowable slurry concentrates, soluble concentrates, suspension concentrates, and wettable 

powders (Fishel, 2010). 

IMI is a systemic chloronicotinyl insecticide with physical/chemical properties that allow 

residues to move into treated plants and then throughout the plant via xylem transport and 

translaminar movement (Elbert et al., 2000 and Buchholz and Nauen, 2002). It enters the 

target pest via ingestion or direct contact. Being a neonicotinoid, it acts by disrupting 

nicotinic acetylcholine receptors in the insect central nervous system. The disruption of the 

nervous systems results in modified feeding behavior, paralysis, and subsequent death of the 

insect (Mullins, 1993; Tomizawa et al., 1995; Yamamoto, 1988; Yamada et al., 1999; 

Matsuda et al., 2001; Tomizawa and Casida, 2003). 

 Many non-target beneficial arthropods such as honeybees, parasitic wasps, and predaceous 

ground beetles are sensitive to IMI ( Guez et al., 2001; Greitti et al., 2006;  Iwasa et al. 2004; 

Rortais et al., 2005; Greatti, 2006; Chauzat et al.,  2006; Kreutzweiser et al., 2008; 

Kindemba, 2009). These organisms may be adversely affected by sub-lethal doses of the 

insecticide, but the effects vary widely depending on application method and route of intake 

(Iwaya and Kagabu, 1998; Tomlin, 2002; Ding et al., 2004; Feng et al., 2004; Tan et al. 

2007; Jemec et al., 2007; Chen et al., 2010). There is a potential for stress-related sub-lethal 

effects on fish in water contaminated with IMI. Since several IMI metabolites have been 

shown to be equal or greater in toxicity than the parent compound, (Tokieda et al., 1997; 

Suchail et al. 2000) their presence in the environment should be studied.  
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The chemical is very persistent in soils and has a half-life of approximately 1,000 days, 

depending on the soil type and environmental conditions (Rouchaud et al., 1994; Baskaran et 

al., 1999).  In water IMI has a half life of more than a year, which is also dependent on 

environmental conditions (Moza et al., 1998; Wamhoff and Schneider, 1999; Malato et al., 

2001; Liu et al., 2006).  Research has shown that IMI has a high mobility in plants, and when 

used as a seed dressing becomes mobile and will migrate from the stem to the leaf tips and 

eventually into male flowers (Bonmatin et al., 2005); as a result IMI residues have been 

detected in the pollen (Bonmatin et al., 2005) and nectar (Scientific and Technical 

Committee, 2004) of a number of flowering crop plants, leading to prolonged exposure of 

non-target invertebrates to IMI. It gets degraded stepwise to the primary metabolite 6-

chloronicotinic acid, which eventually breaks down into carbon dioxide. The most important 

steps were loss of the nitro group; hydroxylation at the imidazolidine ring, hydrolysis to 6- 

chloronicotinic acid and formation of conjugates (Kagabu and Medej, 1995; Elbert et al., 

1998; Suchail et al., 2000; Schmuck, 2004; Tomlin, 2002; Kindemba, 2009). 

IMI has the molecular formula C9H10ClN5O2, with a molecular weight of 255.7 g/mol.  In 

appearance, it consists of colorless crystals.  The insecticide is quite water soluble even at the 

lowest solubility value (Krohn, 1989) and can potentially leach to groundwater (Cohen et al. 

1984) or be transported in runoff (Mulye, 1995; Kagabu, 2003). Comparative bioassay 

studies of different neonicotenoids by Yu et al., (2010), have proved that if some of the 

chemical groups are replaced then their insecticidal efficacy gets altered. Furthermore, 

CCME (2007) have also reported that as a result of differences in the formulation of the 

imidacloprid-containing product variation occurs in their toxicity. Based on the high water 

solubility of imidacloprid and its persistence, PMRA (2001) considers imidacloprid to have 

‘high’ leaching potential. However, there is evidence to suggest that, if used correctly (e.g., at 

recommended rates, without irrigation, and when heavy rainfall is not predicted), 

imidacloprid does  not characteristically  leach into the deeper soil layers despite its high 

water solubility (Rouchaud et al., 1994; Tomlin,  2000; Krohn and Hellpointner 2002).   

Toxicological studies on rats and mice and dogs have proved IMI to be moderately toxic 

(Tomizawa and Casida, 2003). Pathological studies of IMI toxicity in rats by Jain and Punia 

(2006) have reported no change in the body as well as organ weight; however 

hisopathological changes were very prominent. Response to IMI toxicity in birds has shown  

varied behavioural changes in birds like upland game birds, bobwhite quail, Japanese quail, 

red- winged blackbirds and brown-headed cowbirds Gastrointestinal distress and ataxia has 
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also been reported. Exposure to IMI has led to histopathological changes as reported by 

Kammon et al., (2010). A Hematological and biochemical change due to short-tem oral 

administration of IMI has been reported by Balani et al., (2011). Short term exposure of IMI 

has produced stress in poulty birds (Siddiqui et al., 2007). The effect of vitamin C and 

glutathione as a protective agent against the action of IMI on liver and testis has been 

reported by Omiama (2004). Micronucleus test and comet assay performed by Li-tao and his 

co-workers (2006) and Feng et al., (2004) for assessing the risks of novel pesticide IMI on 

amphibians, have proved that IMI is Genotoxic to tadpoles and frogs.  IMI has been proved to 

be moderately toxic to fish. Toxic responses of IMI has been studied by Rajput et al., (2012) 

on fresh water fish, Clarias batrachus and have reported the adverse effect of these toxicant 

on the protein profile of the fish. IMI has also been found to have profound influence in 

serum biochemical profile of fresh water fish Channa punctatus (Padma priya et al., 2012). 

In tests with the aquatic invertebrate Daphnia magna (Jemec et al., 2007) and burrowing 

shrimp (Felsot and Ruppert, 2002) have assessed the chronic IMI on biochemical, 

reproductive and survival parameter in these non target organisms.  

A review of toxicity data of IMI toxicity for terrestrial non-target organisms such as 

Mammals, birds, and amphibians as well as aquatic organisms such as fish, amphibians and 

various invertebrates presented here thereby suggests that they too are very sensitive to 

broad-spectrum neurotoxic insecticide IMI. Unfortunately, in spite of all the technical 

knowledge gathered in this area of science in recent decades, little effort has been made to 

study the toxicity of IMI insecticides to the non-target taxa particularly fresh water teleosts. 

Thus, it is important to assess the concentration at which these chemicals are toxic to 

non-target aquatic organisms. It is rational thus to select imidacloprid for the present 

study. 

FUNGICIDE 

Fungicides are either chemicals or biological agents that inhibit the growth of fungi or fungal 

spores; they also inhibit or kill fungi underlying diseases important to man. As reported by 

Lorgue et al., (1996) in France pesticides are the most common cause of animal poisoning 

(45.5%), with fungicides accounting for 6.1% of all pesticides. The two most commonly 

involved species are dogs and cattle. In 2003, 992 cases involving dogs and cats were 

confirmed as poisoning in France, and fungicides caused 2.8% of all poisonings (Barbier, 

2005). Further, as stated by Berny et al., (2009) acute fungicide poisonings was 4.4% in 129 

poisoning cases in Greece. In Italy, poisoning related with fungicides account was 8.1% of 
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pesticides in pet poisonings (Caloni et al., 2004). However, Latijnhouwers et al.,                 

(2000) is of the view that modern fungicides do not kill fungi; they simply inhibit growth for 

a period of days or weeks.  In agriculture, fungicides are used to protect tubers, fruits and 

vegetables during storage or are applied directly to ornamental plants, trees, field crops, 

cereals and turf grasses (Ortolani et al., 2004; Gupta and Aggarwal, 2007).  

The types of fungicides used in agriculture and food processing and storage range from those 

of relatively low toxicity to those, which can be lethal to animals (Oruc et al., 2009). 

Understanding mechanisms of fungicide action and toxicity is important because humans and 

domesticated animals encounter these pesticides through a wide variety of applications. Each 

year, livestock are accidentally poisoned by fungicides applied to grains, potatoes, or other 

agricultural materials. Unfortunately, most toxicity data are from model laboratory animal’s 

i.e rats, mice, and rabbits and offer little information on fresh water organisms. Therefore, it 

is valuable to be aware of several generalizations for fungicide toxicity, at the same time as 

these generalizations serves as useful guidelines, it is better to obtain detailed information for 

a specific fungicide wherever possible. Because mechanisms of action and metabolic 

clearance differ among fungicides, specific reproductive, teratogenic, mutagenic, 

carcinogenic effects or patterns of organ toxicity may manifest according to the poison 

ingested (Hayes and Laws, 1990 and U.S. Environmental Protection Agency, 1999). 

Moreover, some animals may be more susceptible to poisoning than others due to their 

physiology or behaviour. As proved by several scientists fungicides (e.g., copper sulphate, 

thiram, chlorothalonil and captan) have especially toxic effects on fish (Pimentel, 1971; 

Lorgue et al., 1996; Tomlin, 2000), and bees (Hartley and Kidd, 1983), whereas, wild birds  

were poisoned by mercurial fungicides in fields sown with treated seeds (Bartik and Piskac, 

1981). Fungicides are often used in combinations with other pesticides and carriers or 

solvents which, in combination, may be more toxic than estimated for any one of the 

compounds (Osweiler et al., 1985). Various school of thoughts have opined the importance of 

using multispecies toxicity evaluation of environmentally available compounds in particular 

when they are introduced to environment as complex mixture (Pagano, et al., 2001; 

Fernandez-Alba et al., 2002; Guidaa et al., 2008).  

CURZATE M8 (CZ) 

CZ fungicide was discovered by Dupont and is primarily used on grapes, potatoes and 

tomatoes. It is currently registered for commercial use in over 50 countries on more than 15 
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crops. It is formulated as a 72% wettable powder: 8% cymoxanil and 64% Mancozeb.It is 

yellow coloured and odourless.  Chemical name of the substance: Mancozeb is Manganese 

ethylenebisdithiocarbamate polymeric complex with zinc salt and that of Cymoxanil is 1-(2-

Cyano-2-methoxyiminoacetyl)-3-ethylurea. Cymoxanil belongs to the class of aliphatic 

nitrogen fungicides. It acts as a foliar fungicide with protective and curative action. It has 

contact and local systemic activity, and also inhibits sporulation (FAO, 2005). It was first 

introduced in 1977, it is a compound used as both a curative and preventative foliar 

fungicide, as per FRAC (2012) it belongs to a chemical group cyanoacetamideoxime and has 

categorised it to be Low to medium risk as far as toxicity is concerned and have also 

suggested that resistance management is required. Cymoxanil provides effective control of 

economically important fungal plant pathogens, which cause downy mildew and blight in a 

wide range of crops. U.S.Environmental protection agency (1998) has classified Cymoxanil 

into Toxicity Category III for oral and dermal toxicity and Toxicity Category IV for 

inhalation toxicity with skin and eye irritation potential. The studies on cymoxanil have 

shown low oral acute toxicity on rabbits (Palmer et al., 1981; Feussner et al., 1982 and 

Ponnana, 1999). The no- observable-effect-levels (NOEL) for chronic toxicity are reported in 

dogs, however, gross or histopathological effects were observed (Venugopala, 1999; 

Teunissen, 2003). The potential neurotoxicity of cymoxanil was evaluated in rats 

(Malleshappa, 2003) and mice (Krishnappa, 1999 a, b and 2002).   

Data reported in the pesticide fact sheet (EPA, 1999) cymoxanil exposure leads to myelin 

degeneration in the sciatic nerve axon of rodents, a finding that may explain the neurotoxic 

effect. It is considered to be moderate toxic to mammals. The chronic toxicity elicited by this 

compound is highly variable, since it depends on the species ranges of tested concentrations 

and the exposure period. Experimental evidence has proved the signs of intoxications in rats 

and mice bodyweight and organ alterations, reduction in food consumption, testicular 

perturbation and histopathological variations. Cymoxanil compound has showed potential 

mutagenic activity, since it induced chromosomal aberrations in Chinese hamster ovary cells 

and in human lymphocytes (Lages et al., 2009). Cymoxanil is toxic to aquatic organisms, 

such as fish and Crutaceans. Chronic ecotoxicity of this compound has been proved in 

Daphnia magna. In spite of the absence of indications that cymoxanil is environmentally 

persistant, in high partition coefficient can lead to moderate bioaccumulation by living 

organisms including humans (Soares and Calow, 1993; Grandjean et al., 1999). As reported 

by saturn agrochemicals Inc. Cymoxanil has been reported to be low toxic to birds. 
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Cymoxanil is slightly toxic to fish and other estuarine and marine organisms on an acute 

basis (Baer, 1993 a and b; Kraemer, 1996). Cymoxanil is found to be moderately toxic to 

insects (Sharma and Krishnamurthy, 1998; Turkar et al., 1998). 

Mancozeb, another constituent of CZ M8 is an Inorganic-Zinc dithiocarbamate, is a typical 

fungicide with a carbamate structure where sulphurs replace both oxygens in the amide 

functional group. It is chemically identified as ethylenebisdithiocarbamate (EBDC). It is 

available in the form of powder with yellowcolour and musty odor The poisoning caused 

with EBDC compounds cause symptoms of irritation of skin, eyes and respiratory tract, skin 

sensitization; chronic skin disease has also been observed in occupationally exposed workers. 

Mancozeb is "moderately to highly toxic to fish and aquatic invertebrate animals," (Dupoint 

de Nemours, 1983). Mancozeb 80% WP is a fungicide that inhibits the production of thyroid 

hormones (Cocco, 2002). Mancozeb exposure is associated with pathomorphological changes 

in liver, brain and kidney. It has produced significant enzymatic changes in the activities of 

various enzymes (Kackar et al., 1999). Inhibition of implantation by Mancozeb due to 

hormonal imbalance or its toxic effects has been studied (Bindali and Kaliwal, 2002). Hence, 

in the present study fungicide curzate, a combination of Cymoxanil and mancozeb was 

selected. 

Thus, from the foregoing literature survey one can be summarize that CZ is a unique 

cyanoacetamide, chemically unrelated to any other commercial disease control agent and the 

biochemical mode of action is also different. The chemical has got systemic action for 

cymoxanil and moderate persistancey for mancozeb (Roy et al., 2010). Because of its major 

metabolite ethylenethiourea , recently it has come underclose scrutiny of health protection 

agencies due to its  carcinogenic, teratogenic and goitrogenic effects in mammals (Ulland et 

al., 1972; Keppel, 1971; Das et al., 2009). These studies suggest that Mancozeb and 

Cymoxanil have been individually studied in various animal models and found to be mild to 

moderately toxic. However no studies have been recorded on CZ which is a mixture of 

Mancozeb and Cymoxanil particular with reference to fresh water teleost fish. 

Although reliable data for extrapolating toxicant effects to humans are obtained through 

laboratory rodent studies, these are expensive, time consuming, and more restricted by law 

(Hill et al., 2005). Studies involving fish in toxicology currently use these models either as 

surrogates for human health problems or as indicators of environmental health. There are 

numerous advantages for the use of fish as a toxicological model species (Spitsbergen and 
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Kent, 2003; Teraoka et al., 2003) as well as for other disciplines. This is evident by the 

increasing number of publications which have used this organism in the recent past. Perhaps 

because of their fecundity, small size, and economical maintenance and use, fish models are 

becoming well established in many laboratories (Law, 2003). A number of recent reviews 

have pointed out the advantages of fish models for laboratory-based testing (Powers, 1989; 

Bailey et.al., 1996; Bunton, 1996; Law 2001 and 2003; Winn, 2001; Kazianis and Walter 

2002).  

The presence and potential hazards of agrochemicals in the aquatic environment have 

received increased attention recently (Daughton and Ternes 1999; Kummerer 2001). It is 

widely recognized that aquatic ecosystems serve as the final sink for many chemicals, and 

that water serves as the ultimate vehicle for exposure to many toxic agents. Relatively few 

methods exist to precisely and practically assess health risks from exposure to agrochemicals 

in the aquatic environment (Winn, 2001). In fact, it was historical observations of tumors in 

wild fishes that prompted the development of carcinogenicity testing utilizing fish species in 

the laboratory (Law, 2003). Fish are generally one of the most long lived organisms in 

aquatic ecosystems. There are an increasing number of studies using fish as ecological 

sentinel species, and specific responses of these organisms as integrators of past and existing 

environmental conditions, through multimarker and multilevel of organisation approaches 

(Hill et al., 2005). 

Among animal species, fishes are the inhabitants that cannot escape from the detrimental 

effects of the pollutants (Clarkson, 1998; Dickman and Leung, 1998; Olaifa et al., 2004). 

Easy to capture and fairly easy to maintain and rear in captivity, fresh water fishes are 

remarkable indicators of aquatic ecosystem health status (Chin Sue, 2002; Maheshwari, 2005; 

Chellappa et al., 2008). In many ways, fish are not that biochemically different from 

mammals. Aquatic vertebrates appear to have very similar enzyme and receptor systems as 

humans (Evans, 1998). The National Institutes of Health recognize the zebrafish (D. reno) as 

a biomedical model to elucidate an understanding of vertebrate development and disease 

(NIH, 2002). They are the richest source of an essentially healthy diet but they are, 

endangered by diet-borne pollutants transferred along the food chain (Yanaguchi and Brenner 

1997; Nickerson et al., 2001; Andersen et al. 2000). Fish are responding to the toxicant for 

the period of acute as well as the chronic stress. The stress result in to the physiological 

changes in the body of fishes and not only that but also the behavioral and the cellular 

changes are present in the tissues of the exposed fish.  
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Fish physiology is now becoming an integral part of aquatic toxicology. The pollutants in the 

environment at sub-lethal concentrations are an important variable to which a fish respond 

physiologically. Although the amount of environmental information collected to date is 

impressive, there are still gaps in our knowledge of agrochemicals, affected organisms and 

the related environmental conditions. The qualitative and quantitative description of harmful 

toxic effects is essential for an evaluation of the potential hazard posed by a particular 

chemical. It is also valuable to understand the mechanisms responsible for the manifestations 

of toxicity, i.e. how a toxicant enters the organism, how it interacts with target molecules, 

how it exerts its effects, and how the organism deals with the exposure as this has led to a 

better understanding of fundamental physiological processes (Gregus and Klaassen, 1996). 

Such information provides the basis for interpreting the effect of a toxic substance, estimating 

the probability that a chemical will cause harmful effects, establishing procedures to prevent 

or antagonize the toxic effects, designing drugs and industrial chemicals that are less 

hazardous, and developing pesticides that are selectively toxic for their target organisms.  

Since fish have many similar enzyme and receptor systems, this potentially makes them 

susceptible to similar biochemical and physiological mechanisms of activation/inactivation. 

Because of the conservation of enzyme and receptor systems between mammals and these 

fish, chronic and target organ toxicity identified in mammalian safety assessments is likely to 

be useful in predicting the need for additional toxicity evaluation in teleosts.  

Oreochromis mossambicus (Tilapia) (Susan et al., 2010) are the most popular fish species 

which are economically important for fisheries, aquaculture, game fishing, as recreational 

aquarium fish and are also used extensively in biological, physiological and behavioural 

research (Skelton, 2001). They are a good biological model for toxicological (Casas-Solis et 

al., 2007; Giron-Perez et al., 2007 and 2008; Parthesarathy and Joseph, 2011) studies due to 

diverse characteristics, namely their high growth rates, efficiency in adapting to diverse diets, 

great resistance to diseases and handling practices, easy reproduction in capacity at prolific 

rate and finally and good tolerance to a wide range of environmental conditions (Fontainhas-

Fernandes, 1998; Kumar et al, 2011). Particularly, O.mossambicus is found in abundance in 

the rivers, lakes and have been described as a 'miracle fish' owing to their bio-economic 

advantage such as quick growth, fewer bones, tasty flesh, good market acceptance, ease of 

reproduction and adaptability to wide range of environmental features, ready acceptance to  

artificial feed, direct assimilation of blue green algae (Jhingran, 1984). It is also considered to 
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be future of aquaculture, and is nicknamed “the aquatic chicken” due to its ability to grow 

quickly with poor-quality input.  

Labeo rohita (Rohu) is an herbivorous cyprinid fish that inhabits the tropical lowland river 

systems of Pakistan, northern India, Nepal, Bangladesh and Myanmar. Rohu is considered to 

be the most important of the Indian 'major carps' and is the world's 10th highest cultured 

finfish by production volume. Approximately 1.2 million tonnes were produced in 2005 

valued at more than US$1.6 billion. The major producing countries are India, Bangladesh and 

Myanmar. Being the prime cultured species in poly-culture practices in India, it occupies a 

prominent position in the aquatic system (Das and Mukherjee, 2000; Das et al., 2009), hence 

the impact of agrochemicals on its physiological stress response of this candidate species was 

chosen for the study. Moreover, presently no work is available on the tolerance limits with 

particular reference to physiological stress of Labeo rohita. Therefore, present study was   

planned to study the sub lethal toxicity of the agrochemicals IMI and CZ M8. 

Acute toxicities have been measured for many species in variety of ecological systems and 

most of the commonly used pesticides against Rainbow trout, Blue gills, Sun fish and the 

gaps are being filled for other species, such as channel fish, some cyprinids and salmons 

(Chichester, 1965; Lockhart et al., 1973; Pandey et al., 1976; Koundinya and Ramamurthi, 

1979; Johnson and Finley, 1980; Joshi and Reg, 1980; Tilak et.al., 1980; Bakthavallhasalam 

and  Reddy 1982; Sharma et.al., 1983; Nebeker et al. 1983;  Haider and Imbaray 1986; 

Sunderam et al. 1992; Kumar and Gupta, 1997; Berrill et al. 1998; Santhakumar et al., 2000; 

You et al. 2004; Wan et al. 2005; Koprucu et al. 2006; USEPA 2002, 2007; German Federal 

Environment Agency 2007; Nwania et al., 2010; Singh et al., 2010; Zhang et al., 2010; 

Srivastava et al., 2010; Kamble et al., 2011;  Carriger et al., 2011; Barbieri and Ferreira, 

2011; Maniyar et al., 2011; Nikam et al., 2011). Alterations in the chemical composition of 

the natural aquatic environment usually affect behavioural responses of aquatic organisms 

(Radhaiah et al., 1987; Brewer et al., 2001; Lucas et al., 2002; Rao et al., 2005).  Doses of 

agrochemicals that are not high enough to kill fish are associated with subtle changes in 

behaviour and physiology that impair both survival and reproduction (Thirugnanam and 

Forgash, 1977; Subburaju and Selvarajan, 1988; Kelly et al., 1998; Scott and Sloman, 2004). 

In aquatic toxicology however, the nexus of behavioral sciences with the study of toxicants 

has only become prominent recently. Altered behavioural changes includes erratic swimming, 

fast jerky movements and convulsions which is again dose dependent (Singh and Srivastava, 

1982; Mustafa and Murad 1984; Haider and  Imbaray, 1986). Hence, the first aim of the 
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present study was to have an insight for the comparative acute toxicological profile of IMI 

and CZ M8 on O.mossambicus and L.rohita along with altered behavioural patterns 

(Chapter I). 

Agrochemicals can cause serious impairment to physiological and health status of fish. 

Therefore, biochemical tests are routine laboratory tests useful in recognizing acute or 

chronic toxicity (Banaee et al., 2008; Al-Kahtani, 2011). Blood biochemistry test indicates 

what is happening in the body of fish exposed to insecticides. When different tissues are 

injured, the damaged cells release specific enzymes into plasma and we can recognize their 

abnormality levels in blood. Agrochemical induced changes have been observed in Channa 

punctatus (Agrahari et al., 2007), Oncorhynchus mykiss (Velisek et al., 2006 a and b;  2007), 

O.mossambicus (Arockia and Mitton, 2006; Matos et al., 2007; Remia et al., 2008; Ali and 

Rani, 2009), Heteropneustes fossilis (Saha and Kaviraj, 2009), Cirrhinus mrigala  (Prashanth 

and Neelagund, 2008) Clarias batrachus (Begum, 2005; Ptnaik, 2010), Cyprinus carpio 

(Banaee et al., 2008), Oncorhynchus mykiss (Banaee et al., 2011), Colisa fasciatus (Singh et 

al., 2004)  exposed to monocrotophos, bifenthrin, carbaryl, dimethoate, cypermethrin, sevin, 

diazinon, and malathion respectively.  

Changes brought about by a stressor could be metabolic in nature, affecting molecular and 

cellular components such as enzymes or impairing functions such as metabolism, immune 

response, osmoregulation and hormonal regulation (Barton and Iwama, 1991). Biomarkers 

are defined as changes in biological responses (ranging from molecular through cellular and 

physiological responses to behavioural responses) which can be related to exposure to or 

toxic effect of environmental chemicals (Peakall, 1994). Since the interaction between 

toxicants and biomolecules is the first step in the generation of toxic effects, the 

understanding of biochemical alterations induced by the exposure of Stressor/pesticide 

contributes to the prediction of toxic effects that may occur later at higher levels of biological 

organization. Moreover, the use of biochemical biomarkers allow early interventions with the 

objective of protecting wild populations exposed to chemical agents (George, 1994; 

Newman, 1998; van der Oost et al., 2003; Sanchez et al., 2008; Dong et al., 2009; Haluzova 

et al., 2011). 

Several studies have shown that changes in fish energy metabolism may occur to overcome 

toxic stress. In fact, under chemical stress the attempt to enhance the supply of energy from 

anaerobic sources may be essential (Begum and Vijayaraghavan, 1999). Moreover, organic 
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compounds that interfere with the aerobic metabolic pathway altering the mitochondrial 

structure and causing disturbances on enzymatic activities and metabolites may lead to 

impaired levels of energy metabolism (Nath, 2000). The response is characterized by a switch 

from an anabolic to a catabolic state. Thereby providing the fish with the necessary resources 

to avoid or overcome the immediate threat, and has evolved as an adaptive response to short-

term or acute, stresses. Biochemical constituents and certain enzymes have been explored as 

potential biomarkers for a variety of different organism because these parameters are highly 

sensitive and conserved between species and are less variable (Yang and Chen, 2003; Barata 

et al., 2004; Kalender et al., 2005; Gupta and Aggarwal, 2007; Sreenivasan et al. 2011; Narra 

et al. 2011).  

Biomarkers using aquatic species are important for detecting stressor components such as the 

presence of pollutants and changes in environmental factors. Enzymes activities are 

considered as sensitive biochemical indicators before hazardous effect occur in fish and are 

important parameters for testing water and the presence of toxicants. Such a biochemical 

approach has been advocated to provide an early warning of potentially damaging changes in 

stressed fish (Patil and David, 2008; Montagna and Collins, 2007 and 2008; Narra et al., 

2011). Enzymes are attractive as indicators because they are more easily qualified than other 

indicators, such as changes in behaviour. The tissue specific response depends upon the 

metabolic requirements of the tissue in question.  

The analysis of metabolites and marker enzymes such as protein, lipid, glycogen, cholesterol, 

lactate dehydrogenase (LDH), transaminases (AST and ALT) and phosphatises (ALP) serves 

as specific indications of water-pollution-induced changes activity of fish (Ramachandra 

2000; Tilak et al, 2001; Prashanth et al., 2005; Sarkar et al. 2005; Dobsikova et al., 2006; 

Velisek et al. 2006a, b, 2007; Reddy et al., 2011 a and b). In view of the above, and 

considering the lack of knowledge about the toxic potential of the insecticide IMI and the 

Fungicide CZ on fresh water fishes O.mossambicus and L.rohita and the growing use of 

this agrochemicals, the second objective of the present work was to evaluate its effects on 

hematological and biochemical parameters of teleosts (Chapter II and III). 

Homeostasis refers to the state of an organism in which its internal environment is maintained 

in a stable and constant condition. The physiological processes that maintain this equilibrium 

form a complex and dynamic system. The maintenance of homeostasis is critical to sustain 

life and changes in the environment can represent a threat to this equilibrium (Charmandari et 
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al., 2005), and can lead to an array of physiological responses often referred to as stress 

response. Stress responses occur in all animals when regulated physiological systems are 

extended beyond their normal range by external stressors. Failure of all or part of the 

integrated homeostatic response may lead to increasing physiological disturbance and 

ultimately death. Indicators of such stress responses are therefore useful in assessing the 

short-term well-being or long-term health status of an animal and such indicators have 

received considerable attention in commercially important aquatic organisms (Roche and 

Boge, 1996; Paterson and Spanoghe, 1997; Vijayan et al., 1997; Barton, 2002; Iwama et al., 

2004; Urbiati et al., 2004). 

A “stressor” is a stimulus that acts on a biological system and a “stress response” is the 

animal’s reaction to the stimulus (Pickering, 1981 and Barton, 2002). According to the 

general adaptation syndrome, a stress response consists of three stages: alarm, resistance, and 

exhaustion (Pickering, 1981). A lethal stressor exhausts an animal’s ability to resist and adapt 

(Wedemeyer and McLeay, 1981). Sub-lethal stressors do not exhaust, but the energy used for 

resistance decreases energy availability for growth, immune function, and adaptation to other 

stressors (Wedemeyer and McLeay, 1981). An acute stress response occurs when the stress is 

removed before the animal has time to compensate and develop a resistance mechanism 

(Maule and Schreck, 1990). The stress response is a suite of physiological adjustments that 

allows an organism to regain homeostasis when it is challenged or threatened by stressors, 

including toxic compounds (Chrousos, 1998). 

The responses to stressors are divided into primary, secondary and tertiary responses. primary 

response is neuroendocrine and is the result of a stimulation of the hypothalamic-chromaffin 

axis and the hypothalamic-pituitary interrenal (HPI) axis (Hontela 1997 and 1998; Stocco, 

2000; Walsh et al. 2000). In response to stress two main classes of hormones, catecholamines 

and corticosteroids are released by the chromaffin and interrenal cells respectively 

(Wendelaar-Bonga, 1997), these primary responses may stimulate secondary responses such 

as increase in circulating red blood cell number (Perry et al., 2005.) and in plasma glucose 

concentration (Alwan et. al., 2009). These responses are typically of short duration 

(Wendelaar-Bonga, 1997). However, the stress response may persist, such as during extended 

contaminant exposures (Bennett and Wolke, 2004).With extended contaminant exposures, 

secondary stress responses may give rise to tertiary stress responses that will be detrimental 

to the organism’s survival and reproduction. Tertiary responses extend to the level of the 

organism and population leading to inhibition of growth, reproduction, immune response and 
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reduce capacity to tolerate subsequent or additional stressors. Of the three stages of stress, the 

primary and secondary stages are perhaps the easiest to monitor in the laboratory.  

The hypothalamic–pituitary interrenal (HPI) axis is responsible for releasing corticosteroids 

and catecholamines in response to a stressor. Cortisol is the major corticosteroid in teleost 

fish and most mammals (Hontela, 1997). Cortisol regulates its own production through a 

negative feedback loop by altering ATCH secretion at the pituitary and hypothalamus 

(Hontela, 1998). Cortisol affects a variety of systems that regulate homeostasis. It can induce 

metallothioneines to sequester metals (Hyliner et al., 1989), stimulate protein degradation 

(Freeman and Idler, 1973), increase mobilization of liver glycogen reserves, increase plasma 

glucose, increase Na+/K+ATPase activity (Shrimpton and McCormick, 1999), suppress the 

immune system, suppress maturation, and suppress sex steroid secretion (Carragher and 

Sumpter, 1990; Hontela, 1997). The stress response can also be affected by a number of other 

factors, including diurnal secretion cycles, temperature, background color, light wavelength, 

nutritional state, and disease (Gilham and Baker, 1985; Barton, 2002). Finally, multiple 

stressors can act in a synergistic fashion and a previous stressor may influence the response to 

a new stressor (Barton, 2002). Plethora of investigations has proved the fact that the HPI axis 

gets altered due to stressor either in the form of a pollutant or a pesticide (Donaldson, 1981; 

Shrimpton and Randall 1994; Wood et al., 1996; Hontela, 1997; McCormick, 1998; Bisson 

and Hontela, 2002; Levesque et al., 2002).  

Oxidative stress, or the cellular damage from reactive oxygen species (ROS), occurs when 

ROS production exceeds cellular defense mechanisms. This happens if there is a sudden 

increase in ROS production, impairment of cellular defenses, or a failure to repair ROS 

damage (Halliwell, 1987; Packer, 1991; Dorval and Hontela, 2003; Oakes et al., 2004; 

Palace, et al., 2004). Parameters associated with oxidative stress are being investigated as 

early oxidative stress biomarkers allowing contaminant effects to be documented before 

population declines are observed. ROS are generated in several different ways. They are 

intermediates in the cellular respiration pathway and approximately 5% escape (Kelly et al., 

1998), they are the byproducts of oxidizing enzymes (Livingstone, 2001) and are involved in 

phagocytosis (Winston and Di Giulio, 1991). Additionally, ROS production may be enhanced 

by redox cycling of xenobiotics. ROS have many useful roles in biological systems as they 

act as cytotoxic agents against pathogens, as neurotransmitters, and transcription factors 

(Kelly et al., 1998); however, when ROS accumulate they cause serious damage to cell 
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components and subsequently cell function (Matta, 1995; Wilhelm-Filho et al., 2001; Elia et 

al., 2003; Shen and Liu, 2006; Langiano et al., 2008; Nwania et al., 2010).  

ROS damage lipids, proteins, and DNA. Reaction of ROS with lipids results in a process 

called lipid peroxidation (LPO). LPO causes structural damage affecting membrane 

permeability and fluidity (Kelly et al., 1998). Tissues with more polyunsaturated fatty acids 

are more vulnerable to LPO (Livingstone, 2001; Oakes et al., 2003; Oakes and Van Der 

Kraak, 2004; Parvez and Raisuddin, 2005; Puangkaew et al., 2005; Atif et al., 2005; Ganguly 

et al., 2010; Farombi et al., 2008)  

There are various cellular mechanisms to remove excess ROS and avoid oxidative damage. 

Increased ROS production may be associated with the metabolism of a stressor/pesticide 

leading to the peroxidation of membrane lipids of the important metabolic or excretory 

organs. The liver is noted as site of multiple oxidative reactions and maximal free radical 

generation (Gul et al., 2004; Avci et al., 2005; Atli et al., 2006) 

To go over the main points the oxidative stress defenses is taken care by the markers which 

includes enzymes and scavengers. Enzymatic defenses include glutathione peroxidase (GPx), 

catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) (Jakoby and 

Habig, 1980; George, 1994; Yang et al., 2000; Roberts and Oris, 2004; Sanchez et al., 2008; 

Haluzova et al., 2011). Reduced glutathione (GSH) and ascorbic acid is the most important 

antioxidant found in the extracellular fluid (Sies and Stahl, 1995). It is water soluble and 

scavenges a number of different ROS including thiol radicals generated during xenobiotic 

reduction (Palozza and Krinsky, 1992; Kelly et al., 1998; Palace et al., 1999). The 

scavenging and enzymatic antioxidants are linked in many ways. Often if one is deficient, 

others increase to compensate (Puangkaew et al., 2005).  

Recently there has been an explosion of research linking oxidative stress parameters and 

exposure to contaminants. Pesticidese induced lipid peroxidation has already been described 

for various fish species (Orbea et al., 2002; Sevgiler et al., 2005; Glusczak et al., 2006 and 

2007; Modesto and Martinez, 2010). Therefore, both the activity of antioxidant enzymes and 

the occurrence of oxidative damage have been proposed as indicators of pollutant-mediated 

oxidative stress (Ahmad et al., 2000; Li et al., 2003). All the antioxidant enzymes and 

scavengers work together to protect the fish from oxidative stress, hence, after having the 

altered biochemical profile on the exposure of the agrochemicals on the fishes the next 
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target was to investigate the probable mechanism involved in the defense response of 

O.mossambicus and L.rohita on exposure of the Agro-chemicals.(Chapter IV).  

Other than biochemical biomarker, Organo-somatic indices are useful indicators of general 

organ and fish health; these indices have been used extensively in fish health and population 

assessment as a first level screen to determine possible contaminant exposures (Slooff et al., 

1983; Larsson et al., 1984; Goede and Brton, 1990; Schmitt and Dethloff, 2000; Ghosha et 

al., 2006). These parameters are sensitive of specific, and are affected by non-pollutant 

factors (Van der Oost et al., 2003). Organo-somatic indices thus serve as an initial screening 

biomarker to indicate exposure and effects (Mayer et al., 1992). The condition factor and 

organo-somatic indices used in the present study are: hepato-somatic index (HSI), spleno-

somatic index (SSI) and gonadal-somatic index (GSI) along with their histomorphological 

alterations.(Chapter V) 

 

The application of ecotoxicological studies on non-mammalian vertebrates is rapidly 

expanding; and for aquatic system, fish have become valuable indicator for the evaluation of 

the effects of noxious compounds (Khidr and Mekkawy, 2008). Histology and histopathology 

can be used as biomonitoring tools for health in toxicity studies (Schwaiger et al., 1997; 

Meyers and Hendricks, 1985). Histopathological alterations are biomarkers of effect exposure 

to environmental stressors, revealing alterations in physiological and biochemical function 

(Hinton et al., 1992). Histopathology, the study of lesions or abnormalities on cellular and 

tissue levels is useful tool for assessing the degree of pollution, particularly for sub lethal and 

chronic effects (Heath, 1995 and Teh et al., 1997; Bernet et al., 1999; Das and Mokherjee, 

2000; Cengiz et al., 2001; Cengiz and Unlu, 2002; Adeyemo, 2008). Due to residual effects 

of pesticides, important organs like the kidney, liver, gill are the first organs to be damaged 

(Rahman et al., 2002). Many authors have recorded and observed histological abnormalities 

in gills, liver and kidney for fishes contaminated by pesticides. (Hinton and lauren, 1990; 

Ahel et al., 1993; Alazemi et al., 1996; Lewis and Lech, 1996; Coldham et al., 1998; 

Visoottiseth et al., 1999; Das and Mukherjee, 2000;  Malik and Hodgson, 2002; Parashar and 

Banerjee, 2002; Velmurugan et al., 2007; Camargo et al., 2007; Garcia-Santos et al., 2007; 

Marchand et al., 2008; Mohamed, 2009). From the above reported studies one can 

understand that the organosomatic alteration in the agrochemical exposed fish can 

supplement and help in understanding and co-relating the results of the 

histomorphological alterations in the agrochemical exposed teleost fish (Chapter VI). 
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Chapter I 
 

Behavioural responses to acute exposure of Imidacloprid and Curzate on 

Oeochromis mossambicus (peters, 1852)and Labeo rohita (Hamilton, 1822) 

 

Agrochemicals, such as, pesticides, fertilizers, organic manure, growth hormones, and 

nutrient solution, pollute water significantly when they enter into the water through run off 

(Kurian and Natarajan, 1997). Agricultural run-off affect groundwater and surface water 

sources as they contain pesticide and fertilizer residues. Pollution by agricultural run-offs has 

too many effects on the environment. Most of the agrochemicals/Pesticides are not readily 

degradable and remain in water for a considerable period adversely affecting fishes and other 

aquatic animals (Ramaswamy et al., 2007).  They have the potential to enter aquatic habitats 

from direct application, terrestrial runoff or wind-borne drift. The aquatic pollution caused by 

agrochemicals/pesticides in Asia, Africa, Latin America, the Middle East and Eastern Europe 

are now serious, further the scientists have reported that globally 4.6 million tons of chemical 

pesticides are annually sprayed into the environment and that only 1% of the sprayed 

pesticides are effective; 99% of pesticides applied are released to non-target soils, water 

bodies and atmosphere, and finally absorbed by almost every organism (Zhang et al., 2011).  

Since there are thousands of different pesticides used around the world, data on aquatic 

contamination for any particular pesticide is usually quite limited. Studies conducted in lentic 

and lotic systems have detected a variety of pesticides including the insecticides malathion, 

endosulfan and diazinon as well as the herbicides atrazine and glyphosate (LeNoir et al., 

1999; Hayes et al., 2002; Kolpin et al., 2002; Thompson et al., 2004). Considerable 

information is available on the toxicity of these compounds and chemicals to various aquatic 

organisms worldwide (Henderson et al., 1959, Verma et al., 1980; Nebeker et al., 1983; 

Haider and Imbaray, 1986; Sunderam et al., 1992; Berrill et al. 1998; Wan et al., 2005; 

USEPA, 2002b, 2007) but very little work has been done in India to evaluate the acute 

toxicity by bioassay on freshwater fishes.  

Acute aquatic toxicity represents the intrinsic property of a substance to be injurious to an 

organism in a short-term exposure to that substance. Static acute toxicity tests provide rapid 
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and reproducible concentration-response curves for estimating toxic effects of chemicals on 

aquatic organisms (Casarez, 2001; Yuill and Miller, 2008). With the help of these tests the 

relative toxicity of large number of chemicals present in the natural aquatic systems due to 

variety of chemical spills can be determined. There is a vigorous documentation of the use of 

acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic 

organisms (Boyd, 1957; Henderson et al., 1960; Sanders and Cope, 1966; Macek and 

McAllister, 1970; Brack et al., 2002; Diez et al., 2002).  

Nikam et al., (2011) in their studies have mentioned that the acute toxicity study is essential 

to find out toxicants limit and safe concentration, so that there will be minimum harm to 

aquatic fauna. Among the several aspects of toxicity studies, the bioassay constitutes one of 

the most commonly used methods in aquatic environmental studies with suitable organisms. 

The necessity of determining the toxicity of substances to commercially aquatic forms at the 

lower level of the food chain has been useful and accepted for water quality management. 

Several studies have been conducted in assessing the toxicity of pesticide to the aquatic biota 

especially fishes (Verma et al., 1982; Ravikrishnan et al., 1997; Vasait and Patil, 2005; Susan 

et al., 2010).  

Acute toxicity is expressed as the median lethal concentration (LC50) that is the concentration 

in water which kills 50% of a test batch of fish within a continuous period of exposure which 

must be stated (Amweg and Weston, 2005).The application of the LC50 has gained 

acceptance among toxicologists and is generally the most highly rated test of assessing 

potential adverse effects of chemical contaminants to aquatic life (Brando et al., 1992;  

Kumar, 2004; Fagr et al., 2008; Gad and Saad, 2008; Khayatzadeh and  Abbasi, 2010). The 

use of 96-h, LC50 has been widely recommended as a preliminary step in toxicological 

studies on fishes (McLeay, 1976; Whittle and Flood, 1977;  Reish and Oshida, 1987; Ardali, 

1990; Chapman, 2000; Ali and SreeKrishnan, 2001; ASTM, 2002; USEPA, 2005; APHA, 

1998, 2005; Parrott et al., 2006; Moreira-Santos et al., 2008).   LC50 is customary to represent 

the lethality of a toxicant to a test species in terms of lethal concentration (for aquatic 

animals) and lethal dose (for terrestrial animal). It is always expressed in terms of g or mg/kg 

body weight of the animal and lethal concentrations (LC) in terms of Parts/million (ppm) or 

parts/billion (ppb) or milligram/liter (mg/L). The relationship between the concentration of an 

environmental toxicant and its lethal effects on living organisms is often a sigmoid curve. 
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Probit analysis is a parametric statistical procedure for making the sigmoidal response curve 

into a straight line so that an LC50 can be calculated and the associated 95% confidence 

interval can be calculated (Finney, 1978; Hahn and Soyer, 2008). 

Mortality is obviously not the only end point to consider and there is growing interest in the 

development of behavioural markers to assess the lethal effects of toxicants. Abnormal 

behaviour is one of the most conspicuous endpoints produced by these toxicants, but until 

recently it has been under used by ecotoxicologists (Little and Brewer, 2001; Dell’Omo, 

2002; Gerhardt, 2007; Hellou, 2011). Amiard-Triquet (2009) states that “bridging the gap 

between early, sensitive responses to stress at the infra-organismal levels and the long-term, 

ecologically relevant responses at the supra-organismal levels is a challenge for a better 

assessment of the ecological status of our environment.”   Behavioral ecotoxicology provides, 

according to her, an approach that clearly links disturbances at the biochemical level to 

effects at the population level either in a direct or indirect way. She notes that “Because 

behavioural disturbances may be observed in aquatic biota at concentrations of contaminants 

that can exist in the field, the sensitivity of these responses can allow improving 

environmental risk assessment.” Therefore, she recommends “to use behavioural biomarkers, 

associated to biochemical and physiological markers in carefully selected species that are 

key-species in the structure and functioning of ecosystems because impairments of their 

responses, used as biomarkers, will reveal a risk of cascading deleterious effects at the 

community and ecosystem levels.”  

Thus, behaviour can be considered as a promising tool in ecotoxicology (Little and Brewer, 

2001). Behaviour is both a sequence of quantifiable actions, operating through the central and 

peripheral nervous systems (Baatrup, 2009; Gravato and Guilhermino, 2009), and the 

cumulative manifestation of genetic, biochemical, and physiologic processes essential to life, 

such as feeding, reproduction and predator avoidance (Smith and Weis, 1997; Grue et al., 

2002; Perez and Wallace, 2004; Riddell et al., 2005; Moreira et al., 2006). It allows an 

organism to adjust to external and internal stimuli in order to best meet the challenge of 

surviving in a changing environment.   

Fish are ideal sentinels for behavioral assays of various stressors and toxic chemical exposure 

due to their constant, direct contact with the aquatic environment where chemical exposure 
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occurs over the entire body surface, ecological relevance in any natural systems (Little et al., 

1993; Velmurugan et al., 2006; Omitoyin, 2007), ease of culture, ability to come into 

reproductive readiness (Henry and Atchison, 1986), and long history of use in behavioral 

toxicology. The behavioural patterns vary widely with different species of fish and exposure 

conditions. Fishes exposed to toxicants undergo stress, which is a state of re-established 

homeostasis, a complex suite of mal-adaptive responses (Chrousos, 1998). Fishes in a 

contaminated environment show some altered behavioural patterns which may include 

avoidance, locomotor activity and aggression and these may be attempts by the fish to escape 

or adjust to the stress condition (Morgan et al., 199 and Gormley et al., 2003). Avoidance and 

attractance behaviour in fish has proven to be an easy and realistic behavioural endpoint of 

exposure.  

Moreover from the past 50 years the utility of avoidance behavior has been demonstrated an 

indicator of sublethal toxic exposure (Tiwari and Singh, 2004; Chindah et al., 2004; 

Bobmanuel et al., 2006; Gabriel et al., 2009). Avoidance behaviour is a fusion of many 

behaviours that may culminate in a single endpoint (Little and Brewer, 2001). A group of 

scientists (Kleerekoper et al., 1972; Brewer et al., 1999; Allin and Wilson, 2000; Kwak et al., 

2002) have demonstrated alterations in swimming behaviours due to sublethal metal and 

pesticide exposures.These alterations in the swimming behaviours results in an increase in the 

expenditure of energy (Venkata Rathnamma et al., 2008), which may result in hyperactivity.  

Similar behaviour had been observed in  Channa striatus  (Yadav, et al., 2007), and in 

Clarias gariepinus, Heterobranchus bidorsalis and their hybrid (Ekweozor et al., 2001; 

Bobmanuel et al., 2006; Inodi et al., 2010) exposed to toxicant showed hyperactivity 

characterized by linear movement, jumping, opercular and tail beat frequencies, distance 

movements and somersaulting depending on the concentrations. 

A change in respiration rate is one of the common physiological responses to toxicants and is 

easily detectable through opercular beat frequency. Respiration is a rhythmic neuromuscular 

sequence regulated by an endogenous biofeedback loop as well as by external environmental 

stimuli which in turn will induce reflexive cough and gill purge responses to clear the 

opercular chamber leading to increase in rate and amplitude of the respiratory cycle (Magare 

and Patil, 2000; Katja et al., 2005; Patil and David, 2008). Thus the relative changes in the 

respiratory frequency and cough frequency can be measured to study the effect of the external 
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change in the environment on restrained sentinel fish. These systems have the great 

advantage of sensitivity since many waterborne stressors, even at low environmental 

concentrations; affect gill tissue and respiratory function. 

In the behavioural study various scientists have studied the effects of different toxicants on 

the fishes taking into consideration opercular beat frequency (OBF) and tail beat frequency 

(TBF).  Alterations in TBF and OBF may be associated with sudden response of the fish to 

the shock of exposure to the agro-chemical (Chindah et al., 2004). This behaviour may be an 

adjustment of the internal homeostatic of the fish to the stress imposed by the toxicant 

(Perkins and Schlenk, 2005; Ujagwung et al., 2010). 

Series of studies has been conducted on fingerlings (Ugwemorudong and Sunday. (2010) and 

adult fish (Kidd and James, 1991; Santhakumar et al., 2000; Battaglin and Fairchild, 2002; 

Chindah et al., 2004; Prasanth et al., 2005; Ujagwung et al., 2010; Parikh et al., 2010; Singh 

et al., 2010; Srivastava et al., 2010; Zhang et al., 2010; Barbieri and Ferreira, 2011; Maniyar 

et al., 2011) with a variety of pesticides. Perusal of literature reveals paucity of information 

on acute toxicity of IMI and CZ on freshwater fish, Oreochromis mossambicus and Labeo 

rohita. Hence, keeping in mind the importance of the acute toxicity as well as the behavioral 

responses, the present study has been focused to evaluate the acute toxic effects on mortality 

and behaviour of freshwater teleosts fish. 
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Materials and Methods: 

Collection and maintenance of experimental animals: 

Two freshwater teleosts, O. mossambicus and L. rohita of similar size in length and weight 

(12 ± 2 cm; 25 ± 1.9 g) and (25 ± 3 cm; 110 ± 5 g) respectively were brought from a local 

pond of Baroda district. Animals were transported to laboratory in large aerated plastic 

container and were acclimatized in glass aquaria containing 50 liter of well aerated 

dechlorinated tap water (with physic-chemical characteristics: pH 6.5- 7.5, temperature 

25±3ºC and dissolved oxygen content of 7-8ppm) for ten days. During an acclimation period 

of 10 days, the fish were kept under natural photoperiod and fed two times a day (10:00 and 

16:00h) with commercial pelleted diet. The acclimatized healthy fishes of both sexes were 

selected randomly for the studies 

Preparation of the Agrochemicals: Two agrochemicals were selected for the present study 

which were procured from DuPont™, Vadodara. 

1. Imidacloprid (IMI) with the chemical name 1-(6-chloro-3-pyridil methyl)–N-

Nitroimidazolidin-2-ylideneamine-Triazole-1-yl–2–butanone) as an active ingredient, 

a systemic insecticide which is a water and fat soluble. Solution of IMI was made by 

dissolving in the preheated (20 ºC) water.  

2. Curzate® M8 (CZ) a mixture of Cymoxanil 8% with a chemical name 1-(2-Cyano-2-

methoxyiminoacetyl)-3-ethylurea + Mancozeb 64% with a chemical name Manganese 

ethylenebisdithiocarbamate polymeric complex with zinc salt is a fungicide available 

in the form of wettable powder hence easily dispersible in water. Solution of CZ  was 

prepared by directly dissolving it in water.  

Experimental protocol for LC50 determination: 

Acute 96-h static bioassay was conducted in the laboratory following the methods of Sprague 

(1975) and APHA (1985). The acute fish bioassay experiments for 24, 48, 72 and 96 hours 

were conducted. Concentrations of the test compounds used in short term definitive tests 

were between the lowest concentration for IMI (0.55 mg/L for O. mossambicus and 0.79 for 

L. rohita) and for CZ (36.0 mg/L for O. mossambicus and 46.0 for L. rohita) at which there 

was no mortality , and the highest concentration for IMI (0.95 mg/L for O. mossambicus and 
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0.88 for L. rohita) and for CZ  (46.0 mg/L for O. mossambicus and 55.0 for L. rohita) at 

which there was 100% mortality in the range finding tests.  

To determine the 96-h LC50, for each concentration, ten fishes were used in 50-L containers. 

Three replicates were used for each concentration. During experimentation fishes were kept 

deprived of the feed. The aquaria were kept closed to avoid the effect from sunlight. The 

mortality of the fishes at 96- hr were recorded and the  behavioural response to each dose of 

each test chemical was also observed twice in the day. 

Statistical Analysis: 

Probit analysis (Finney, 1971) was used to calculate the median lethal concentration and time 

with their upper and lower confident limits. 

Toxicity data obtained as the 50% mortality endpoint were converted into toxic units (Tu) by 

the following formula: Tu = [1/LC50] × 100 (Michniewicz et al., 2000) and were 

characterized according to the categorization proposed by Isidori et al., (2000). 

 

Data of Behavioural changes for OBF and TBF were subjected to analysis of variance 

(ANOVA) for difference between means of both the groups using statistical programme 

(Biostat 2009 Professional 5.8.1 and Graphpad Prism 5). Other abnormal behaviours were 

noted and the extent of mucus production on the skin and gills of exposed fish was assessed 

by feeling with the fingers. Opercular beat frequency (OBF), tail beat frequency (TBF) and 

cumulative mortality was recorded. A fish was considered dead when it failed to respond to 

simple prodding with a glass rod. Death was defined as complete immobility with no flexion 

of the abdomen upon forced extensions (Lockwood, 1976). 
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Results 

The mortality of fish increased with the increase in the concentration of the toxicant, 

depicting a direct correlation between the mortality and the concentration (Fig. 1.1 and 1.2). 

The 96 hrs LC50 values along with its 95% lower and upper confidential limits (LCL and 

UCL) for IMI and CZ agrochemical are presented in Table 1.1 and 1.2.  

The probit analysis (Fig. 1.1 and 1.2) revealed the fact that the LC50 value for L. rohita 

(0.8536 – IMI, 51.2689 – CZ) was much higher than O. mossambicus (0.7319 – IMI, 39.84 – 

CZ) for both the agrochemicals. The corresponding toxic units are shown in Table 1.1 and 1.2 

for O.mossambicus and L.rohita. Toxic unit results for the IMI and CZ raveled that 

O.mossambicus  possess more sensitivity than L.rohita.  

Behavioural responses were found changed on exposure to the agrochemicals, IMI and CZ. 

In control group, fishes showed a tight school covering the part of bottom of the tank. They 

were found in well-coordinated manner and were alert to the slightest disturbances. When 

exposed to pesticides, the shoal was observed as disturbed. Fishes were initially surfaced, 

followed by vigorous and erratic swimming showing agitation. Quick opercular and fin 

movements were observed initially and gradually became feeble and often showed gulping of 

air. Excess secretion of mucus was a prominent observation. Opercular opening became 

wider and exhibited respiratory distress. As the period of exposure increased, fishes were 

found to settle down to bottom and towards the final phase of exposure, fishes showed barrel-

rolling indicating loss of equilibrium. Swimming with belly upwards and gradually became 

lethargic. Excess mucous was produced during intoxication.  
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Table 1.1 LC50 values (mg/L) of acute toxicity tests and corresponding Toxic unit value 

for Oreochromis mossambicus 
 

Agrochemical Application Duration LCL LC50 UCL Tu 

Imidacloprid Insecticide 48 hrs 0.6896 0.7319 0.7742 136.63 

Curzate Fungicide 48 hrs 38.67 39.84 40.78 2.51 

Note: 

LCL = Lower Confidence Limit 

UCL = Upper Confidence Limit 

LC50 = Lethal Concentration for 50 percent of the exposed fish 

Tu = Toxic unit mg/L 

 

 

 

Fig. 1.1 Plot of adjusted probits and predicted regression line for three agro-chemicals 

to Oreochromismossambicus 
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Table 1.2 LC50 values (mg/L) with their fiducial limits used in acute toxicity tests and 

corresponding Toxic unit value for Labeo rohita 

Agrochemical Application Duration LCL LC50 UCL Tu 

Imidacloprid Insecticide 48 hrs 0.8536 0.840 0.8292 119.05 

Curzate Fungicide 48 hrs 52.2689 51.048 50.0976 1.96 

Note: 

LCL = Lower Confidence Limit 

UCL = Upper Confidence Limit 

LC50 = Lethal Concentration for 50 percent of the exposed fish 

Tu = Toxic unit mg/L 

 

 

 

Fig. 1.2 Plot of adjusted probits and predicted regression line for three agro-chemicals 

to Labeo rohita 
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Fig. 1.4 Graphs showing alterations in TBF of Oreochromis mossabicus on exposure of 

IMI and CZ 
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Fig. 1.5 Graphs showing alterations in OBF of Oreochromis mossabicus on exposure of 

IMI and CZ 
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Fig. 1.6 Graphs showing alterations in TBF of L.rohita on exposure of IMI and CZ 
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Fig. 1.7 Graphs showing alterations in OBF of Labeo rohita on exposure of IMI and CZ 
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Discussion: 

Fish mortality due to pesticide exposure mainly depends upon its sensitivity to the toxicants, 

its concentration and duration of exposure (Kamble et al., 2011). The evaluation of LC50 

concentration of pollutants is an important step before carrying out further studies on 

physiological changes in animals.  The percent survival rate of the fish decreased with 

increasing concentration and period of exposure. In present probe, acute toxicity test shows a 

relationship between the length of exposure period and concentration of pesticide.  The LC50 

values of the fish decreased gradually as the exposure period goes on increasing.  

The acute toxicity data provides useful information to identify the mode of action of a 

substance and also help to comparison of dose response among different chemicals. In the 

present studies no fish died during the acclimation period before exposure, and there was no 

dead fish in control aquaria during acute toxicity tests.  The 96-h LC 50 tests are conducted to 

measure the vulnerability and survival potential of organisms to particular toxic chemical. 

The mortality of fish increased with the increase in the concentration of the toxicant, 

depicting a direct correlation between the mortality and the concentration (Fig. I and II). The 

96 hrs LC50 values along with its 95% lower and upper confidential limits (LCL and UCL) 

for IMI and CZ agrochemical are presented in Table - I and II.  

The probit analysis (Fig. - I and II) revealed the fact that the LC50 value for L. rohita (0.8536 

– IMI, 51.2689 – CZ) was much higher than O. mossambicus (0.7319 – IMI, 39.84 – CZ) for 

both the agrochemicals. It is evident from the result that CZ is less toxic than IMI. The 

toxicity of IMI and CZ LC50 for freshwater fishes when compared, revealed the fact that O. 

mossambicus was more sensitive to both the agrochemicals than L. rohita.  

According to the toxic units, the substances are characterized from “very toxic” to “extremely 

toxic” (Isidori et al., 2000). In the present study the categorization of the agro-chemicals 

revealed that O.mossambicus was more responsive compared to L. rohita.   

In order to categorize the samples according to the results from the toxicity tests, the values 

of LC50 were converted to toxic units (TU). Table 1.1 and 1.2 indicates high toxicity levels of 

IMI than that of CZ, which reveals the high sensitivity of O. mossambicus compared to L. 

rohita. Substances with lower LC50 values are more toxic because lower concentrations 

results 50% of mortality in organisms which points to the fact that O. mossambicus was more 
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responsive compared to L. rohita. These results are in line with those from a previous related 

work on hazardous wastes (Clement et al., 1996; Isidori et al., 2003; Pablos et al., 2009; 

Bortolotto et al., 2009). The toxicity categorization was established using toxic unit ranges 

(highly toxic (TU > 100); very toxic (10 < TU < 100); toxic (1 < TU < 10); and no toxic (TU 

< 1) (Pablos et al., 2011). Accordingly IMI can be categorized to be highly toxic and curza to 

be toxic. The results of the present work appear to agree with previous acute studies for IMI 

performed by Bowman and Bucksath (1990) and Grau (1988) on Bluegill (Lepomis 

machrochirus), and Rainbow Trout (Ochorhynchus mykiss), where the effective substance of 

IMI has been found to be moderately to highly toxic to fish, depending on the sensitivity of 

the species (Howard, 1991; Kidd and James, 1991; Methomyl, 1996; Tomlin, 2003).  

CZ is a mixture of Cymoxanil (8%) and Mancozeb (64%). There are immense literatures for 

acute studies on cymoxanil (Baer, 1993a, b; Kraemer, 1996; Boeri et al., 1996a and b, 1997). 

Cymoxanil is slightly toxic to fish on an acute basis. The 96-hour LC50 for various species (in 

mg/L) were: 91 for common carp; 61 for rainbow trout; 29 for bluegill sunfish; >47.5 for 

sheeps head minnow (MSDS). On the other hand mancozeb is moderately to highly toxic to 

fish ( 48-hour LC50 are 9 mg/L in goldfish, 2.2 mg/L in rainbow trout, 5.2 mg/L in catfish, 

and 4.0 mg/L in carp) as reported by (Bisson and  Hontela, 2002; Muhmmed and Telat, 2013; 

Knauer et al., 2007; Gopi et al., 2012). However, the acute studies on mixture are lacking. In 

the present studies CZ was found to be moderate to slightly toxic for both the teleost fishes 

and as proposed by (U.S. EPA, 2004).  

Acute toxicity involves the damage to the organism by fastest acting mechanism. Our results 

are in agreement with the comparative studies of John (2007) on Heteropneustes fossilis and 

Ophiocephalus striatus; Vasait and Patil (2005) and Nikam et al., (2011) on freshwater fish, 

Nemacheilus botia. Hedayati et al., 2012 in their investigation of acute toxicity for two 

systemic pesticides have reported variation in the response for blue gourami, Trichogaster  

trichopterus. Kreutz et al., (2008) have also reported degree of difference for the mortality of 

two pesticides on silver catfish (Rhamdia quelen) fingerlings.  Comparative Study on the 

acute toxicity of synthetic pesticides by Boateng et al., (2006); Srivastava et al., (2010); 

Nikam et al., (2011) have also observed the different response of the pesticides. Selective 

toxicity of the agrochemical may due to differential physiological response of the individual 

fish i.e detoxification, absorption and or excretion capacities (Viran et al., 2003). As 
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Thompson and Schuster (1968) noted, the study of toxic effects on the behavioural level 

offers ecologists and environment a lists two major advantages. First, chemical agents that 

produce only behavioural changes and have serious and possibly irreversible deleterious 

effects on the animals’ ability to adapt can be identified and controlled. Second, the 

behaviourally toxic effects of chemical agents can be considered as an early warning system 

for the detection of the toxicity before irreversible structural and biochemical damage are 

caused by them. Most of the fish which died during the experiment exhibited symptoms of 

poisoning such as change in color as well as behavior. Initially their color darkened and they 

swam erratically with their body inclined downwards. Matsumura (1975) reported that 

hyperactivity is a primary and principal sign of nervous system failure due to pesticide 

poisoning, which affects physiological and biochemical activities. 

Behaviour is a visible reaction of an organism to a stimulus on the whole-organism 

organization level. However, being based on biochemical reactions and exerting 

consequences on the population and biocoenosis levels, behaviour can be regarded as highly 

integrative (Little, 1993; Janssen, 1997; Dell’Omo, 2002). Behavior can be classified in 

different ways, such as: internal biochemical, physiological   processes and external 

ecological consequences e.g., avoidance, mating. Behavioural tests have a high potential to 

be applied in ecotoxicological research as well as in biomonitoring, in addition to other 

biological and chemical methods. They offer ecologically relevant, sensitive, fast and non-

destructive tests, which can be quantified and automated in order to achieve time- and cost-

effective test systems.  

The control fish behaved in a natural manner, they were active with well-coordinated 

movements and they were alert to the slightest disturbance, but in the toxic environment 

relatively reduced activity was exhibited during early hours of pesticide exposure. The 

intensity of the behavioural activities of the fish decreased with increasing concentration and 

duration of exposure. The fish exhibited irregular, erratic and darting swimming movements 

and loss of equilibrium due to exposure of IMI and CZ. They slowly became lethargic, hyper 

excited, restless and secreted excess mucus all over their bodies, was more pronounced at 

higher concentrations, suggesting sensitivity to the agrochemicals (Wu and Chen, 2004; 

Shwetha and Hosetti, 2009). 
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After induction of agrochemicals, the intoxicated fishes were seen to be getting aggregated at 

the corner of the aquarium resting at the bottom and frequently coming to the surface 

followed by heavy breathing with stronger opercular movements and loss of equilibrium. 

Also the over secretion of mucus was observed on the fishes treated to pesticide. Gabriel and 

his co-workers (2009) reported that the accumulation of mucus in the gills surface of the 

exposed fish may have contributed immensely to the death of the fish in this study. Lebedeva 

et al., (1998) reported that external mucus reflects metabolic processes that take place in the 

fish organs, which may serve also as a criterion of the physiological status of the fish leading 

to the establishment of specific effects that different factors such as toxicant and the 

environment produce on it. The accumulation of mucus on the gills reduces respiratory 

activity which prevents the gill surface from carrying out active gaseous exchange and 

thereby causing death of the fish (Jones et al., 1974; Davis, 1975; Omitoyin et al., 1999; 

2006; Magare and Patil, 2000; David et al., 2002). Besides, the mortality in the exposed fish 

may have resulted from the distortion of gill architecture by the agrochemical (Lebedeva et 

al., 1998; Hartl et al., 2001; Kalavathy et al. 2001; David et al., 2002, 2003; Obomanu et al., 

2007; Srivastava et al., 2007, 2010; Kaoud; 2011). According to Srivastava and coworkers 

(2010) accumulation of mucus on the gills and distortion of gill architecture a common effect 

of toxicants on the gills may impair gill functions resulting in an internal toxic environment 

from the accumulation of nitrogenous wastes in the body leading to death. 

On comparative basis this altered behaviour was more conspicuous in O. mossambicus than 

L. rohita. In case of IMI, fishes appeared to be excited within few minutes of exposure at 

higher concentrations however, they were seen to be calm down and gathered at the corner of 

aquarium.  Such behaviour has been observed in fishes treated with other pesticides also 

(Bradbury and Coats, 1989; Jee et al., 2005; Dobsikova et al., 2006; Velisek et al., 2009).  

A dose dependent decrease in OBF and TBF activities observed for both the fishes exposed 

to IMI and CZ are shown in fig. III and IV. The behavioural response to agrocheimcals with 

marked deviation in the rate of OBF and TBF in control group fishes, imputes an adjustment 

in physical fitness as a result of the stress condition (Edwards and Fusher, 1991, Leight and 

Van Dolah, 1999; Chindah et al., 2000; Chindah et al., 2001; Ekweozor et al., 2001; Chindah 

et al., 2004; Bobmanuel et al., 2006; Gibson and Mathias, 2006). The OBF in fish exposed to 

the agrochemicals was least variable at the 24
th 

and 48
th 

hrs however; it was depressed and 
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less variable at 48
th

 and 96
th

 hours. This may be due to the gill damage, where the toxicant 

acts as respiratory poison possibly affecting the gills, impairing respiration and leading to 

various abnormal behaviour and eventually death (Kane et. al., 2005). The route of entry of 

the pesticide in toxicity tests is generally through the gill and hence the respiratory process 

may be adversely affected. Changes in behavioural patterns exhibited by fish were possibly to 

counteract aquatic hypoxia condition (Kind et al., 2002) caused by the agrochemical. When 

there is impossibility of escape from hypoxic stress, physiological alterations may be evoked 

to compensate for low oxygen supply (Graham, 1997; Val et al., 1998).  

Similarly the fishes in control experiment showed limited variation in the TBF, whereas in 

the treated animals the TBF showed a gradual decrease with increase in time. Steinhausen et 

al., (2005) and Herskin and Steffensen (1998) have proved the TBF as a predictor of 

swimming speed and oxygen consumption. The sudden change in behavior may be due to 

shock, the rise and subsequent decrease in OBF and TBF may be due to fatigue resulting 

from suppressed metabolic rate which finally result in low oxygen demand (Jensen et al., 

1993 and Fafioye et al., 2004). The stressful behaviours of exposed fish such as erratic 

swimming reflected increased OBF and TBF, regular visit to the surface to gulp in air, loss of 

balance, restlessness and finally death of fish in this study agree with the findings of Shah 

(2002); Oti, (2002); Chindah et al., (2004); Chukwu and Okpe, (2006); Omitoyin et al., 

(2006). 

Thus, on the exposure to both the agrochemicals fresh water fishes O. mossambicus and L. 

rohita showed immediate behavioral changes such as surfacing, followed by vigorous and 

erratic swimming associated with agitation. The present studies also indicate that these 

abnormal changes in the fish exposed to lethal concentration of IMI and CZ are time 

dependant. The LC50 values were found to decrease constantly with increasing of exposure 

periods, signifying that even at very low concentration the agrochemical particularly IMI was 

fatal for the fish compared to CZ. Furthermore, the results also provide evidence that IMI is 

highly toxic and had a detrimental impact on the behavioral responses of O. mossambicus and 

L. rohita and that the freshwater fish L. rohita is more susceptible to the agrochemicals 

compared to O. mossambicus. Hence, from the present studies one can conclude that the 

acute response of the both the agrochemicals demonstrated variation perhaps due to their 

physiological status and this reflected the change in their behavior.  
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Chapter II 

 

Haemogram of freshwater fish Tilapia (Oreochromis mossambicus) and 

Rohu (Labeo rohita) exposed to repeated doses of Imidacloprid and 

Curzate 

 

Blood is most important and abundant body fluid. Its composition often reflects the total 

physiological condition (Venkatesan et al., 2012). Blood of living organisms are very 

sensitive to changes and are widely used in Ichthyology research, aquaculture research 

as well as toxicology and biological monitoring (Svoboda et al., 2001; Adedeji et al., 

2007; Adeyemo, 2008). As blood being the medium of intercellular and intracellular 

transport, which comes in direct contact with various organ and tissues of the body, the 

physiological state of an animal at a particular time is reflected in its blood. Thus, blood 

provides an ideal medium for toxicity studies.  The blood parameters have been 

considered as diagnostic indices of pathological condition, findings are important for 

the assessment of systemic functions and overall health of animals. Furthermore, the 

findings also helps in diagnosing the structural and functional status of animals exposed 

to the toxicant (Atamanalp and Yanik, 2003; Talas and Gulhan, 2009; Suvetha et al., 

2010). It is important in toxicological research because a haematological alteration is a 

good method for rapid evaluation of the chronic toxicities of a compound. A thin 

epithelial membrane separates fish blood from the water and any unfavourable changes 

in the water body is reflected in the blood (Shahi and Singh, 2011; Kori-Siakpere and 

Ubogu, 2008). 

The use of haematological parameters in assessment of fish physiology was proposed 

by Hesser (1960), since then haematology has been used as an index of fish health 

status in a number of fish species to detect physiological changes, as a result of 

exposure to different stressful conditions such as handling, pollutants, metals, hypoxia, 

anaestehtics and acclimation (Blaxhall, 1972; Duthie and Tort, 1985; Bakthavathsalam, 

1991; Ogbulie and Okpowasili, 1999; Jhosi and Bose, 2003; Hori et al., 2008; Alwan et 

al., 2009).  
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Further, fishes are known to be in close relationship with the aqueous environment, 

hence, the blood will reveal conditions within the body of the fish long before there is 

any visible manifestation of disease (Musa and Omoregre, 1999; Okechukwu et al., 

2007), haematological indices are therefore widely used by fish biologists and 

researchers the world over (Svoboda et al., 2001; Saxena and Seth, 2002; Atamanalp 

and Yanik, 2003; Cakmak and Gorgon, 2003; Adhikari et al., 2004; Cazenave et al., 

2005; Kori-Siakpere et al., 2007; Greaves, 2007; Ali and Rani, 2009; Sharaf et al., 

2010; Nte et al., 2011; Khan et al., 2012).  

Consequences of pesticides on hematological factors of a number of  fish species have 

been investigated in several studies: in Cyprinus carpio (Gluth and  Hanke, 1985; 

Satyanarayan et al., 2004; Salvo et al., 2008) and  Clarias batrachus  (Banerji and 

Rajendranath, 1990; Patnaik and Patra, 2006; Kharat and Kothavade, 2012; Summarwar 

and Verma, 2012) in Oreochromis mossambicus (Sampath et al., 1993; Ali and Rani, 

2009; Desai and Parikh, 2012), in Heteropneustes fossilis  (Singh and Srivastava, 1994; 

Nath and Banerjee, 1996 and Deka and Dutta, 2012), in Cyprinion wabsoni (Khattak 

and Hafeez, 1996) and in Piaractus mesopotamicus (Travares et al., 1999; Saxena and 

Seth, 2002; Carraschi et al., 2012).  

Hematocrit, haemoglobin, number of red blood cells and white blood cells as well as 

haematological indices such as MCV, MCH and MCHC are indicators of toxicity with a 

wide potential for application in environmental monitoring and toxicity studies in 

aquatic animals (Sancho et al., 2000; Barcellos et al., 2003). Erythrocytes and 

leucocytes being the essential cellular components of fish blood, their concentration is 

maintained within well-defined limits in different fish species unless the balance 

between production and elimination is disturbed by pathological process. Generally, the 

erythrocytes not only pump out sodium and pump in potassium against electrochemical 

gradient but also reduce methaemoglobin to haemoglobin (Hb) to transport oxygen to 

the body tissues. Packed cell volume (PCV) or haematocrit (Hct) play an important role 

as an index of anaemia, hypoproteinemia and leukocytosis (Bell et al., 1972; Houston, 

1997; Adam and Agab, 2008; Zaki et al., 2010; Ighwela et al., 2012). White blood 

corpuscles (WBC) play a major role in defence mechanism (Jurd, 1985; Bebarji and 

Rajendranth 1990; Golovina, 1996; Hart et al., 1997; Hrubec et al., 2000; Rehulka, 

2002a, b; Adedeji et al., 2009).  
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The response of the leucocytes to the changes in water quality and chemicals is variable 

(Nussey et al., 1995). The effect of pesticides on WBC is not very consistent as seen in 

some fishes when exposed to pesticides expressed Lecucocytosis (Santhakumar et al., 

1999 and Mgbenka et al., 2003) increased leucocyte count (Oluah and Nwosu, 2003), 

leucocytopenia (Mcleay, 1975), lymphocytosis accompanied by neutropenia 

(Krutzmann, 1977; Scott and Rogers, 1981; Oluah and Mgbenka, 2004).    

Thus from the foregoing literature survey one can see that the haematological 

parameters are an important bioindicator. However, limited information is available on 

the effect of IMI and CZ, particularly with reference to the sub-lethal concentration on 

the haematological modulation. Hence, the present study was undertaken to assess and 

contribute to knowledge on the haematological alterations in fresh water teleost fishes 

at different concentration of IMI and CZ.  
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MATERIALS AND METHODS: 

 

Experimetnal design: 

Freshwater teleosts,  O. mossambicus and L. rohita of similar size in length and weight 

(12 ± 2 cm; 25 ± 1.9 g) and  (25 ± 3 cm; 110 ± 5 g)  respectively were brought from a 

local pond of Baroda district. Animals were transported to laboratory in large aerated 

plastic container and were acclimatized in glass aquaria containing 50 liter of well 

aerated dechlorinated tap water (with physic-chemical characteristics: pH 6.5- 7.5, 

temperature 25±3ºC and dissolved oxygen content of 7-8ppm) for ten days. During an 

acclimation period of 10 days, the fish were kept under natural photoperiod and fed two 

times a day (10:00 and 16:00h) with commercial pelleted diet. The acclimatized healthy 

fishes of both sexes were selected randomly for the studies 

Based on the result of the 48 h LC50, 30 tilapia fish were divided in 3 groups, 10 fish 

for each group:  

• Group 1 served as control without any treatment of Agro-chemicals.  

• Group 2 were treated with low dose of IMI and CZ (LC 50 / 10).  

• Group 3 were treated with high dose of IMI and CZ (LC 50 / 20)  

for a period of 21 days. Each concentration was replicated two times. Constant amount 

of the test chemical and test media were changed every 24 hours to maintain the 

toxicant strength and the level of dissolved oxygen as well as to minimize the level of 

ammonia during experiment. The fishes were fed once in a day throughout the duration 

of the sub-lethal toxicity tests.   

 

Haematological estimation of fish:  

Test organism was removed, from each tank for blood analysis. About 4 - 5ml of blood 

was collected from the caudal peduncle using separate heparinized disposable syringes 

containing 0.5mg ethylene diamine tetra acetic acid (EDTA) as anticoagulant; properly 

mixed and stored at -20°C for haematological analysis. The blood was stored in -4°C in 

deep freezer prior to analysis.  
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Blood Cell Count:  

The red blood corpuscles (RBC) and White blood corpuscles (WBC) were counted 

using haemocytometer crystalline chamber using “Hayem’s” and “Turch’s” diluting 

fluid, respectively.  

Haemoglobin Estimation (HB) and Pack Cell Volume (PCV):  

They were analyzed in NIHON KOHDEN Automated Hematology Analyzer (Celtics α, 

Japan).  

Mean Cell Haemoglobin Concentration (MCHC):  

This refers to the percentage of haemoglobin in 100 ml of red blood cell. This was 

calculated by dividing the haemoglobin content in g/dL by the PCV % of red blood 

according to the formulae:  

MCHC = HB/PCV*1000 g/dL  

Mean Corpuscular Volume (MCV):  

The value of the corpuscular volume was calculated from the haematocrit value (PCV 

%) and the erythrocyte count (106/ µL) using the formula  

MCV =PCV*1000/ RBCs fL  

Mean Corpuscular Haemoglobin (MCH):  

Mean corpuscular Haemoglobin concentration expresses the concentration of 

haemoglobin in unit volume of erythrocyte. It was calculated from the haemogobin 

value (HB) and from the erythrocyte count according to the following formulae  

MCH = HB/RBCs pg  

Leukocyte differential count:  

Leukocyte differential count was done using auto-analyzer NIHON KOHDEN (Celtics 

α, Japan).  

 

Statistical analysis: 

Statistical analysis was performed using Graph pad prism 5 software. The data was 

analyzed using two-way ANOVA test followed by multiple comparison test (Tukey’s). 

Results were presented as mean ± SEM. The level of significance was set as P<0.05, 

P<0.01 and P<0.001. 



Chapter II 

Haemogram of freshwater fish Tilapia (Oreochromis mossambicus) and Rohu (Labeo rohita) exposed to 

repeated doses of Imidacloprid and Curzate 

 

47 

 

Results: 

Haematological changes in the selected haematological parameters of the control group 

and those exposed to IMI and CZ for the period of 21 days to O. mossambicus and L. 

rohita have been tabulates (Tables 2.1 and 2.2) and plotted in Fig: 2.1 to 2.3. Significant 

decrease was observed in RBCs, Hb and PCV values in O. mossambicus exposed to IMI 

and CZ. While, in L. rohita, a significant elevated RBCs, Hb and PCV values was 

observed in a dose dependent manner as compared to control (Table 2.1). 

From the study it is obvious that the total number of RBCs in Tilapia (Table I) 

decreased from 1.95 x 10
6
/µL ± 0.04 to 1.59 x 10

6
/µL ± 0.03 at low dose and to 0.83 x 

10
6
/µL ± 0.04 at high dose when exposed to IMI while on the CZ the RBCs decreased 

to 1.52 x 10
6
/µL ± 0.01 at low dose and to 0.938 x 10

6
/µL ± 0.014 at high dose. On the 

contrary in Rohu (Table 2.2) there was an increase in the total number of RBCs from 

0.7 x 10
6
/µL ± 0.003 to 0.82 x 10

6
/µL ± 0.003 at low dose and to 0.91 x 10

6
/µL ± 0.004 

at high dose when exposed to IMI while on the exposure to CZ the RBCs increased to 

0.75 x 10
6
/µL ± 0.026 at low dose and to 0.8 x 10

6
/µL ± 0.002 at high dose. There were 

considerable alterations in MCV, MCH and MCHC in both the fishes when exposed to 

agrochemicals. MCV and MCH increased significantly in both fishes while MCHC 

decreased in O. mossambicus and increased in L. rohita. Also the percentage of PCV 

showed the contradictory response in both species showing a decrease in O. 

mossambicus and increase in L. rohita. 

The total number of WBC in O. mossambicus increased from 10.47 x 10
3
/µL ± 0.09 to 

12.53 x 10
3
/µL ± 0.39 at low dose and to 16.3 x 10

3
/µL ± 0.29 at high dose when 

exposed to IMI while it increased to 13.09 x 10
3
/µL ± 0.65 at low dose and to 15.48 x 

10
3
/µL ± 0.21 at high dose. Similarly in L. rohita it increased from 62.300 x 10

3
/µL ± 

0.564 to 68.90 x 10
3
/µL ± 0.64 at low dose and to 75.60 x 10

3
/µL ± 0.74 at high dose 

when exposed to IMI while it increased to 64.30 x 10
3
/µL ± 0.61 at low dose and to 

67.9 x 10
3
/µL ± 0.689 at high dose when exposed to CZ. Also the percentage of small 

lymphocyte and neutrophils increased reaching maximum percentage of (128% and 

95%) respectively. 
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Table 2.1: Haemogram of O. mossambicus subjected to sub-acute concentrations of IMI 

and CZ 

Oreochromis mossambicus 

Parameters Control 
IMI CZ 

LD HD LD HD 

RBCs 10
6 

/µL 
1.95 ±  

0.04 

1.59 ± 

0.03*** 

0.83 ± 

0.04*** 

1.52 ± 

 0.01*** 

0.938 ± 

 0.014*** 

HB g/dL 
7.34 ± 

 0.19 

4.41 ± 

0.178*** 

3.31 ± 

0.16*** 

5.92 ± 

 0.11*** 

4.457 ± 

 0.287*** 

PCV (Htc) % 
23.3 ±  

0.21 

21.49 ± 

0.3*** 

15.5 ± 

0.37*** 

20.47± 

0.069*** 
 

16.04± 

0.505*** 
 

MCV fL 
137.2 ± 

 0.42 

149.18 ± 

0.30*** 

164.6 ± 

0.40*** 

148.2± 

0.881*** 
 

170.2± 

2.557*** 
 

MCHC g/dL 
29.53 ±  

0.29 

30.43 ± 

0.16*** 

28.8 ± 

0.17** 

30.27± 

0.08 
 

29.37± 

0.074*** 
 

MCH pg 
43.43 ±  

0.46 

45.41 ±  

0.26 

52.3 ± 

0.19*** 

45.67± 

0.346*** 
 

51.15± 

1.011*** 
 

Total WBC 10
3
/µL 

10.47 ±  

0.09 

12.53 ± 

0.39* 

16.3 ± 

0.29*** 

13.09 ± 

0.65 
 

15.48 ± 

0.21*** 
 

Small Lymphocytes 

% 

65.49 ± 

 0.18 

66.34 ± 

0.16* 

67.4 ± 

0.21*** 

67.42 ± 

0.14*** 
 

68.88 ± 

0.17*** 
 

Large Lymphocytes 

% 

10.17 ±  

0.20 
9.69 ± 0.22 

7.79 ± 

0.30*** 

10.20 ± 

0.15** 
 

7.798 

±0.17*** 
 

Neutrophils % 
17.85 ± 

 0.18 

20.85 ± 

0.32*** 

21.9 ± 

0.31*** 

19.01 ± 

0.12 
 

21.46 ± 

0.15*** 
 

 
� Values are vary significantly between treatment groups. 

� * indicates P<0.05 

� ** indicate P<0.01 

� *** indicate P<0.01 

� Each value represents the mean ± SEM of six separate experiments. 
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Table 2.2: Haemogram of L. rohita subjected to sub-acute concentrations of IMI 

and CZ 

 

Labeo rohita 

Parameters Control 

IMI CZ 

LD HD LD HD 

RBCs 10
6 

/µL 
0.7 ±  

0.003 

0.82 ± 

0.003** 

0.91 ± 

0.004** 

0.75 ±    

0.026 

0.8 ±  

0.002* 

HB g/dL 
3.5 ±  

0.029 

5.1 ± 

0.042*** 

6.2 ± 

0.041*** 

4.1 ±  

0.037** 

4.8 ±  

0.034*** 

PCV (Htc) % 
9.8 ±  

0.038 

12.2 ± 

0.054*** 

15.5 ± 

0.058*** 

10.6 ±  

0.042 

11.9 ± 

0.050*** 

MCV fL 
139.9 ± 

1.34 

144.6 ± 

1.12* 

149.9 ± 

1.30*** 

141.3 ±  

0.800 

143.5 ±  

0.90 

MCHC g/dL 
50,00 ±  

0.056 

63.44 ± 

0.09*** 

75.4 ± 

0.08*** 

54.6 ± 

0.084*** 

61.5 ± 

0.071*** 

MCH pg 
35.7 ±  

0.69 

42.68 ± 

0.70*** 

49.3 ± 

0.79*** 

38.68 ±  

0.58* 

41.3 ± 

0.765*** 

Total WBC 10
3
/µL 

62.3 ± 

0.564 

68.90 ± 

0.64*** 

75.60 ± 

0.74*** 

64.30 ±  

0.61* 

67.9 ± 

0.689*** 

Small Lymphocytes 

% 

102.4 ± 

0.11 

131.2 ± 

0.12*** 

156.9 ± 

0.15*** 

113.8 ± 

0.13*** 

128.3 ± 

0.13*** 

Large Lymphocytes 

% 

62.2 ± 

0.030 

49.27 ± 

0.03*** 

41.28 ± 

0.02*** 

52.2 ± 

0.036*** 

46.9 ± 

0.027*** 

Neutrophils % 
79.1 ± 

0.365 

91.23 ± 

0.32*** 

102.2 ± 

0.50*** 

79.1 ± 

0.365*** 

87.3 ± 

0.414*** 

 
� Values are vary significantly between treatment groups. 

� * indicates P<0.05 

� ** indicate P<0.01 

� *** indicate P<0.01 

� Each value represents the mean ± SEM of six separate experiments. 
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Figure 2.1: RBCs, Hb and PCV values of O. mossambicus and L. rohita subjected 

to subacute doses of IMI and CZ (T=Tilapia and R=Rohu) 
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Figure 2.2: MCV, MCH and MCHC values of O. mossambicus and L. rohita 

subjected to subacute doses of IMI and CZ (T=Tilapia and R=Rohu) 
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Figure 2.3: Total WBCs count and Differential count of O. mossambicus and L. 

rohita subjected to subacute doses of IMI and CZ (T=Tilapia and 

R=Rohu) 
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Discussion: 

Alteration of haematological parameters of fish has been associated with their 

physiological state and may be induced directly by pesticides. Clinical chemistry 

analyses are faster and cheaper than analytical chemistry. Since the variations of these 

parameters have been demonstrated to be sensitive to sub-lethal concentration of 

different toxic agents, they can be used for detecting pollutants exposure in the 

environment (National Research Council, 1989; Parma et al., 2007) 

 Haematological parameters are reported to be affected by a range of factors which 

includes, size, age, physiological status, environmental conditions and species (Ighwela 

et al., 2012).  

In the present study the species specific differences in haematological indices were 

evident. As far as values of RBC, Hb and PCV are concerned O. Mossambicus showed 

a significant decrease and L. rohita showed a significant increase in proportion to 

concentration of the pesticide exposure compared to control (Table 2.1 and 2.2; Fig 

2.1). Such species-specific differences are common among fish and hence, our results 

are parallel with the earlier reported species specific changes in the heamatoogical 

parameters of the fish. (Ainsworth, 1992; Hine, 1992; Suzuki and Iida, 1992; Erickson 

et al., 1992; Anderson and Zeeman. 1995; Adedeji et al., 2000; Orun et al., 2003; van 

Ginneken et al.,  2005; Reavill and Roberts, 2007; Clauss et al., 2008; Velisek et al., 

2009 a and b; Adedeji and Adegbile, 2011). 

The low levels of Hb indicated anaemic conditions in fish due to stress-caused 

hemolysis (Panigrahi and Mishra, 1978; Wahbi, 1992) and inhibition of aerobic 

glycolysis curtailing denovo synthesis of hemoglobin (Lewis, 1970; Koundinya and 

Ramamurthi, 1979; Bielinska, 1987; Wahbi, 1998; Desai and Parikh, 2012).  

Furthermore, the lower hemoglobin levels of treated fish in the present study might be 

due to the distruption of the iron synthesizing (Beena and Vishwarajan, 1987; El-Ezaby, 

1994; Sastry and Sachdeva, 1994; Nounou et al., 1997). The reduction in haemoglobin 

content in fish exposed to toxicant could also be due to the inhibitory effect of the toxic 

substance on the enzyme system responsible for synthesis of haemoglobin (Pamila et 

al., 1991; Singh et al., 2010). IMI and CZ exposure to O. mossambicus led to a 

significant decrease in Hb thereby suggesting proposes that the fish was under stress of 

anaemia. Moreover, the reduction in haemoglobin and haematocrit content might have 



Chapter II 

Haemogram of freshwater fish Tilapia (Oreochromis mossambicus) and Rohu (Labeo rohita) exposed to 

repeated doses of Imidacloprid and Curzate 

 

54 

 

resulted from anaemia, hemoglobinisation or shrinkage of red blood cells due to toxic 

action of agrochemicals on the erythropoietic tissue. A decrease in RBC, Hb content 

and PCV has been observed earlier in fishes exposed to different pesticides (Svobodova 

et al., 1997; Park et al., 2004; Kori-Siakpere and Oghoghene, 2008; Palanisamy et al., 

2011; Saravanan et al., 2011). 

The observed significant reduction in the value of packed cell volume (PCV) on 

exposure of IMI and CZ on O. mossambicus is probably due to increased rate of 

erythropoieisis as well as haemolysis due to anaemia or hemodilution (Srivastava and 

Singh, 1979; Wedemeyer and Mcleay, 1984;  Dorucu and Girgin, 2001; Adhikari and 

Sarkar, 2004; Ramesh and Sarvanan, 2008; Padma Priya et al., 2012). 

Red blood cell mass as measured by packed cell volume (PCV) and haemoglobin 

content (Hb) of effluent exposed fish groups showed a progressive fall parallel to 

increased pesticide concentration. Decrease in the RBC to haemolytic crisis that results 

in severe anaemia in fish exposed to pollutant or due to reduction of haem synthesis 

affected by pollutant has been reported earlier (Wintrobe, 1978; Khangarot and Tripathi 

1991; Chen et al., 2004; Zaki et al., 2008). In the present study the observed decrease in 

RBCs, Hb and PCV in O. mossambicus indicates that pesticide exposed fish are 

anaemic. This results are in affirmative agreement with the finding of Sastry and 

Sachdeva, (1994); Nounou et al. (1997); Ezzat, (1998); Das and Mukherjee, (2000); 

Wahbi, (2004); Devi and Benerjee, (2007); Singh et al., (2008).  

Hematological parameters in fish can significantly change in response towards chemical 

stressors; however, these alterations are non-specific to a wide range of substances. 

Some of these changes may be the result of the activation of protective mechanisms 

(Cazenave et al., 2005) such as the results of the blood parameters observed in the 

present work. L. rohita exposed to sub-lethal concentration of the IMI and CZ showed 

an increase in PCV, Hb and in the number of erythrocytes, indicating the release of 

erythrocytes from blood deposits and/or from hemopoetic tissues into the blood stream 

(Svobodova et al., 1994).  

The present findings are just opposite to the alterations observed in O. mossambicus. 

This difference in response may be explained by the fact that the effects of 

environmental toxicants on hematological characteristics of fish vary according to the 

target species (Glusczak et al., 2006; Elahee and Bhagwant, 2007). The significant 
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increase value of Hb could well have been to elevate the oxygen capacity of the blood in 

order to supply more oxygen to the tissues. This is, therefore, a mechanism by which 

the body attempts to absorb more oxygen from the surrounding medium to meet the 

increased oxygen demand (Cyriac et al., 1989). Increase in Hb, PCV and RBCs is 

suggestive of a strategy used by the fish to increased the ability of oxygen transportation 

in the blood during periods of metabolic break down (Montero et al., 1999; Gbore et al., 

2006; Grigoras, 2008).  

Along with the increase in Hb there was a significant increase in PCV as well as in the 

number of erythrocytes in L. rohita exposed to IMI and CZ, indicates the release of 

erythrocytes from blood deposits and/or from hemopoetic tissues into the blood stream 

(Svoboda et al., 2001).  

The PCV readings are valuable in determining the effect of stressors on the health of 

fish and are also used to determine the oxygen carrying capacity of blood (Larsson et 

al., 1985). The recorded significant increase in PCV and MCHC L. rohita exposed to 

IMI and CZ may be attributed to swelling of RBCs due to increase CO2 in blood or 

stressful condition. Zaki et al., (2010) in their study on the impact of phenol on 

haematological profile have reported an increase in RBC, Hb and PCV and have opined 

that the conditions are similar to that of polycythemia. In the present study the elevated 

PCV, Hb and MCHC points to the fact of possibly expressing the similar condition. 

Similar finding were reported by Mckim et al., (1970) and Hilmy et al., (1979). 

Pronounced increase in RBC count, points to the fact the fish has developed an oxygen 

deficiency. This decrease causes the build-up of oxygen debt, hypoxia, in the fish. As a 

result of the increased anaerobic respiration, the fish is subjected to a situation, to have a 

higher carbon dioxide concentration in their blood. During anaerobic respiration, lactic 

acid is produced and this, as well as the buffer action of the excess carbon dioxide, 

causes a rise in the acidity of the blood. This increase in acidity causes swelling of the 

red blood cells, as reflected by the significant increase in the mean corpuscular volume 

(MCV) (Soivio et al., 1974). In the present study also a significant increase in MCV 

was well defined (Table 2.1 and 2.1; Fig 2.2). An increase of erythrocyte size (MCV) 

has been associated with several factors such as anaesthesia and hypoxia, but it is 

generally considered as a response to stress (Valicre and Stickney, 1972; Weber, 1982).  
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Various workers have demonstrated that rising total erythrocyte count and Hb content 

might be due to the reason that fish are compensating for impaired oxygen uptake by 

release of erythrocytes from the spleen (Yamamoto and Itazawa, 1983 and 1985; Lal et 

al., 1986; Mustafa and Murad, 1984; Svobodova et al., 1994; Tort et al., 2002). Another 

possible reason for the increased RBCs could be due to the release of large number of 

erythrocytes as a part of compensatory effect to minimize a threatening tissue hypoxia 

which improves the oxygen-carrying capacity of the blood (Erslev, 1977). The hypoxia 

may have resulted from hyper excitability and hyper mobility which, was a distinct 

behavioural observation (Chapter I), which could not have been sustained by normal 

supply of oxygen to the cells. Interference of pesticide with oxygen uptake by the cells 

cannot be ruled out but merits investigation before anything is said about this aspect 

with certainty.  

The erythrocyte indices like mean corpuscular volume (MCV), mean corpuscular 

hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) seems to 

be changes that are more sensitive and can cause reversible changes in the homeostatic 

system of fish. Fluctuations in these indices correspond with values of RBC count, 

hemoglobin concentration and packed cell volume. The values of erythrocyte indices 

were altered in O. mossambicus and L. rohita fishes after the exposure of sub-lethal 

concentrations of IMI and CZ (Table 2.1 ans 2.2; Fig 2.2). 

In O. mossambicus there was significant decreased in PCV associated with significant 

increase in MCV and MCH. Our results are parallel with the experiments performed by 

Nte et al., (2011) on fish hematology and have correlated the increase in MCV and 

MCH with decreased in PCV. The decrease in PCV indicates hypoxic condition of the 

fish due to anaemia on exposure of the pesticide. Furthermore, the observed low 

concentration of MCHC during the present work might have resulted from decrease in 

Hb synthesis consequent of effluent toxicity (Joshi et al., 2002; Shah, 2002; Parma et 

al., 2007; Adam and Agab, 2008; Rao, 2010; Ada et al., 2011; Desai and Parikh, 2012; 

Venkatesan et al., 2012).  

Another type of haematological response to the effect of IMI and CZ in L. rohita was a 

significant increment of MCV, MCH and MCHC associated with increment of PCV and 

Hb value (Table 2.1 and 2.2; Fig 2.2). PCV could be used to detect haemolysis and is 

used as a tool for checking anaemic condition in fishes and increase in PCV increased 
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Hb concentration in the blood of the fish. Oluah and Mgbenka, (2004) indicates that 

oxygen is carried in combination with haemoglobin and this is very important for the 

survival of the fish. The range of MCHC, MCV and MCH obtained in this study were 

similar to findings of Terry et al., (2000); Nilza et al., (2003); Gabriel et al., (2004). 

In the present study, elevated total leukocyte count was observed in both the fishes 

exposed to sub-lethal concentration of IMI and CZ relative to control. The total 

leukocyte count (WBCs) of the pesticide exposed and control fish can be seen in (Table 

2.1 and 2.2; Fig 2.3).  

With respect to the leukocyte count there was a significant increase in the total count 

associated with increase small lymphocyte and neutrophills in both the fishes as well as 

with both the pesticides. The WBCs in fish respond to various stressors including 

infection and chemical irritants (Svobodova et al., 1994). Thus, altered number of 

WBCs is a normal reaction o the exposure of the toxicant (Kori-Siakpere et al., 2006). 

In the present investigation the significant increase in WBCs count may have resulted 

from the excitation of defence mechanism of the fish to counter the effect of pesticide 

(Gabriel et al., 2009). The increase in number of leucocytes is a defensive reaction 

against pesticide stress. These alterations are probably the result of the activation of the 

immune system in the presence of pesticide, which in turn may be an adaptive response 

of the fish resulting in a more effective immune defence (Barreto et al., 2005; Modesto 

and Martinez, 2010). Similar kind of actin have previously considered by other 

researchers for some pesticides such as, Diazinon (Svobodova et al., 2003 and Padash-

Barmchi et al., 2010), Dichlorovos (Banerji and Rajendranath, 1990), Choloropyriphos 

(Aniladevi, 2008), Malathion (Khattak and Hafeez, 1996), Paraquet (Safahieh et al., 

2012) and Curzate (Desai and Parikh, 2012). 

Thus from the present study it can be concluded that the exposure of fish to IMI and CZ 

pesticides resulted in significant alterations in haematological parameters. These 

alterations may negatively suppress normal growth, reproduction, immunity and even 

survival of fish in natural environment. And furthermore, the haematological studies 

provide a rapid and sensitive method for predicting the effects of sub-lethal exposure on 

general health and well being of fish. 
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Chapter III 

Biochemical alterations on exposure of Imidacloprid and Curzate on fresh water 

fish oreochromis mossambicus and Labeo rohita. 

 

The impacts of industrialization and exponentially growing population, contamination 

of air, water, soil and food have become a threat to the continued existence of the living 

communities of the ecosystem and may threaten the very survival of human race (Dorey 

and Thatheyus, 2012). Pesticides are occasionally used indiscriminately in large amount 

causing environmental pollution; therefore they are of great concern. Environment 

pollution by agro-chemicals has become one of the most important problems in the 

world (Chandrana et al., 2005). The pesticide contamination of aquatic system has 

attracted the attention of researcher all over the world (Dutta and Dalal, 2008) and has 

increased in the last decades due to extensive use of them in agriculture. Fishes are more 

frequently exposed to these pesticides because it is believed that regardless of where the 

pollution occurs, it eventually end up in the aquatic environment (Firat et al., 2011). 

The insecticide IMI has been increasingly used since 1991 (Elbert et al., 1991) and 

belongs to the fastest growing group of insecticides introduced to the market, referred to 

as neonicotinoids (Tomizawa and Casida, 2003). Neonicotinoids – from zero to hero in 

insecticides has been proposed by Jeschke and Nauen (2008). It acts as an agonist of the 

postsynaptic nicotinic acetylcholine receptors (Matsuda et al., 2001), disrupting the 

normal neural processes and is used mainly to control sucking insects in crops (Tomlin, 

1997; Tomizawa and Casida, 2005). IMI is a potential groundwater and surface water 

contaminant (PAN pesticides database, 2006), because it can leach and runoff from soil 

and crops (Felsot et al., 1998; Gonzalez-Pradas  et al., 1999; Armbrust and Peeler, 

2002; Gupta et al., 2002; Fossen, 2006). Additionally, it may enter water bodies from 

spray drift or accidental spills, leading to local point-source contaminations. IMI is 

considered a possible replacement for urban uses of diazinon (TDC Environmental, 

2003), one of the most used insecticides in the last 50 years. Diazinon is currently 
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subject to phased revocation in USA (US EPA, 2004), European Union and Australia 

(APVMA, 2003), because unacceptable risk to agricultural workers and environment.   

To regulate the impact of IMI on aquatic ecosystems, its toxicological profile needs to 

be thoroughly established. Until now, the toxicity of IMI to aquatic invertebrates has 

been assessed but very few monitoring studies of this insecticide have been performed 

in aquatic environments. This is due to the former belief that the compound is relatively 

immobile in soil and does not leach to ground water (APVMA, 2003; Krohn and 

Hellpointner, 2002). However, experimental evidence has now proved that there is a 

potential for IMI to enter streams and ponds via drift during application or in runoff 

water (Baskaran et al., 1999; Moza et al., 1998; Sarkar et al., 2006; Zheng and Liu, 

1999; Nemeth-Konda, 2002; Capowiez et al., 2003). 

Toxicological studies on rats and mice and dogs have proved IMI to be moderately 

toxic (Tomlin, 1997; Paul et al., 2004; Jain and Punia, 2006). Response to IMI toxicity 

in birds has been well explored and has shown varied behavioural and pathological 

changes in birds (Omiama, 2004; Aulakh et al., 2005; Siddiqui et al., 2007; Kammon et 

al., 2010; Balani et al., 2011). Micronucleus test and comet assay performed by Feng et 

al., (2004) and by Li-tao and his co-workers (2006) for assessing the risks of novel 

pesticide IMI on amphibians, have proved that IMI is Genotoxic to tadpoles and frogs.  

IMI has been proved to be moderately toxic to fish (Kidd and James, 1991; Tomlin, 

1997). Toxic responses of IMI has been studied by Rajput et al., (2012) on fresh water 

fish, Clarias batrachus and have reported the adverse effect of these toxicant on the 

protein profile of the fish. IMI has also been found to have profound influence in serum 

biochemical profile of fresh water fish Channa punctatus (Padma priya et al., 2012).  

CZ a mixture of Cymoxanil and mancozeb, has got systemic action and is moderately 

toxic.  Because of its major metabolite ethylenethiourea (ETU), recently it has come 

under close scrutiny of health protection agencies. ETU has carcinogenic, teratogenic 

and goitrogenic effects in mammals (Roy et al., 2010; Ulland et al., 1972; Keppel, 

1971). Cymoxanil acts as a foliar fungicide with protective and curative action. It has 

contact and local systemic activity (FAO, 2005). Cymoxanil provides effective control 

of economically important fungal plant pathogens, which cause downy mildew and 
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blight in a wide range of crops. It is considered to be moderate toxic to mammals 

(Sarver, 1992; Panepinto, 1992; Tompkins, 1994; Hurtt, 1995). The chronic toxicity 

elicited by this compound is highly variable, since it depends on the species ranges of 

tested concentrations and the exposure period. Experimental evidence has proved the 

signs of intoxications in rats and mice bodyweight and organ alterations, reduction in 

food consumption, testicular perturbation and histopathological variations (Lages et al., 

2009). Cymoxanil is toxic to aquatic organisms (Kreamer, 1996; Boeril et al., 1997; 

Derbalah et al., 2008; Rekanovie et al., 2012). At high partition coefficient it has been 

found to get bioaccumulated moderately by living organisms including humans (Soares 

and Calow, 1993; Grandjean et al., 1999). Mancozeb, despite its low acute toxicity, it 

has been shown to have significant toxic effects in mice (Mehrotra et al., 1990; Kackar 

et al., 1997; Baligar and Kaliwal, 2001; Calviello et al., 2006). Mancozeb exposure is 

associated with pathomorphological changes in liver, brain and kidney in rats (Bindali 

and Kaliwal, 2002; Joshi et al., 2005). Mancozeb is moderately to highly toxic to zebra 

fish (Cocco, 2002); rainbow trout (Bisson and Hontela, 2002; Atmanalp and Yanik, 

2003; Ekinci and Beydemir, 2010).  

The utility of biochemical approaches in environmental pollution monitoring and 

characterization of effect/exposure to stressor for the use in environmental risk 

assessment is based on the assumption that low concentrations of a toxicant will cause 

biochemical responses within individual organisms before these effects are observed at 

higher levels of biological organization (Sarkar et al., 2006).  Such biochemical 

responses are considered to be rapidly responding endpoints (Adams, 2002), and thus 

most biochemical biomarkers in the laboratory studies are assessed after acute exposure 

to chemicals. Changes in the biochemical profile indicate alterations in metabolism of 

the organism resulting from the effect of the pesticide and they make it possible to study 

the mechanisms of the effects of these pesticides (Luskova et al., 2002). In the view of 

paucity of information available on IMI and CZ toxicity, the present work was 

under taken on fresh water teleosts, O.mossambicus and L.rohita, so as to have an 

insight regarding its biochemical alterations.  
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Materials and Method: 

Experimetnal design: 

Freshwater teleosts,  O. mossambicus and L. rohita of similar size in length and weight 

(12 ± 2 cm; 25 ± 1.9 g) and  (25 ± 3 cm; 110 ± 5 g)  respectively were brought from a 

local pond of Baroda district. Animals were transported to laboratory in large aerated 

plastic container and were acclimatized in glass aquaria containing 50 liter of well 

aerated dechlorinated tap water (with physic-chemical characteristics: pH 6.5  - 7.5, 

temperature 25±3ºC and dissolved oxygen content of 7-8ppm) for ten days. During an 

acclimation period of 10 days, the fish were kept under natural photoperiod and fed two 

times a day (10:00 and 16:00h) with commercial pelleted diet. The acclimatized healthy 

fishes of both sexes were selected randomly for the studies 

Based on the result of the 48 h LC50, 30 tilapia fish were divided in 3 groups, 10 fish for 

each group:  

• Group 1 served as control without any treatment of Agro-chemicals.  

• Group 2 were treated with low dose of IMI and CZ (LC 50 / 10).  

• Group 3 were treated with high dose of IMI and CZ (LC 50 / 20) for a period of 

21 days.  

Each concentration was replicated two times. Constant amount of the test chemical and 

test media were changed every 24 hours to maintain the toxicant strength and the level 

of dissolved oxygen as well as to minimize the level of ammonia during experiment. 

The fishes were fed once in a day throughout the duration of the sub-lethal toxicity 

tests.  

 

Preparation of the tissue samples for the study. 

At the end of the experiment (21 days) the fish were carefully netted to minimize stress, 

and weighed. Prior to sacrificing the fish, about 1 - 2ml of blood was collected from the 

caudal peduncle using separate heparinized disposable syringes. The blood was stored 

in -4°C in deep freezer prior to analysis. Fishes were sacrificed by pithing (damaging 

the brain and severing the spinal cord between the head and trunk region using a sharp 

needle). Tissues such as liver, kidney, gills and muscle were carefully removed, wiped 



Chapter III 

 

Biochemical alterations on exposure of Imidacloprid and Curzate on fresh water fish oriochromis 

mossambcus and Labeo rohita 

 

 

62 

 

thoroughly, using blotting paper to remove blood and other body fluids. Then they were 

washed in chilled PBS and again blotted dry. After noting the total weight of the tissues, 

the desired amount of the tissues were weighed and used.  

 

Parameters investigated: 

Assay of Glucose-6-phosphatase (EC. 3.1.3.9) 

Glucose-6-phosphatase was ssayed according to the method of King (1965b) 

Reagents 

a. Citrate Buffer: 0.1 M, pH 6.5 

b. Substrate: Glucose-6-phosphate, 0.1 M in distilled water. 

c. Ammonium molybdate reagent: added 25 g of ammonium molybdate to 200 ml 

distilled water. To 300 ml 10 N H2SO4, added molybdate solution and diluted to 1 

litre with distilled water. 

d. Amino naphthol sulphonic acid (ANSA): Ground 0.2 g of ANSA with 1.2 g of 

Na2SO3 and 1.2 g of sodium bisulphite (NaHSO3). Kept the mixture in the freezer. At 

the time of use, dissolved 0.25 g in 10 ml distilled water. 

e. TCA: 10% 

f. phosphate standard: 35.1 mg of KH2PO4 was dissolved in 100 ml double distilled 

water. Working standard was prepared by taking 1ml of the stock and diluted to 10ml 

with distilled water. 

Procedure: 

10% homogenate of liver tissue was prepared in 0.33 M sucrose solution and 

centrifuged at 11.000 g for 30 minutes in a refrigerated centrifuge. The supernatant 

obtained was again centrifuged for 60 minutes at 10,500 g and the supernatant was 

discarded. The pellet was suspended in ice-cold 0.33 M sucrose solution and 

homogenized in a glass-Teflon homogenizer. The homogenate obtained was used as the 

enzyme source. The incubation mixture in a total volume of 1 ml contained 0.3 ml of 

buffer, 0.5 ml of substrate and 0.2 ml of enzyme preparation. The incubation was 

carried out at 37⁰C for 60 minutes. Arrested the reaction by the addition of 1 ml of 10% 

TCA and centrifuged. The phosphorus content of the supernatant was estimated by the 
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method of Fiske and Subbarow (1925). The enzyme activity was expressed by as µg of 

inorganic phosphorus liberated / min / mg protein. 

 

Estimation of Blood Glucose 

Blood Glucose was estimated by the method of Sasaki and Matsubs, (1972). 

Reagent: 

a. Ortho toluidine boric acid reagent: this reagent consists of 2.5 g of thiourea and 2.4 g 

of boric acid in 100 mi solvent, consisting of a mixture of water, acetic acid (AR) 

and ortho toluidine in the ration of 10:75:15. 

b. Standard glucose: 1oo mg of glucose was dissolved in 0.1 % benzoic acid. 10 ml of 

the above solution was diluted to 100 ml to give 100 µg of glucose per ml. 

Procedure: 

To 0.2 mi of blood, 0.8 ml of 10% TCA was added. The contents were mixed well. The 

tubes were centrifuges at 1000 g for 5 minutes. 0.5 ml of supernatant was taken. To this 

2.0 ml of ortho toluidine reagent was added. The tubes were then heated in a boiling 

water bath for 15 minutes. The standards were also treated in the same manner along 

with the reagent blank. The values were expresses as mg glucose / dl. 

 

Estimation of Total protein 

Protein was estimated by the method of Lowry et al., (1951). 

Principle:  

Protein reacts with folin-phenol reagent to develop a blue colored complex due to 

reduction of phosphomolybdic and phosotungustic component in folin reagent.This 

reaction is given by the amino acid tyrosine and tryptophan present in the protein, color 

develops by biuret reaction, of the proteins with alkaline cupric tartarate.  The intensity 

of the color deepens on the amount of these aromatic amino acid residues present and 

thus varies for different proteins. 

Reagents: 

a. Alkaline Copper Reagent. 

Reagent A: 2 % Na2CO3 in 0.1 N NaOH. 

Reagent B: 0.5% CuSO4.5H2O in sodium potassium tartrate. 
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The alkaline copper reagent was made by mixing 50 ml of reagent A and 1 ml of 

reagent B. 

b. Folin – Ciocalteu Phenol Reagent 

Folin – Ciocalteu Phenol Reagent is commerciaaly available which is diluted with 

distilled water in the ratio 1:2. 

c. 0.1 N NaOH. 

d. 10% TCA. 

e. protein (stock) standard solution: 100 mg % Bovine serum albumin in 0.1 N NaOH. 

Working standard: 10 ml of the stock was diluted to 100 ml with distilled water. 

Procedure: 

Pipette out 0.2 ml of tissue homogenate to the test tube and added 1 ml of 10 % TCA. 

The tubes were centrifuged at 5000 g for 10 minutes. The supernatant was discarded 

and the precipitate was dissolved in 1 ml of 0.1 N NaOH. Added 5 ml of alkaline copper 

reagent and kept for 10 minutes at room temperature. After 10 minutes added 0.5 ml 

Foline-Ciocalteu phenol reagent kept in dark for 30 minutes. The absorbance was read 

at 620 nm against a reagent blank. A set of graded volumes of protein standard were 

also run simultaneously. The values are expressed as mg of protein / g wet wt. of tissue. 

 

Estimation of Glycogen 

Glycogen was estimated by the method of Seifter et al., (1950) 

 

Principle:- 

Glycogen present in tissue is first hydrolyzed to glucose and then is estimated per 

known weight of tissue using conversion factor 1.11(1 gm glycogen yield 1.11 gm of 

glucose on hydrolysis). Fresh tissue is digested in hot KOH solution and glycogen 

precipitation are suspended in water. This suspension is treated with Anthrone reagent 

prepared in sulfuric acid. Sulfuric acid hydrolyses glycogen to glucose which in turn 

reduces Anthrone to develop green color. The color intensity is proportional to amount 

of glucose present in solution. This solution is read at 620 nm (red filter.) 

Reagents: 

a.30% KOH: 30 gm KOH pellets dissolved and made up to 100 ml in distilled water. 
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b.95% ethyl alcohol: 95 ml ethyl alcohols made up to volume 100 ml with distilled 

water. 

c. (Freshly prepared) Anthrone reagent (2 mg/ml): prepare in 95% pure sulfuric acid. 

d. std. glucose solution:  

   stock solution: - 30 mg glucose dissolved in 100ml distilled water. 

    working solution:-1 ml stock solution dissolved and made up to 100 ml distilled 

water. 

Procedure:- 

Remove fresh tissue from animal’s body and blot it free of blood and body fluids. Take 

known weight of tissue and add it to test tube containing 2 ml KOH solution. Digest 

tissue by placing test tube in boiling water bath. Allow test tube to cool and then add 2.5 

ml ethyl alcohol. Place test tube in boiling water bath until few bubbles appears in 

solution. Centrifuged at 3000 RPM for 40 minutes. Discard the supernatant and allow 

tubes to drain off dissolved precipitation in known quantity of distilled water and note 

the dilution factors. Label three test tubes as standard, blank and sample. Add 1ml 

sample solution, 1ml working standard solution and 1ml distilled water in these tubes 

respectively.Place tubes in ice bath and add 4 ml Anthrone reagent in each tubes. Shake 

tubes in ice bath and take reading at 620 nm on a spectrophotometer. 

 

Estimation of Lipid 

Lipid was estimated by the method of Folch et al., (1957) 

Principle: 

Lipid content present in tissue is measured gravimetrically by this method 

Reagents: 

a. chloroform methanol solution: Chloroform methanol mixture is made in 2:1 ratio. 

b.1% calcium chloride solution: 1 gm calcium chloride dissolved in 100 ml of distilled 

water 

Procedure:- 

Take known amount of tissue and crush it in test tube with the help of sand. Add 5 ml 

chloroform-methanol mixture (2:1) and 2 ml of 1 % calcium chlorides. Allow the two 

layers to separate and leave the sample overnight. Next day remove the upper layer and 
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decant the remaining fluid in another test tube. this is done using watt man filter paper 

no. 1 to remove tissue debris from this solution take 2 ml in pre weighted  lipid tubes 

and keep it in over at 60 ºc till the tubes dry. After tubes dry weight tube again and note 

the difference in weight. 

 

Estimation of Cholesterol 

Cholesterol was estimated by the method of Crawford et al., (1958) 

Principle: 

This method depends on interaction of ferric chlorides and sulfuric acid with cholesterol 

in CH3COOH solution. The resulting red purple color is measured 

spectrophotometrically and compared with std. the content of lipid cholesterol in dry 

lipid sample determines intensity of color but exact reaction is however not known. 

Reagents: 

a. Ferric chloride stock solution: 2.5 gm ferric chloride dissolved in 50 ml glacial acetic 

acid. 

b. Ferric chloride working solution: 1 ml of stock solution diluted to 50 ml with glacial 

acetic acid. 

c. Standard cholesterol stock solution: Weight exactly 20 mg of cholesterol and make 

up to 50 ml in volumetric flask with glacial acetic acid. This will serve as stock 

solution. 

d. Working std solution: Take 5 ml of stock and dissolve it to 100 ml with glacial acetic 

acid to form working std solution. 

Procedure: 

Take fresh tissue and grind it with sand. Add chloroform: methanol mixture and extract 

total lipid in given tissue. Dissolved lipid in known quantity f chloroform: methanol 

mixture. Add 3 ml of ferric chloride colored reagent in sample, standard and blank. Boil 

it for 5 minutes and cool it in ice-bath. Mix it by swirling slowly. Read after 30 minutes 

at 540 nm.  

 

Assay of Lactate Dehyrogenase (LDH) (E.C.1.1.1.27) 

Lactate Dehydrogenase was assayed according to the method of king (1965a). 
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Principle: 

LDH catalyzes the oxidation of lactate to pyruvate accompanied by the simultaneous 

reduction of NAD to NADH. LDH activity in serum is proportional to the increase in 

absorbance due to the reduction of NAD. 

Reagents: 

a. 0.1 M glycine buffer. 

b. Buffered substrate: Dissolved 2.76 g of lithium lactate in 125 ml of glycine buffer 

containing 75 ml of 0.1 N NaOH to adjust the pH to 10. Prepare this just prior to use. 

c. 0.4 N NaOH. 

d. Dissolved 5.0 mg of NAD
+
 in 1.0 ml of distilled water. Prepared this just before use. 

e. 2. 4 – dinitrophenyl hydrazine (DNPH) reagent: dissolved 200 mg of DNPH in 85 ml 

of concentrated HCl and made up to 1 litre with distilled water and prepared fresh 

each time. 

Procedure: 

To 1.0 ml of the buffered substrate, added 0.2 ml of sample and incubated at 37⁰ C for 

15 minutes. After adding 0.2 ml of NAD
+
 solution, continues the incubation for another 

30 minutes and then added 1.0 ml of DNPH reagent. Incubated the mixture for a period 

of 15 minutes at 37⁰ C. Then added 7.0 ml of 0.4 N NaOH solution and measured the 

colour developed at 520 nm in a spectrophotometer. Treated the standards also in the 

same manner along with blank. The enzyme activity was expressed as µ moles of 

puruvate liberated / h / mg protein. 

 

Estimation of Pyruvate 

Pyruvate was estimated by the method of Friedman and Haugen (1943). 

Reagents: 

a. TCA: 10% 

b. 2,4 – Dinitrophenyl hydrazine reagent (DNPH): 0.2% 

c. 2.5 N NaOH 

d. Pyruvate standard: Dissolved 125 mg of sodium pyruvate in 10 ml of 0.1 N H2SO4 

and diluted to 100 ml with 0.1 N H2SO4. 
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Procedure: 

5 % homogenate of liver and 10% homogenate of gills, kidney and muscle tissues were 

prepared in 10% TCA and centrifuged at 1000 g for 15 minutes. To 2.0 ml of 

supernatant, 0.5 ml of 0.1% 2,4 – DNPH reagent was added and the tubes were kept at 

room temperature for 5 minutes and 3.0 ml of 2.5 N NaOH solution was added. After 10 

minutes the absorbance was read at 540 nm in a spectrophotometer against a reagent 

blank. The blank consisted of 2.0 ml of 10% TCA, 0.5 ml of 0.1% 2,4 – DNPH and 3.0 

ml of 2.5 N NaOH solutions. Treated the standards also in the same manner. The values 

were expressed as µ moles of pyruvate / g wet wt. of tissue. 

 

Assay of Alanine aminotransferase (ALT) (EC 2.6.1.2) 

Aspartate aminotrasferase was assayed by the method of Mohun and Cook (1957). 

Principle: 

In this reaction, L-Alanine and alpha-ketoglutarate react in the presence of GPT in the 

sample to yield pyruvate and L-glutamate. Pyruvate is reduced by lactate dehydrogenase 

to yield lactate with the oxidation of NADH to NAD. The reaction is monitored by 

measurement of the decrease in absorbance of NADH at 340 nm.The rate of reduction 

in absorbance is proportional to GPT activity in sample 

Reagent: 

a. buffered substrate (0.1 M phosphate buffer, pH 7.4; 0.2 M DL – alanine; 2mM 2 – 

oxoglutarate). 

b. 2,4 – Dinitro phenyl hydrazine (DNPH). 

c. Standard pyruvate: Dissolved 11.01 mg of sodium pyruvate in 100 ml of distilled 

water. 

e. 0.33 M sucrose. 

Procedure: 

10 % homogenate fo gills, liver, kidney and muscle were prepared in 0.33 M sucrose 

solution and centrifuged at 1000 g for 15 minutes. The supernatant obtained was used as 

the enzyme source. Pipette out 1 ml buffered substrate into test and control. Added 0.2 

ml of the enzyme source into the test and incubated the tunes at 37⁰C for 60 minutes. 
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After incubation, 0.2 ml enzyme was added to the control. 1 ml of 2,4 – DNPH reagent 

was added and kept at room temperature or 20 minutes. The reaction was stopped by the 

addition of 10 ml of 0.4 N NaOH, vortexed and kept at room temperature for 5 minutes. 

The absorbance was measured at 540 nm in a spectrophotometer against a reagent 

blank. The AST activity were expresses as µ moles of pyruvate liberated / h / mg 

protein. 

 

Assay of Aspartate aminotransferse (AST) (EC 2.6.1.1) 

Alanine aminotranferase was assayed by the method of Mohun and Cook (1957). 

Principle: 

In this reaction L-Aspartate and Alpha-Ketoglutarate react in the presence of GOT in 

the sample to yield oxaloacetate and L-glutamate. The Oxaloacetate is reduced by 

malate dehydrogenase (MDH) to yield L-malate with the oxidation of NADH to NAD. 

The reaction is monitored by measurement of the decrease in absorbance of NADH at 

340 nm. The rate of reduction in absorbance is proportional to GOT activity in sample. 

Reagents: 

a. Buffered substrate (0.1 M phosphate buffer, pH 7.4; 0.2 M DL – alanine; 2mM 2 – 

oxoglutarate). 

b. 2,4 – Dinitro phenyl hydrazine (DNPH). 

c. 0.4 N NaOH. 

d. Standard pyruvate: Dissolved 11.01 mg of sodium pyruvate in 100 ml of distilled 

water. 

e. 0.33 M sucrose. 

Procedure: 

10% homogenate of gills, liver, heart, kidney and muscle were prepared in 0.33 M 

sucrose solution and centrifuged at 1000 g for 15 minutes. The supernatant obtained 

was used as the enzyme source, pipette out 1 ml buffered substrate into test and control. 

Added 0.2 ml the enzyme source into the test and incubated the tubes at 37⁰C for 60 

minutes. After incubation, 0.2 ml enzyme was added to the control. 1 ml of 2,4 – DNPH 

reagent was added and kept at room temperature or 20 minutes. The reaction was 

stopped by the addition of 10 ml of 0.4 N NaOH, vortexed and kept at room 
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temperature for 5 minutes. The absorbance was measured at 540 nm in a 

spectrophotometer against a reagent blank. The AST activity were expresses as µ moles 

of pyruvate liberated / h / mg protein. 

 

Assay of Alkaline phosphatase (ALP) (EC 3.1.3.1) 

Alkaline phosphatase was assayed by the method of king and king (1954). 

Principle: 

Alkaline Phosphatase in a sample, hydrolyses para-nitrophenyl phosphate into 

paranitrophenol and phosphate, in the presence of magnesium ions. The rate of increase 

in absorbance of the reaction mixture at 405nm due to liberation of paranitrophenol is 

proportional to the alkaline phosphatase activity. 

Reagent: 

a. Substrate: Disodium phenyl phosphate (10 mmol/L). 

b. Buffer: Sodium carbonate – bicarbonate buffer (100 mmol/L). 

c. Buffered substrate: Mixed equal volumes of substrate and buffer, this had a pH of 10. 

d. Stock phenol standard: 100 mg % in 0.1 N HCl. Working standard: 1 mg % 

e. Sodium Hydroxide (NaOH): 0.5 N. 

f. Sodium Bicarbonate (NaHCO3): 0.5 N. 

g. 4 – Aminoantipyrine: 6 g/L in water. 

h. Potassium ferricyanide: 24 g/L in water. 

Procedure: 

10% homogenate of gills, liver, kidney and muscle were prepared in 0.33 M sucrose 

solution and centrifuged at 1000 g for 15 minutes. The supernatant into test and control, 

and incubated for a few minutes at 37⁰C. Then added 50 µl of enzyme source to the 

control. This was followed by the addition of 1 ml of 4 – aminoantipyrine and 1 ml of 

potassium ferricyanide to both the tubes. Read the absorbance at 520 nm. Treat the 

blank and standard also similarly. The values were expressed as mg of phenol liberated / 

min/ mg protein. 
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Assay of Glutamate dehydrogenase (GDH) (EC 1.4.1.3) 

Glutathione dehydrogenase was assyed by the method of Plummer (1987). 

 

Reagents 

a. sodium phosphate buffer (0.1 M, pH 7.4) 

b. 2 – oxoglutarate (0.15 m), prepared in phosphate buffer and pH adjusted to 7.4. 

c. Ammonium acetate (0.75 M), prepared in phosphate buffer and pH adjusted to 7.4. 

d. EDTA (30mM), prepared in phosphate buffer and pH adjusted to 7.4. 

e. NADH (2.5 mg/ml in phosphate buffer, prepaed fresh). 

f. Triton X-100. 

Procedure: 

10% homogenate of gills and 5% homogenate of liver, kidney, gills and muscle were 

prepared in 0.33 M sucrose solution and centrifuged at 1000 g for 15 minutes. The 

supernatant obtained was used as the enzyme source, o.1 ml NADH, 0.2 ml Ammonium 

acetate, 0.2 ml EDTA and 0.1 ml Triton X-100. The about mixture was equilibrated at 

room temperature for 10 minutes. Started the reaction by adding 0.1 ml of 

2.oxoglutarate and the rate of change of extinction at 340 nm with time were noted. 

Molar Extinction Coefficient of NADH is 6.3 x 10
3
 litres /mol/cm. The enzyme activity 

was calculated as micromoles of NADH oxidized / minute / mg protein. 

 

Statistical Analysis: 

The statistical analysis was carried out using the software Graph pad prism 5 package. 

For determining the significant difference between different treatments in biochemical 

parameters, Two-way ANOVA followed by Tukey’s test for multiple comparisons 

between different concentration of IMI and CZ was done. Significance level (P value) 

was set at 0.05 in all tests. 
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RESULTS: 

PROTEIN: 

Two-way ANOVA followed by Tukey’s test showed that there was significant decrease 

in protein level in all the tissues of both the fishes exposed to IMI and CZ compared to 

control (Table 3.1 and Fig 3.1). Among the treated group CZ treated group showed the 

least values compared to control. 

 

Table: 3.1 Effect of IMI and CZ on total protein level (mean ± SEM) in 

O.mossambicus and L.rohita. 

Total Protein 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD  HD 

Gills 
41.76 

±0.29 

43.99 

±0.05*** 

46.61 

±0.16*** 

41.76 

±0.29 

42.91 

±0.14*** 

42.99 

±0.20*** 

Liver 
30.32 

±0.38 

27.98 

±0.15*** 

24.49 

±0.12*** 

30.32 

±0.38 

30.84 

±0.1***5 

28.54 

±0.10*** 

Kidney 
32.53 

±0.29 

35.76 

±0.01*** 

38.03 

±0.09*** 

32.53 

±0.29 

33.69 

±0.20*** 

33.56 

±0.15*** 

Muscle 
50.08 

±0.20 

44.97 

±0.29*** 

36.12 

±0.20*** 

50.08 

±0.20 

46.99 

±0.29*** 

45.76 

±0.25*** 

L
.r
o
h
it
a
 

Gills 
60.81 

±0.95 

63.89 

±1.04 

65.71 

±0.70 

60.81 

±0.95 

64.32 

±0.60 

62.71 

±1.01 

Liver 
103.98 

±1.39 

78.00 

±0.70*** 

59.57 

±1.77*** 

103.98 

±1.39 

90.67 

±0.70*** 

79.00 

±0.72*** 

Kidney 
77.13 

±1.98 

78.98 

±2.08* 

82.31 

±2.02* 

77.13 

±1.98 

79.83 

±2.13 

83.24 

±0.58* 

Muscle 
63.26 

±1.98 

79.00 

±3.69 

85.00 

±0.75*** 

63.26 

±1.98 

72.17 

±0.62*** 

78.00 

±5.17*** 

� Value are expressed as mg protein / g wet wt of tissue. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.1 Effect of IMI and CZ on total protein level (mean ± SEM) in 

O.mossambicus and L.rohita. 
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GLYCOGEN: 

Two-way ANOVA followed by Tukey’s test showed that there was significant decrease 

in glycogen level in liver, muscle and gills tissues of both the fishes exposed to IMI and 

CZ compared to control (Table 3.2 and Fig 3.2). Whereas, muscle tissue of L.rohita did 

not show any significance difference expose to both IMI and CZ. 

 

Table: 3.2 Effect of IMI and CZ on level of glycogen (mean ± SEM) in 

O.mossambicus and L.rohita. 

Glycogen 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD  HD 

Gills 
1.130 

±0.443 

0.990 

±0.171 

0.740 

±0.451 

1.130 

±0.443 

1.076 

±0.433 

0.960 

±0.197 

Liver 
1.870 

±0.015 

1.648 

±0.070 

1.508 

±0.054 

1.870 

±0.015 

1.750 

±0.040 

1.670 

±0.045* 

Kidney 
0.858 

±0.264 

0.560 

±0.197 

0.212 

±0.049 

0.858 

±0.264 

0.680 

±0.350 

0.520 

±0.229 

Muscle 
1.694 

±0.014 

1.334 

±0.025 

1.258 

±0.030 

1.694 

±0.014 

1.454 

±0.017 

1.380 

±0.040 

L
.r
o
h
it
a
 

Gills 
8.990 

±0.66 

6.370 

±0.83 

4.81 

±0.88 

8.99 

±0.66 

8.08 

±0.70 

7.78 

±0.75 

Liver 
146.99 

±2.54 

112.83 

±1.32 

98.93 

±1.07 

146.99  

±2.54 

132.18 

±1.77 

121.83 

±1.49 

Kidney 
77.13 

±1.98 

78.83 

±2.07 

82.31 

±2.26 

77.13 

±1.98 

77.93 

±2.02 

79.83 

±2.13 

Muscle 
1.380 

±0.85 

0.970 

±0.60 

0.79 

±0.49 

1.38 

±0.85 

1.21 

±0.75 

1.07 

±0.66 

� Values are expressed as mg protein / g wet wt of tissue. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.2 Effect of IMI and CZ on level of glycogen (mean ± SEM) in 

O.mossambicus and L.rohita. 
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BLOOD GLUCOSE: 

Two-way ANOVA followed by Tukey’s test showed that there was significant increase 

in blood glucose in both the fishes exposed to IMI and CZ compared to control (Table 

3.3 and Fig 3.3). 

Table:3.3 Effect of IMI and CZ on blood glucose level (mean ± SEM) in 

O.mossambicus and L.rohita. 

 Blood Glucose 

 IMI CZ 

 C LD HD C LD HD 

O.mossaobicus 
65.549 

±0.698 

71.79 

±0.45** 

84.038 

±0.306** 

65.356 

±0.335 

75.86 

±0.245 

86.728 

±0.215** 

L.rohita 
39.7952 

±0.593 

42.3492 

±0.407** 

56.8999 

±1.26** 

40.49 

±0.213 

50.08 

±0.245** 

62.702 

±0.345** 

� Values are expressed as mg/dl. 

� Each value represents the mean ± SEM of six separate experiments.  

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 

 

 

Figure :3.3  Effect of IMI and CZ on blood glucose level (mean ± SEM) in 

O.mossambicus and L.rohita. 
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Lipid:  

Two-factor ANOVA followed by Tukey’s test showed that there was significant dose 

dependent decrease in all the tissue of both the fishes exposed to both the chemicals as 

compared to control. (Table 3.4 and Fig 3.4).  

Table: 3.4 Effect of IMI and CZ on level of Lipid (mean ± SEM) in O.mossambicus 

and L.rohita. 

LIPID 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD  HD 

Gills 
22.91 

±0.48 

18.99 

±0.47* 

12.11 

±0.51*** 

22.91 

±0.48 

20.87 

±0.54*** 

19.05 

±0.50*** 

Liver 
30.25 

±0.34 

22.71 

±1.38*** 

22.70 

±2.37*** 

30.25 

±0.34 

29.76 

±1.33*** 

26.09 

±2.37*** 

Kidney 
25.87 

±0.57 

19.87 

±0.44*** 

18.79 

±0.44*** 

25.87 

±0.57 

22.56 

±0.69* 

20.21 

±0.60*** 

Muscle 
27.40 

±0.57 

18.07 

±2.34*** 

13.07 

±1.81*** 

27.40 

±0.57 

24.43 

±1.68*** 

17.49 

±1.81*** 

L
.r
o
h
it
a
 

Gills 
9.870 

±0.039 

6.910 

±0.004** 

5.100 

±0.005*** 

9.870 

±0.039 

8.710 

±0.005*** 

7.590 

±0.003*** 

Liver 
14.600 

±0.015 

11.100 

±0.018** 

8.070 

±0.004*** 

14.60 

±0.015 

13.180 

±0.015*** 

10.880 

±0.005*** 

Kidney 
10.680 

±0.004 

8.710 

±0.004* 

5.990 

±0.006*** 

10.68 

±0.004 

9.570 

±0.004*** 

8.880 

±0.004*** 

Muscle 
3.660 

±0.005 

2.010 

±0.005* 

1.210 

±0.009** 

3.660 

±0.005 

3.320 

±0.044*** 

2.980 

±0.005*** 

� Values are expressed as mg / g wet wt of tissue. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.4 Effect of IMI and CZ on level of Lipid (mean ± SEM) in 

O.mossambicus and L.rohita. 
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CHOLESTEROL: 

Two-factor ANOVA followed by Tukey’s test showed that there was significant 

vatiation (P<0.001) in cholestrol level between treatments (Table 3.5 and Fig 3.5). 

Cholesterol level showed significant decrease with increase concentration of IMI and 

CZ in all the tissue of both the fishes.   

Table: 3.5 Effect of IMI and CZ on level of Cholesterol (mean ± SEM) in 

O.mossambicus and L.rohita. 

cholesterol 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
3.150 

±0.399 

2.330 

±0.541*** 

1.992 

±0.501*** 

3.150 

±0.399 

2.980 

±0.399 

2.380 

±0.468*** 

Liver 
7.654 

±0.288 

6.864 

±0.140*** 

6.296 

±0.123*** 

7.654 

±0.288 

7.070 

±0.009*** 

6.782 

±0.083*** 

Kidney 
4.198 

±0.078 

3.208 

±0.050*** 

2.780 

±0.039*** 

4.198 

±0.078 

3.982 

±0.040 

3.770 

±0.032** 

Muscle 
5.120 

±0.497 

4.092 

±0.388*** 

3.428 

±0.479*** 

5.120 

±0.497 

4.762 

±0.435* 

4.060 

±0.399*** 

L
.r
o
h
it
a
 

Gills 
7.810 

±0.005 

5.120 

±0.004** 

3.790 

±0.025** 

7.810 

±0.005 

6.230 

±0.003*** 

5.010 

±0.003*** 

Liver 
12.980 

±0.040 

9.810 

±0.002** 

6.870 

±0.003*** 

12.98 

±0.040 

10.01 

±0.005*** 

8.790 

±0.002*** 

Kidney 
9.810 

±0.003 

6.310 

±0.001*** 

4.230 

±0.006*** 

9.810 

±0.003 

8.120 

±0.004*** 

7.560 

±0.001*** 

Muscle 
8.790 

±0.005 

6.180 

±0.044** 

4.170 

±0.015** 

8.790 

±0.005 

7.180 

±0.008*** 

6.780 

±0.005*** 

� Values are expressed as mg / g wet wt of tissue. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.5 Effect of IMI and CZ on level of Cholesterol (mean ± SEM) in 

O.mossambicus and L.rohita. 
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ALANINE AMINOTRANSFERASE: 

Two-factor ANOVA followed by Tukey’s test showed that there was significant 

elevation in ALT activity in all the tissue of both the fishes on exposure of IMI and CZ 

compared to control (Table: 3.6 and Fig 3.6).  

Table: 3.6 Effect of IMI and CZ on alanine aminotransferase activity (mean ± 

SEM) in O.mossambicus and  L.rohita. 

ALT 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
1.180 

±0.042 

2.660 

±0.040*** 

2.240 

±0.300*** 

1.180 

±0.042 

2.150 

±0.031*** 

1.970 

±0.072*** 

Liver 
3.850 

±0.040 

8.790 

±0.020*** 

12.240 

±0.242*** 

3.850 

±0.040 

6.980 

±0.291*** 

9.170 

±0.076*** 

Kidney 
2.740 

±0.054 

5.270 

±0.035*** 

7.480 

±0.322*** 

2.740 

±0.054 

4.450 

±0.215*** 

5.970 

±0.112*** 

Muscle 
2.660 

±0.035 

3.840 

±0.063*** 

3.170 

±0.438 

2.660 

±0.035 

3.090 

±0.040** 

2.890 

±0.081 

L
.r
o
h
it
a
 

Gills 
2.260 

±0.08 

4.890 

±1.25** 

6.97 

±1.25** 

2.26 

±0.08 

3.13 

±0.04 

4.45 

±0.57*** 

Liver 
15.35 

±2.09 

20.98 

±0.87** 

24.89 

±0.48** 

15.35 

±2.09 

17.17 

±1.38** 

19.83 

±0.97*** 

Kidney 
2.570 

±1.15 

5.910 

±0.97*** 

11.71 

±0.79 

2.57 

±1.15 

4.89 

±1.07*** 

6.01 

±1.06*** 

Muscle 
3.980 

±0.42 

6.130 

±0.79** 

10.33 

±0.12** 

3.98 

±0.42 

5.01 

±0.30 

6.17 

±0.23*** 

� Values are expressed as µmoles of pyruvate liberated / h/ mg protein. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.6 Effect of IMI and CZ on alanine aminotransferase activity (mean ± 

SEM) in O.mossambicus and  L.rohita. 
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ASPARTATE AMINOTRANSFERASE: 

AST activity was found to be significantly elevated in tissues such as liver, kidney and 

muscle of both the treated groups compared to control in both the fishes. In the IMI and 

CZ treated group liver, muscle and kidney of O.mossambicus and L.rohita showed 

significantly elevated AST activity compared to control group. Gills of both the treated 

groups did not show any significant variation on IMI exposure as compared to control 

(Table 3.7 and Fig 3.7).  

Table: 3.7 Effect of IMI and CZ on aspartate aminotransferase activity (mean ± 

SEM) in O.mossambicus and  L.rohita. 

AST 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
1.260 ± 

0.094 

1.140 

±0.264 

1.310 ± 

0.156 

1.260 

±0.094 

1.220 ± 

0.025*** 

1.460 

±0.007 

Liver 
3.680 

±0.089 

8.760 

±0.058*** 

10.240 ± 

0.282*** 

3.681 

±0.089 

6.870 

±0.081*** 

9.140 

±0.015*** 

Kidney 
2.750  

±0.040 

6.280 

±0.039*** 

7.440 ± 

0.259*** 

2.749 

±0.040 

4.650 

±0.054*** 

6.150 

±0.008*** 

Muscle 
2.500 

±0.027 

3.800 

±0.030*** 

3.080 

±0.429* 

2.500 

±0.027 

2.870 

±0.028 

2.590 

±0.029*** 

L
.r
o
h
it
a
 

Gills 
3.920 

±0.08 

8.090 

±1.25 

17.99 

±1.25 

3.92 

±0.08 

4.13 

±0.04 

6.81 

±0.57 

Liver 
12.65 

±2.09 

19.10 

±0.87* 

27.38 

±0.87*** 

12.65 

±2.09 

14.21 

±1.38** 

20.87 

±0.97*** 

Kidney 
17.72 

±1.15 

22.30 

±0.97 

28.13 

±0.97*** 

17.72 

±1.15 

19.83 

±1.07*** 

21.48 

±1.06*** 

Muscle 
5.870 

±0.42 

28.13 

±0.79 

11.38 

±0.79*** 

5.87 

±0.42 

7.98 

±0.30*** 

9.37 

±0.23*** 

� Values are expressed as µmoles of pyruvate liberated / h/ mg protein. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.7 Effect of IMI and CZ on aspartate aminotransferase activity (mean ± 

SEM) in O.mossambicus and  L.rohita. 
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ALKALINE PHOSPHATASE: 

Statistical analysis showed significant (P<0.001) variation in ALP activity in liver, 

kidney, gill and muscle tissue in O.mossambicus exposed to IMI and CZ compared to 

control. Gill of CZ treated group showed a significant (P<0.001) elevation at high dose 

as compared to control whereas it did not showed any significant changes at low dose as 

compared to control. Whereas, there was a significant elevation in all the tissue of 

L.rohita exposed to both the agrochemicals as compared to control (Table: 3.8 and Fig 

3.8). 

Table: 3.8 Effect of IMI and CZ on alkaline phosphatase activity (mean ± SEM) in 

O.mossambicus and  L.rohita. 

ALP 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
3.190  

±0.026 

8.600 ± 

0.011*** 

11.880 ± 

0.443*** 

3.190 ± 

0.026 

4.080 ± 

0.020 

7.530 ± 

0.401*** 

Liver 
7.420 ± 

0.007 

10.420 ± 

0.029*** 

12.878 ± 

0.020*** 

7.420 ± 

0.007 

8.990 ± 

0.020*** 

9.798 

±0.389*** 

Kidney 
4.980 ± 

0.021 

7.130 ± 

0.010*** 

9.578 ± 

0.872*** 

4.980 ± 

0.021 

5.980 ± 

0.006* 

8.120 ± 

0.487*** 

Muscle 
2.720 ± 

0.031 

7.680 ± 

0.027*** 

9.980 ± 

0.496*** 

2.720 ± 

0.031 

6.270 ± 

0.008*** 

9.670 ± 

0.432*** 

L
.r
o
h
it
a
 

Gills 
43.78 

±0.451 

76.71 

±0.003** 

102.71 

±0.038*** 

43.78 

±0.451 

61.81 

±0.020*** 

82.78 

±0.035*** 

Liver 
98.88 

±0.443 

131.91 

±0.002** 

158.31 

±0.025*** 

98.88 

±0.443 

118.73 

±0.022*** 

128.48 

±0.463*** 

Kidney 
39.87 

±0.001 

56.11 

±0.001* 

82.17 

±0.015** 

39.87 

±0.001 

47.31 

±0.038*** 

58.12 

±0.008*** 

Muscle 
87.91 

±0.005 

121.87 

±0.015*** 

108.31 

±0.044*** 

87.91 

±0.005 

99.78 

±0.033*** 

101.81 

±0.005*** 

� Values are expressed as mg of phenol liberated / min / mg protein. 

� Each value represents the mean ± SEM of six separate experiments.  

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.8 Effect of IMI and CZ on alkaline phosphatase activity (mean ± SEM) 

in O.mossambicus and  L.rohita. 
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PYRUVATE: 

Two way ANOVA followed by Tukey’s test showed that there was significant variation 

in pyruvate level between the IMI and CZ exposed fishes. On exposure of IMI and CZ, 

gills, liver and kidney of both the fish showed a significantly increased pyruvate level 

compared to control.  Whereas, in L.rohita, muscle showed a significantly decreased 

pyruvate level on CZ exposure compared to control (Table 3.9 and Fig 3.9) 

 

Table: 3.9 Effect of IMI and CZ on level of pyruvate (mean ± SEM) in 

O.mossambicus and L.rohita. 

Pyruvate 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
3.190 

±0.103 

3.350 

±0.058** 

3.980 

±0.090*** 

3.190 

±0.103 

3.230 

±0.103 

4.270 

±0.076*** 

Liver 
7.330 

±0.123 

9.870 

±0.081*** 

10.780 

±0.123*** 

7.330 

±0.123 

9.254 

±0.089*** 

10.130 

±0.094*** 

Kidney 
5.950 

±0.040 

6.230 

±0.031*** 

6.490 

±0.100*** 

5.950 

±0.040 

5.924 

±0.067 

6.380 

±0.076*** 

Muscle 
5.390 

±0.085 

4.390 

±0.089*** 

4.270 

±0.130*** 

5.390 

±0.085 

5.098 

±0.015*** 

4.350 

±0.084*** 

L
.r
o
h
it
a
 

Gills 
1.030 

±0.516 

1.830 

±0.004* 

2.120 

±0.024** 

1.030 

±0.516 

1.140 

±0.015 

1.570 

±0.003* 

Liver 
1.990 

±0.002 

3.120 

±0.001** 

5.980 

±0.003*** 

1.990 

±0.002 

2.250 

±0.025* 

3.340 

±0.002*** 

Kidney 
1.090 

±0.020 

1.750 

±0.024* 

1.950 

±0.002** 

1.090 

±0.020 

1.140 

±0.001 

1.320 

±0.024* 

Muscle 
1.500 

±0.005 

1.310 

±0.018 

1.060 

±0.015** 

1.500 

±0.005 

1.370 

±0.007 

1.120 

±0.005* 

� Values are expressed as µmoles of pyruvate / g wet wt of tissue. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.9 Effect of IMI and CZ on level of pyruvate (mean ± SEM) in 

O.mossambicus and L.rohita. 
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LACTATE DEHYDROGENASE: 

LDH activity in different tissues of O.mossambicus and L.rohita treated with different 

agro-chemicals showed significant variations compared to control (Table 3.10 and Fig 

3.10). In the Curzate treated group, tissues such as liver, kidney and muscle showed 

significantly elevated activity as compared to control. Among the tissue of Imidacloprid 

treated group the gills and muscle showed a significantly elevated activity and the liver 

and kidney showed a significantly decreased activity compared to control. 

Table: 3.10 Effect of IMI and CZ on Lactate dehydrogenase activity (mean ± 

SEM) in O.mossambicus and  L.rohita. 

LDH 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
1.160 

±0.040 

1.370 

±0.441 

0.670 

±0.013 

1.160 

±0.040 

1.280 

±0.021 

1.970 

±0.080*** 

Liver 
2.710 

±0.123 

2.230 

±0.040 

4.680 

±0.258*** 

2.710 

±0.123 

2.540 

±0.022 

3.768 

±0.152*** 

Kidney 
3.170 

±0.075 

1.810 

±0.035*** 

3.370 

±0.174*** 

3.170 

±0.075 

2.160 

±0.020*** 

2.990 

±0.286 

Muscle 
7.740 

±0.089 

9.810 

±0.049*** 

10.040 

±0.024*** 

7.740 

±0.089 

8.980 

±0.029*** 

9.790 

±0.058*** 

L
.r
o
h
it
a
 

Gills 
3.810 

±0.08 

3.560 

±1.25 

3.21 

±1.25 

3.81 

±0.08 

3.71 

±0.04 

3.62 

±0.57 

Liver 
8.790 

±2.09 

8.610 

±0.87 

10.17 

±0.48* 

8.79 

±2.09 

8.69 

±1.38 

9.01 

±0.97 

Kidney 
7.810 

±1.15 

7.690 

±0.97 

8.79 

±0.79 

7.81 

±1.15 

7.80 

±1.07 

8.01 

±1.06*** 

Muscle 
12.16 

±0.42 

20.98 

±0.79 

22.13 

±0.12*** 

12.16 

±0.42 

16.91 

±0.30*** 

19.81 

±0.23*** 

� Values are expressed as µmoles of pyruvate liberated / h/ mg protein. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.10 Effect of IMI and CZ on Lactate dehydrogenase activity (mean ± 

SEM) in O.mossambicus and  L.rohita. 
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GLUTAMATE DEHYDROGENASE: 

GDH activity showed statistically significant (P<0.05) increase in liver and gills tissue 

of O.mossambicus exposed to IMI and CZ. Whereas on exposure of IMI GDH activity 

showed a significant increase in all the tissue L.rohita and on CZ exposure only liver, 

kidney and muscle showed a significant increase at high dose compared to control 

(Table 3.11 and Fig 3.11).  

Table: 3.11 Effect of IMI and CZ on Glutamate dehydrogenase activity (mean ± 

SEM) in O.mossambicus and  L.rohita. 

GDH 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
0.060 ± 

0.01 

0.074 ± 

0.026 

0.092 ± 

0.027 

0.06 ± 

0.01 

0.063 ± 

0.008 

0.084 ± 

0.008* 

Liver 
0.086 ± 

0.02 

0.097 ± 

0.008 

0.126 ± 

0.026* 

0.086 ± 

0.02 

0.093 ± 

0.012 

0.112 ± 

0.014* 

Kidney 
0.062 ± 

0.012 

0.049 ± 

0.007 

0.076 ± 

0.021 

0.062 ± 

0.01 

0.054 ± 

0.008 

0.068 ± 

0.012 

Muscle 
0.05 ± 

0.007 

0.024 ± 

0.007 

0.033 ± 

0.030 

0.05 ± 

0.01 

0.032 ± 

0.013 

0.042 ± 

0.013 

L
.r
o
h
it
a
 

Gills 
0.080 

±0.003 

0.120 

±0.040 

0.190 

±0.003 

0.080 

±0.003 

0.100 

±0.036* 

0.130 

±0.040** 

Liver 
0.180 

±0.002 

0.260 

±0.027 

0.380 

±0.002*** 

0.180 

±0.002 

0.210 

±0.022** 

0.280 

±0.014*** 

Kidney 
0.090 

±0.001 

0.130 

±0.004 

0.180 

±0.044* 

0.090 

±0.001 

0.110 

±0.004** 

0.150 

±0.003** 

Muscle 
0.100 

±0.005 

0.150 

±0.019 

0.230 

±0.010** 

0.100 

±0.005 

0.110 

±0.010* 

0.180 

±0.005** 

� Values are expressed as mg of phenol liberated / min / mg protein. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.11 Effect of IMI and CZ on Glutamate dehydrogenase activity (mean ± 

SEM) in O.mossambicus and  L.rohita. 
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GLUCOSE-6-PHOSPHATASE: 

Two-way ANOVA followed by Tukey’s test showed that there was significant decrease 

in glucose-6-phosphatase activity in both the fishes exposed to IMI and CZ compared to 

control (Table 3.12 and Fig 3.12).  

 

Table: 3.12 Effect of IMI and CZ on glucose-6-phosphatase activity (mean ± SEM) 

in O.mossambicus and L.rohita. 

Glucose – 6 – Po4 

O
.m
o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
4.342 ± 

0.046 

2.178 ± 

0.130*** 

1.654 ± 

0.209*** 

4.342 ± 

0.046 

3.664 ± 

0.389*** 

2.262 ± 

0.046*** 

Liver 
6.98 ± 

0.043 

4.87 ± 

0.086*** 

2.97 ± 

0.172*** 

6.98 ± 

0.043 

5.89 ± 

0.043*** 

4.732 ± 

0.038*** 

Kidney 
2.002 ± 

0.021 

1.658 ± 

0.044** 

0.988 ± 

0.044 

2.002 ± 

0.021 

1.37 ± 

0.111** 

1.792 ± 

0.021 

Muscle 
5.982 ± 

0.010 

3.352 ± 

0.048*** 

1.978 ± 

0.119*** 

5.982 ± 

0.010 

4.88 ± 

0.172*** 

3.454 ± 

0.010*** 

L
.r
o
h
it
a
 

Gills 
5.768 

±0.046 

3.587 

±0.353 

2.456 

±0.209*** 

5.676 

±0.413 

0.752 

±0.305 

3.156 

±0.363 

Liver 
7.321 

±0.432 

5.273 

±0.308** 

3.167 

±0.378** 

7.353 

±0.378 

6.964 

±0.363* 

5.467 

±0.038** 

Kidney 
2.998 

±0.353 

1.658 

±0.392* 

1.687 

±0.418** 

2.002 

±0.258 

2.578 

±0.308 

2.678 

±0.319** 

Muscle 
6.356 

±0.258 

3.988 

±0.048* 

2.976 

±0.155** 

6.555 

±0.010 

5.389 

±0.172 

3.454 

±0.353** 

� Value are expressed as µg of inorganic phosphorus liberated/min/mg protein. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 3.12 Effect of IMI and CZ on glucose-6-phosphatase activity (mean ± 

SEM) in O.mossambicus and L.rohita. 
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Discussion: 

The changes in the biochemical constituents in the gills, muscle, kidney and liver of the 

fish (O.mossambicus and L.rohita) exposed to sub-lethal concentration of IMI and CZ 

at different dose were observed in the present study. The changes in the glycogen, 

protein and lipid profile exhibited a significant decrease in all the tissues in a dose 

dependent manner (Table 3.1, 3.2 & 3.4 and Fig 3.1, 3.2 & 3.4).  

Proteins are indispensable constituents required by organisms in tissue building and 

play a important role on energy metabolism (Yeragi et al., 2003; Remia et al., 2008; 

Pang-Hung et al., 2008). In the present investigation there was an overall decrease in 

the protein content in liver, muscle, kidney and gills (Table 3.1 and Fig 3.1). The 

physiological status of animal is usually indicated by the metabolic status of proteins 

(Nelson and Cox, 2005; Magar and Shaikh, 2012). The depletion in the protein may 

have been due to their degradation and possible utilization for metabolic purposes. 

Furthermore, decreased protein content was found to be maximum in liver followed by 

muscle, kidney and gill respectively, these variations in response of the pesticides in 

both the fishes suggests difference in metabolic calibers of individual tissue 

(Satyanarayana, 2005; Venkataramana et al., 2006). Decrease in the protein content of 

all the tissues is also suggestive of impairment of protein synthesis or increase in the 

rate of its degradation to amino acids due to stress induced pesticide exposure, which 

can result in the production of free amino acids in the tricarboxylic acid cycle for energy 

production (Jenkins et al., 2003; Radha et al., 2005; Naveed et al., 2010; Ganeshwade, 

2011).  The free amino acid pool can be used for ATP production by transamination 

reactions or by gluconeogenic pathway. Thus, the decrease in protein content under 

stress induced by pesticides may be attributed to the utilization to the amino acids in 

various cataboilc reactions. Behavioural responses of fishes, exposed to sub-lethal 

concentration of IMI and CZ, showed that they were under stress condition (Chapter 1). 

It has been reported earlier (Yadav et al., 2007; Tripathi and Singh, 2003) that the 

animal exposed to chemicals obtain extra energy requirement from the tissue protein. 

The depletion of cellular proteins might be caused by one or more of the following 

factors: inhibition of amino acid incorporation, breakdown of protein into amino acids 
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and diffusion out of the cells. The decline in protein content may be related to tissue 

repair and the detoxification mechanism during stress (Neff, 1985; Remia et al., 2008; 

Varadarajan, 2010). Our results are in concurrence with the earlier reported depletion in 

the protein content of O.mossambicus (Vijuen and Steyn 2003; Aniladevi, 2008; 

Varadarajan, 2010; Al-Kahtani, 2011) and L.rohita (Ramesh et al., 1993; Das and 

Mukherjee 2003; Sivaperumal, 2008; Indirabai et al., 2010; Rajput et al., 2012).  

Carbohydrates are the primary and immediate source of energy. As suggested by Arasta 

et al., (1996), in stress condition carbohydrate reserves gets depleted to meet energy 

demand. Glycogen levels are found to be highest in liver as it is the chief organ of 

carbohydrate metabolism in animals, followed by muscle. Liver glycogen is concerned 

with storage and export of hexose units for maintenance of blood glucose and that of 

muscle glycogen is to act as a readily available source of hexose units for glycolysis 

within the muscle itself (Bedii and Kenan, 2005; Sobha et al., 2007). Depletion of 

glycogen in the present study in O.mossambicus and L.rohita was maximum in liver 

followed by muscle, gills and kidney, may be due to direct utilization for energy 

generation, a demand caused by pesticide stress induced hypoxia (Chapter II). During 

stress an organism needs sufficient energy which is supplied from reserved glycogen. 

Thus, in the present study probably the depletion in glycogen level (Table 3.2 and Fig 

3.2) clearly indicates its rapid utilization to meet the enhanced energy demands in fish 

exposed to pesticides (Kawade and Khillare, 2012). Besides, the decrease in the level of 

total protein, and glycogen and concentrations of pesticide caused an increase in the 

glucose level leading to lethargy (Chapter I). The significant increase in blood glucose 

which was dose dependent may be considered to be manifestation of stress induced by 

IMI and CZ exposure (Table 3.3 and Fig 3.3). Glucose increase is a general response of 

fish to acute and sub-lethal pollutant effects (Luskova et al., 2002). As proposed by 

Wedemeyer and Mcleay, (1981) high level of blood glucose is caused by disturbances in 

carbohydrate metabolism due to physical and chemical stress. A variety of pesticides as 

a stressor have been known to stimulate adrenal tissue, resulting in increased level of 

glucocorticoids (Hontela et al., 1996) and catecholamines. Both of these groups of 

hormones produced hyperglycemia.  The dose dependent accumulation of glucose 

reported in this investigation revealed the O.mossambicus and L.rohita exposed to 
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sublethal concentration of both the pesticides became hyperglycaemic (Omoregie et al., 

1990; Bhavan and Geraldine, 1997; Haggag, 2004; Sweilum, 2006; Venkataramana et 

al., 2006). Blood glucose is considered as indicator for stress response in fish (Abdel-

Baky, 2001). The hyperglycaemic condition induced by IMI might be explained in part 

by inhibition of choline esterase (de Aguiar et al., 2004) at neuro-effector sites in the 

head kidney, leading to hyper secretion of cortisol which stimulates the breakdown of 

glycogen to glucose (glycogenolysis) (Witold et al., 2007; Francesco et al., 2008; 

Logaswamy and Remia, 2009). Thus, hyperglycemia can be viewed as a physiological 

response of the fishes to meet the critical need for energy under toxic stress. 

Furthermore, the elevated glucose level observed in CZ exposed fished may be due to 

enhancement of the breakdown of liver glycogen. These findings are in agreement with 

those of Reddy and Leatherland, (1998); Bakhshwan et al., (2009). 

Lipids play very important role in the architectural dynamics of the cell and transport 

mechanism across cell membrane. Any stress is found to change the course of events 

associated with the lipid synthesis. Lipids also contribute to energy production as they 

are having high calorific values (Guyton, 2006) and play a vital role during the 

biochemical adaptations of the animals to stress conditions (Tayyaba et al., 1981; 

Swami et al., 1994). Extensive literature is available on the effects of different 

pesticides on tissue lipid fraction of various animals (Srinivas et al., 1991; Chetty and 

Indira, 1994; Govindan et al., 1994; Martin et al., 2007). In the present study a 

significant decrease in the total lipid content of all the tissues (liver < muscle < kidney < 

gills) exposed to IMI and CZ in a dose dependent manner (Table 3.4 and Fig 3.4). 

Decreased lipid content suggests that an impairment of the lipid storage has taken place 

in the fishes and that the lipid might have been channelled for other metabolic functions 

in which it probably plays a vital role during stress condition. Since lipids form the rich 

energy reserves whose calorific value is reported to be twice than that of an equivalent 

weight of carbohydrates or proteins (Sobha et al., 2007; Gijare et al., 2011). Lipids 

serve as energy reserves to meet the metabolic demand for more energy to mitigate 

toxic stress. The decreased lipid content in the present investigation is parallel with the 

earlier reported altered lipid profile in Orechromis mossambicus (Amudha et al., 2002;  

Leela Sivaparvathi et al., 2002); in Perca flavescens (Levesque et al., 2002); in 
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Cyprinus carpio (Swapna et al., 2006); in Gambusia affinis (Revathi et al., 2005); in 

Anguilla Anguilla  (Pierron et al, 2008) and in Channa punctatus (Maruti and Rao, 

2001), provide substantial support to the present findings.  

Cholesterol is an important normal body constituent used in the structure of cell 

membranes, synthesis of bile and steroid hormones. The results presented in Table 3.5 

and Fig 3.5 show a significant decrease on exposure of IMI and CZ compared to control 

in a dose dependent manner. Reduced cholesterol level may be due to the inhibition of 

cholesterol biosynthesis particularly in the liver as it plays a major role in cholesterol 

homeostasis by regulating lipoprotein metabolism and lipid output in bile (Marzolo et 

al., 1990; Dietschy et al., 1993). The liver is a key organ in the synthesis and excretion 

of cholesterol, hence any type of obstruction in the liver will cause alterations in 

cholesterol. Pesticide induced toxicity has probably resulted into destruction of liver 

cells hence, the cholesterol level eventually falls below normal due to decrease 

synthesis (Kamath, 1972). Reduction in cholesterol could also be due to reduce 

absorption of dietary cholesterol (Rao et al., 1984; Kanaraj et al., 1993; Shakoori et al., 

1996). However, Remia et al.,(2008) reported that the decline of cholesterol may be due 

to utilization of fatty deposits instead of glucose for energy purpose. Similar results 

were observed by Fahmy (2012) in O.mossambicus on exposure to Malathion, 

Sardamani and Selvarani, (2009) in O.mossambicus by exposure of Metribuzin; 

Ganeshwade, (2011) in Punctius ticto on exposure of Dimethoate and Singh et al., 

(2010) in Channa punctatus on exposure of Phorate. 

Amino transferases are widely acknowledged for their significance in protein 

metabolism by virtue of their ability to regulate both synthesis and degradation of amino 

acids. Changes in their activities are often associated with changes in many other 

metabolic functions and thus represent widespread alterations in the organisms 

physiological state. Aminotransferases such and alanine amino transferase (ALT) and 

aspartae aminotransferase (AST) catalyse the reaction of transamination of alanine, 

glutamic and aspartic acids.  They couple protein, carbohydrate and fat metabolism and 

tricarboxylic cycle under altered physiological, pathological and induced environmental 

stress conditions (Murugesan et al., 1999). Changes in AST and ALT enzyme activity 
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in fish have been used frequently as indicators of toxicant and contamination of aquatic 

ecosystem (Kim et al., 2008; Hedayati et al., 2010). ALT is an enzymatic stress 

biomarker and its change identify damages in several tissues and organs of fish. ALT 

and AST are liver specific enzymes and are sensitive measures of hepato toxicity 

(Balint et al., 1997). However, Oluah (1999) is of the view that alterations in the ALT 

and AST indicate tissue damage in liver, kidney, muscle and gills. Various scientists 

have reported the alterations in ALT and AST on exposure of pesticides (Jyothi and 

Narayan, 2000; Atamanalp et al., 2002 a, b; Adhikari et al., 2004; Begum, 2005; 

Gabriel et al., 2012). Contrarily, Yildirim et al., (2006) observed an increase in AST 

and ALT enzyme activities in gills, liver and kidney and have proposed that elevated 

enzyme activity is with the intension to increase the role of proteins in the energy 

production during stress. In the present study, compared to control, ALT and AST were 

found to be significantly elevated in all the tissues of fishes exposed to IMI and CZ in a 

dose dependent manner (Table 3.6 and 3.7 and Fig 3.6 and 3.7). The highest activity 

was observed in liver followed by kidney and muscle. As proposed by Vardharajan, 

(2010), the primary energy currency in fish is amino acids.  Elevated activity of 

transferases is possibly a result of a response to stress induced by pesticides to generate 

keto acids like α-keto glutarate and Oxaloacetate for contributing to gluconeogenesis 

and/or energy production necessary to meet the access energy demand. According to 

Gabriel and George (2005), transamination is one principle pathway for synthesis and 

deamination of amino acids, enabling carbohydrate and protein metabolism during 

fluctuating energy demands of the organism under various adaptive conditions. A 

significant increase in the ALT activity in all the tissues can be assume as an attempt by 

these tissues to overcome pesticide toxicity. ALT is liver specific cytoplasmic 

transaminase. The increased ALT activity in tissues suggests either increased operation 

of transamination or increase synthesis of amino acids. This clearly indicates that stress 

brings about, the metabolic reorientation in the tissues by raising energy recourses 

through transaminases system. Similar studies have been reported by (Arshad et al., 

2007; Gabriel et al., 2011; Rao, 2006; Velmurugan et al., 2008) and they have inferred 

that the increased enzyme activity was due to increase utilization of amino acids for 

energy synthesis, as consequents of a fish suffering from toxic stress and energy crisis. 
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Furthermore, change in the AST has been correlated with mitochondrial damage (Diehl 

et al., 1986; de Aguiar et al., 2004). Thus, in the present study increase in AST activity 

can be considered to be the manifestation of the biochemical action of the pesticides 

leading to damage and affecting the mitochondrial membranes of the tissues. Our results 

are in agreement with the earlier scientists.  

Alkaline phosphatase (ALP) is a brush border enzyme, which catalyses 

dephosphorylation of many molecules including nucleotides, proteins and alkalides at 

alkaline pH. It is well known that phosphatases are involve in carbohydrate metabolism, 

growth and differentiation, protein synthesis, synthesis of certain enzyme, secretary 

activity and transport of phosphorylated intermediate across the cell membranes. 

Hydrolysis of phosphoester, phosphate transfer, phosphate transport activity, protein 

transport activity, phosphate transport, modulation of organic cation transport and 

involvement in cell proliferation have been suggested as possible function of ALP. ALP 

is also one of the important markers for liver and kidney. A dose dependent response 

was observed in liver, kidney, gills and muscle (Table 3.8 and Fig 3.8). A significant 

increase in enzyme activity in liver might be due to a stress induced over activity of 

hepatobiliary cells, which have involved in detoxification mechanism. Further increased 

ALP activity also may be due to pathological processes such as liver impairment and 

kidney disfunction (Barse et al., 2006). Thus in the present study, increase in the levels 

of ALP and AST reflects liver damage, whereas an elevation in ALP activity may be 

indicative of renal and liver damage (Gill et al., 1990; Bhattacharya et al., 2005; 

Vardharajan, 2010; Stalin and Das, 2012). 

On exposure of IMI and CZ gills, liver and kidney showed an elevated pyruvate levels 

in a dose dependent manner compared to control (Table 3.9 and Fig 3.9). This might be 

due to the higher glycolysis rate which is the only energy producing pathway for the 

animal when it is under stress condition. Furthermore, the end product of glycolytic 

pathway is pyruvate. Pyruvate occupies an important junction between various 

metabolic pathways it may be decarboxylated to acetyl CoA which can enter the TCA 

cycle or it may be utilized for fatty acid synthesis. Further pyruvate may be 

carboxylated to oxaloacetate which can be used for gluconeogenesis. Muscle of both 
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treated pesticides showed a decreased pyruvate level compared to control. Lactate 

dehydrogenase (LDH) is an enzyme recognized as a potential marker for assessing the 

toxicity of toxicant. LDH activity is marker for tissue damage in fish (Ramesh et al., 

1993), muscular damage (Balint et al., 1997) and hypoxic conditions (Das et al., 2004) 

and thus serves as a good diagnostic tool in toxicology. LDH interconverts lactate and 

pyruvate and has very important role in carbohydrate metabolism. LDH acts as a pivotal 

enzyme between glycolytic pathway and TCA cycle. It catalyses the conversion of 

pyruvate into lactate, under anaerobic conditions (Lehninger, 1993). A fish under stress 

preferentially meets its energy requirements through anaerobic oxidation (Luiz, 1998). 

The LDH in the tissues (liver, kidney, muscle and gills) of fishes treated with IMI and 

CZ showed an elevated activity in a dose dependent manner compare to control (Table 

3.10 and Fig 3.10). Increased LDH activity suggests a significant increase in the 

conversion of pyruvate to lactic acid, thereby leading to the accumulation of lactic acid. 

Higher increase LDH in muscle on exposure to pesticides suggests that the final product 

of glycolysis-pyruvate was preferently used to produce lactate. Lactate form is an 

important gluconeogenic substrate which can be used to cope with the high and rapid 

demand of energy due to stress. several reports have revealed altered LDH activity in 

tissues under toxic conditions (Tripathi et al., 1990; Mishra and Shukla, 2003; Rao, 

2006) and have opined that LDH an important glycolytic enzyme is inducible by 

oxygen stress and therefore, the activity of regulatory enzymes gets altered to meet the 

required energy demands under toxic stress including the activity of LDH, which 

sustains the continued process of glycolysis under anaerobic conditions (Diamntino et 

al., 2001; Agrahari and Gopal, 2009). Thus, the observed increased LDH can be 

interpreted as a shift in the respiratory metabolism from aerobic to anaerobic in order to 

meet the enhanced energy demand under the toxic stress (Singh and Shrivatava, 1982; 

Ansari and Kumar, 1988; Ferrando and Andreu-Moliner, 1991; Kamalaveni et al., 2003; 

Gorbatiuk, 2010).  

Glutamate dehydrogenase (GDH), a mitochondrial enzyme, catalyses the oxidative 

deamination of glutamate, providing α-ketoglutarate to the kreb’s cycle (Reddy and 

Vanugopal, 1990). This enzyme is having several metabolic functions with great 

physiological significance. It is closely associated with the detoxification mechanism of 
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tissues. GDH in extra hepatic tissues could be utilized for channelling of ammonia 

released during proteolysis for its detoxification into urea in the liver hence, activities of 

GDH along with AST and ALT are considered as sensitive indicators of stress (Gould et 

al., 1976). An increase was observed in activity of GDH in all the tissues of the fish 

exposed to IMI and CZ (Table 3.11 and Fig 3.11). This suggests the active 

transdeamination of amino acids for the incorporation of keto acids in to the TCA cycle 

to release necessary energy required for the synthesis of new protein (Sreedevi et al., 

1992; Shivramkrishna and Radhakrishnaiah, 1998; Prashanth and Neenagund, 2008). 

GDH is also known to play a crucial role in ammonia metabolism and is known to be 

affected by a variety of factors (David, 1995). After exposure of toxicants, several 

metabolic functions with great physiological significance are known to be closely 

associated with detoxification mechanism of tissues. GDH in extra hepatic tissues could 

be utilize for its ultimate detoxification to urea in the liver. In the present study the 

significant elevation in activity of GDH indicate that association of oligomers in 

response to toxic stress, this shows that oxidative deamination is contributing higher 

ammonia production. The high levels of ammonia produce is not eliminated but is 

salvaged through GDH activity which is utilize for aminoacid synthesis through 

transaminases (Deva, 2000; Prashanth, 2000; Prashanth and Neenagund, 2008). 

According to Nelson and Cox (2005) and Sathyanarayana (2005), increased GDH 

activity may indicate an increased rapid utilization of amino acids and onset of 

detoxification mechanism (Prashanth, 2006; Ganesh et al., 2006). GDH activity was 

found to be elevated in almost all tissues treated with pesticides compared to control. 

This increased activity may have helped in funnelling more α-ketoglutarate into TCA 

cycle for more energy generation. This indicates higher oxidation of amino acids to 

combat the toxic effect of pesticide and the higher activity of GDH may result in 

efficicent operation of oxidative deamination under toxic effect of IMI and CZ (Kumar 

et al., 2010). The oxidation of glutamate in kreb’s cycle leads to increased energy 

(Narasimha and Ramana, 1985; Naveed et al., 2010). 

Glucose-6-phosphatase (G-6-Pase) is an enzyme which catalyses the reaction causing 

the hydrolysis of glucose-6-phosphate formed either through glycolysis or 

gluconeogenesis, to glucose and phosphate in a characteristic manner. G-6-Pase activity 
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showed a dose dependent decrease in both the fishes on exposure of IMI and CZ as 

compared to control (Table 3.12 and Fig 3.12). Since this enzyme plays a role in the 

final stage of gluconeogenesis, its physiological functions or properties merit attention. 

G-6-Pase thus plays a critical role in blood glucose homeostasis. One of the important 

functions of the liver and, to a lesser extent, of the kidney cortex is to provide glucose 

during condition of starvation. Glucose is formed form gluconeogenic precursor in both 

the tissues and in the liver also from glycogen. The increase in blood glucose 

concentrations is known as a general secondary response to stress of fish to acute toxic 

effects and is considered as a reliable indicators of environmental stress (Sepici-Dincel, 

2009). Increase in glucose level in fish under stress is reported by Cicik and Engin 

(2005); Rathnamma et al., (2008); Firat et al., (2011). Hyperglycaemic response 

illustrated in the preset study is an indication of disruption in carbohydrate metabolism 

possibly due to enhance glucose-6-phosphatase activity, elevated breakdown of liver 

glycogen, or the synthesis of glucose from extra hepatic tissue proteins and amino acids. 

Pesticide exposure have shown to increase the glucose content in blood because of 

intensive glycogenolysis and the synthesis of glucose from extrahepatic tissue proteins 

and amino acids (Almeida et al., 2001). Increase in blood glucose by pesticide 

treatement may indicate disrupted carbohydrate metabolism due to enhance breakdown 

of liver glycogen, possibly mediated by increasing adrenocorticotrophic and glucagone 

hormones and/or reduced insulin activity. Our observations in the present study are in 

agreement with earlier reported work of pesticide induced hyperglycemia in fresh water 

fishes (Das and Mukherjee, 2003; Firat et al., 2011).  

Hence, from the present investigation on biochemical alterations of the fishes exposed 

to two different agrochemicals it can be concluded that decrease glycogen, lipid and 

protein suggest that in the pesticide exposed fishes, there was extensive mobilization of 

glycogen, lipid and protein. On exposure of the agrochemicals gills, liver and kidney 

showed an elevated pyruvate level compared to control possibly du rot high rate of 

glycolysis which is the only energy producing pathway for the animal when it is under 

stress condition. Further, elevated LDH suggests that the final product of glycolysis – 

pyruvate was preferentially used to produce lactate. Lactate is an important 

gluconeogenic sunstrate which helps to cope with the high and rapid energy demand 
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under toxic stress. Elevation in AST and ALT in different tissues of O.mossambicus and 

L.rohita can be considered as a response to the stress induced by agro-chemicals to 

generate keto acids like α-ketoglutarate and oxaloacetate for contributing to 

gluconeogenesis and/or energy production necessary to meet access energy demand. An 

elevation of ALP activity suggests an increase in lysosomal mobilization and tissue 

necrosis due to toxicity of agro-chemicals. This increase also suggests the supply of 

phosphate group for energy metabolism. Elevated GDH activity may have helped in 

funnelling more α-ketoglutarate in to TCA cycle for energy generation. Hyperglycaemic 

response illustrated in the preset study is an indication of disruption in carbohydrate 

metabolism possibly due to enhance glucose-6-phosphatase activity, elevated 

breakdown of liver glycogen, or the synthesis of glucose from extra hepatic tissue 

proteins and amino acids. Pesticide exposure have shown to increase the glucose 

content in blood because of intensive glycogenolysis and the synthesis of glucose from 

extra hepatic tissue proteins and amino acids. Thus, it may be deduced that the pesticide 

exposure is stressful to the fishes. 
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Chapter IV 

Effects of agro-chemicals on antioxidant enzymes and lipid 

peroxidation in Oreochromis mossambicus and Labeo rohita 

Agrochemicals in the form of Insecticides, herbicides and fungicides are used 

extensively throughout the world. In general they are playing a pivotal role in meeting 

the food, cotton fibre and tobacco demand of escalating population and control of 

vector-borne diseases. Although they furnish some benefits for crop, they entail a 

number of risks and problems. Pesticide misuse in various sectors of the agriculture 

often has been associated with health problems and environmental contamination 

worldwide (Soares et al., 2003; Mancini et al., 2005; Remor et al., 2009). Misuse of 

highly toxic pesticides, coupled with a weak or a totally absent legislative framework in 

the use of pesticides, is one of the major reasons for the high incidence of pesticide 

poisoning in developing countries (Konradsen et al., 2003; Hurtig et al., 2003; Atreya, 

2008).  

Environmental factors of both natural and anthropogenic origins have been known to 

induce alteration of different magnitudes in the physiological and biochemical status of 

animals (Shilov, 1981;Vosyliene and Kazlauskiene, 1999). Therefore, biomarker 

parameter assessment is a means of environmental monitoring, with the advantage of 

providing quantitative response as valuable information on ecological relevance as well 

as on the acute/chronic adverse effects caused by water pollution (De la Torre, 2005). 

Alteration in the chemical composition of a natural aquatic environment, due to contact 

with hazardous substances like heavy metals, pesticides, and effluents from industries 

usually affect the behaviours, biochemistry, and physiology of the fauna including fish 

(Radhaiah et al., 1987). Water is one of the most precious natural resources on earth, 

and it creates a wide range of benefits to humans, including fisheries, wildlife, 

agriculture, urban, industrial and social development (Allan and Flecker, 1993). 

However, the unregulated release of agricultural chemicals especially pesticides into 

water bodies have caused environmental problems to all classes of organisms in the 

aquatic habitat. The aquatic ecosystem is faced with the threat of biodiversity loss due 

to indiscriminate use of pesticides (Rahman et al., 2002). 
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The application of environmental toxicology studies on non mammalian vertebrates is 

rapidly expanding, and for aquatic system, fish have become an indication for the 

evaluation of the effects of noxious compounds (Ervnest, 2004). Pesticides occupy a 

unique position among many chemicals which are encountered daily by man. They are 

deliberately added to the environment for the purpose of killing, injuring, or at times 

enhancing the development of some forms of life. Water pollution by pesticides is a 

serious problem to all aquatic fauna and flora. In aquatic environment, pesticides may 

also cause several physiological and biochemical defects in fishes (Vasanbhi, et al., 

1989). Contamination of water with these recalcitrant chemicals often results in 

bioaccumulation in fish and other biota, sometimes to biologically active levels. These 

chemicals have been suspected to be cancer-causing agents in fish and other aquatic 

organism (GESAMP, 1991). Residues of these toxic chemicals found in water, 

sediments, fish, and other aquatic biota can pose risk to organisms, predators, and 

humans. Pesticides at high concentrations are known to reduce the survival, growth, and 

reproduction of fish and produce many visible effects on fish (Rahman et al., 2002; 

Joseph and Raj, 2010). Water pollution also is recognized globally as a potential threat 

to both human and other animal population, which interact with the aquatic environment 

(Biney et al., 1987; Svensson et al., 1995).  

Toxicity data for IMI, a new group of insecticides for aquatic invertebrate are far from 

enough (Tomizawa and Casida, 2003; Beketov and Liess 2008; Pestana et al., 2009; 

Barbee and Stout, 2009; Stoughton, 2010; Lukancic, 2010; Azevedo-Pereira, 2011; 

Malev et al., 2012). CZ is a mixture of cymoxanil and mencozeb. Cymoxanil is reported 

to be slightly toxic to fish and other estuarine and marine organisms on an acute basis. 

Mancozeb is very toxic to aquatic life; goldfish, rainbow trout, catfish and carp (Reddy 

and Bashamohideen, 1989; Grande et al., 1994; Haya, 1989). The process of 

physiological stress response starts from the moment the body realizes the presence of 

the stressor, followed by the sending of signals to the brain, and to the specific 

sympathetic and hormonal responses to eliminate, reduce or cope with the stress. A 

stressor is a stimulus that acts on a biological system and a stress response is the 

animal’s reaction to the stimulus (Pickering 1981; Barton, 2002). According to general 

adaptation syndrome, a stress response consists of three stages: alarm, resistance and 

exhaustion (Pickering, 1981). Acute or short-term stress can have salubrious or adaptive 
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effects. In contrast, chronic or long-term stress is generally harmful (Wedemeyer and 

McLeay 1981; Teles et al., 2007; Dorval et al., 2005; Thangavel et al., 2005). 

Pesticide exposure can lead to oxidative stress (OS) through unregulated generation of 

reactive oxygen species (ROS) such as superoxide anion, hydrogen peroxide, hydroxyl 

radical, peroxyl radicals and singlet oxygen. ROS are produced during normal process 

in the cell. Under normal conditions antioxidant systems of the cell minimize damage 

caused by ROS. When ROS generation increases to an extent that it overcomes the 

cellular antioxidant systems, the result is oxidative stress. It is known that pesticides can 

cause oxidative stress, resulting in the generation of free radicals (Banerjee et al., 1999). 

It is suspected that pesticides induce alterations in antioxidants or free oxygen radical 

scavenging enzyme systems. In addition, it is generally believed that lipid peroxidation 

is one of the molecular mechanisms involved in pesticide induced toxicity (Akhgari et 

al., 2003).  

A pesticide produces stress condition in any organism, including fish (Ateeq et al., 

2002). In Pisces, three different pathways are exhibited followed by pesticide like 

stressor exposure. The basic pathway followed is the activation of HPI axis and altered 

levels of cortisol. However, Major complications arise when the stressor is very 

effective and the body starts expressing other two mechanisms of stress response. They 

include lipid peroxidation (LPO) and expression of various antioxidant mechanisms like 

GST, CAT, SOD and GPx and scavengers such as GSH and ascorbic acid. Expression 

of these two mechanisms is the clear indication of pesticide toxicity, as well as the 

counter mechanisms exhibited by the organism. Hence, in this study we have tried to 

investigate alterations in these two important mechanisms due to pesticide exposure and 

how the antioxidant responses and cellular defences are triggered due to pesticide 

exposure (Miller, 2006). Several studies demonstrated that changes in the levels of 

antioxidant enzyme activities can be used as possible biomarkers in different aquatic 

organisms (Orbea et al., 2002; Gohil, 2012). These enzymes are biomarkers of tissue 

damage, thus their bioassay can serve as a diagnostic tool for assessing the functions of 

liver (Coppo et al., 2002; Parthiban and Muniyan, 2011). 

However, the exact mechanism(s) of their action in fresh water fishes has still not been 

completely understood particularly for IMI and CZ. Hence, in the present work, an 
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endeavour has been made to explore the mechanisms on pesticides induced OS, 

cellular events influenced by OS, in various key organs of pesticide exposed fishes. 

After establishing the haematological alterations as well as the biochemical 

parameters, it is worth exploring the effect of these agrochemicals on lipid 

peroxidation as well as their antioxidant defence mechanisms as this aspect of the 

toxicity data for this new group of insecticides for aquatic invertebrate are far from 

enough.  
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Materials and methods: 

Experimental designs: 

Freshwater teleosts,  O. mossambicus and L. rohita of similar size in length and weight 

(12 ± 2 cm; 25 ± 1.9 g) and  (25 ± 3 cm; 110 ± 5 g)  respectively were brought from a 

local pond of Baroda district. Animals were transported to laboratory in large aerated 

plastic container and were acclimatized in glass aquaria containing 50 liter of well 

aerated dechlorinated tap water (with physic-chemical characteristics: pH 6.5- 7.5, 

temperature 25±3ºC and dissolved oxygen content of 7-8ppm) for ten days. During an 

acclimation period of 10 days, the fish were kept under natural photoperiod and fed two 

times a day (10:00 and 16:00h) with commercial pelleted diet. The acclimatized healthy 

fishes of both sexes were selected randomly for the studies 

Based on the result of the 48 h LC50, 30 tilapia fish were divided in 3 groups, 10 fish 

for each group:  

• Group 1 served as control without any treatment of Agro-chemicals.  

• Group 2 were treated with low dose of IMI and CZ (LC 50 / 10).  

• Group 3 were treated with high dose of IMI and CZ (LC 50 / 20) for a period of 

21 days.  

Each concentration was replicated two times. Constant amount of the test chemical and 

test media were changed every 24 hours to maintain the toxicant strength and the level 

of dissolved oxygen as well as to minimize the level of ammonia during experiment. 

The fishes were fed once in a day throughout the duration of the sub-lethal toxicity tests.   

Preparation of the tissue samples for the study. 

At the end of the experiment (21 days) the fish were carefully netted to minimize stress, 

and weighed. Prior to sacrificing the fish, about 1 - 2ml of blood was collected from the 

caudal peduncle using separate heparinized disposable syringes. The blood was stored 

in -4°C in deep freezer prior to analysis. Fishes were sacrificed by pithing (damaging 

the brain and severing the spinal cord between the head and trunk region using a sharp 

needle). Tissues such as liver, kidney, gills and muscle were carefully removed, wiped 
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thoroughly, using blotting paper to remove blood and other body fluids. Then they were 

washed in chilled PBS and again blotted dry. After noting the total weight of the tissues, 

the desired amount of the tissues were weighed and used.  

Enzyme estimation: 

Estimation of ascorbic acid:    (Roe and Oesterling 1944)  

Principle:  

Ascorbic acid is converted to dehydro ascorbic acid by shaking it with norit.It is then 

coupled with 2,4-DNPH in presence of thiourea as mild reducing agent then converted 

into a red coloured compound which is assayed colorimetrically.  

Reagents: 

a. Standard ascorbic acid 

b. 2,4- DNPH solution 

c. 85% H2SO4, 6% TCA.  

Procedure:  

Homogenize the weighed tissue in 6% TCA. Add norit to it. shake well allow it to stand 

for 15 minutes. Filter with whatmann paper 42.  The mixture containing 4ml 

homogenate followed by 1 ml and after addition of 4 drops of  2,4 DNPH and put it into 

water bath for 15 minutes. Lastly 5 ml of 85% H2SO4 added. Wait for 30 min and then 

read the absorbance at 540 nm against a blank containing all the reagents. A series of 

standards were run along with blank treated in a similar manner to determine the 

ascorbic acid content. Values were expressed as mg/ g wet tissue. 

 

Assay of Redused Glutathione (GSH): 

Total redused glutathione was estimated by the method os Ellman (1958). 

Principle: 

The Glutathione assay is a modification of the method first described by Tietze. The 

general thiol reagent, 5-5’dithiolbis(2-nitrobenzoic acid) (DTNB or ellman’s reagent) 

react with GSH to form the 5 thionitrobenzoic acid (TNB) and Gs-TNB. 

Reagents: 

a. DTNB (0.6 Mm) in 0.2 M phosphate buffer (pH – 8.0) 

b. TCA 5% 

c. standard glutathione. 
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Procedure: 

Precipitated protein in the homogenates of gills, liver, kidney and muscle with 0.1 ml 

5% TCA and 0.4 ml distilled waer. Mixed the contents well for complete precipitation 

of proteins and centrifuged. To 0.5 ml clear supernatant, added 2.5 ml of 0.2 M 

phosphate buffer and 50 µl of DTNB. Read the absorbance at 412 nm against a blank 

containing all the reagents. A series of standards were run along with blank treated in a 

similar manner to determine the glutathione content. Values were expressed as 

nmoles/100 g wet tissue. 

Assay of Superoxide Dismutase (SOD) (EC 1.15.1.1) 

Superoxide dismutase in different tissues was determined using the method of Kakkar et 

al., (1984).  

Principle:  

The assay of SOD is based on the inhibition of the formation of NADH-phenazine  

methosulphate-nitroblue tetrazolium formazon. The colour formed at the end of the  

reaction can be extracted into butanol and measured at 560nm. 

Reagents: 

a. 0.1 M PBS, n-butanol 

b. 0.052 M sodium pyrophosphate buffer (pH 8.3) 

c. 0.0025 M Tris-HCl buffer(pH 7.4) 

d. 186 µM phenazine methosulpahte (PMS) 

e. 300 µM Nitro blue tetrazolium (NBT) 

f. 780 µM NADH and Glacial acetic acid. 

Procedure: 

Weighed samples of tissues were homogrnised in 0.1 M PBS and subjected to 

differential centrifugation under cold condition. The supernatant was used as the 

enzyme source. Assay mixture contained 1.2 ml of sodium pyrophosphate buffer, 0.1 ml 

of PMS, 0.3 ml of NBT,1.3 ml of distilled water and 0.1 ml of the enzyme source. The 

tubes were kept at 30⁰C for 90 seconds and the reaction was stopped by the addition of 

1 ml of glacial acetic acid. Reaction mixture was shaken vigorously with 4.0ml of n-

butanol. The mixture was allowed to stand for 10 minutes and centrifuged. The upper 

butanol layer was removed. Absorbance of the chromogen in butenol was measured at 

560 nm against n-butanol blank. A system devoid of enzyme served as control, one unit 
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of enzyme activity is defined as the enzyme concentration required to inhibit chromogen 

production by 50% in one minute under the assay conditions and specific activity is 

expressed as unit/ mg protein. 

 

Assay of Catalase (CAT) (EC 1.11.1.6) 

Catalyse level in different tissues was determined using the method of Maehly and 

Chance (1955). 

Principal :This method is based on the fact that dichromate in acetic acid is reduced to 

the chromatic acetate .when heated in presence of hydrogen peroxide with formation of 

perchromic acid as unstable intermediate.the chromium acetate is measured 

colourimetically at 610 nm. The catalase preparation is allowed to spilt hydrogen 

peroxide at regular time interval and the reaction is stopped by addition of dichromatic 

acid .mixture of hydrogen peroxide liberated is determined colourimetrically. 

Reagents: 

a. 0.01M phosphate buffer (pH 7.0) 

b.30 mM H2O2. 

Procedure: 

The estimation was done spectrophotometrically following the decrease in absorbance 

at 230 nm. The reaction mixture contained 0.01 M phosphate buffer. 30 mM hydrogen 

peroxide and the enzyme extract prepared by homogenizing the tissue in phosphate 

buffer and centrifuging at 5000 rpm. Specific activity was expressed as international 

Units / mg protein. 1 IU = change in absorbance / min / extinction coefficient (0.021). 

 

Assay of Glutathione Peroxidase (GPx) (EC 1.11.1.9) 

Glutathione peroxidase in different tissues was estimated by the method of Rotruck et 

al., 1973. 

Principal:  

Glutathione Peroxidase catalyzes the reduction of an organic peroxide (ROOH), 

oxidizing reduced glutathione (GSH) to form (GSSG). The oxidized glutathione is then 

reduced by glutathione reductase (GR) and b-nicotinamide adenine dinucleotide 

phosphate (NADPH) forming NADP+ (resulting in decreased absorbance at 340 nm) 
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and recycling the GSH. Because GPx is limiting, the decrease in absorbance at 340 nm 

is directly proportional to the GPx concentration. 

Reagents: 

a. 0.4 M Tris buffer (pH 7.0) 

b. 10 mM sodium azide solution.  

c.10% Tricholoro acetic acid (TCA) 

d. 0.4 mM Ethylene diamine tetra acetic acid (EDTA) 

e. 0.2 mM Hydrogen peroxide (H2O2) 

f. 2 mM glutathione solution (GSH). 

Procedure: 

 Weighed samples of different tissues were homogenized in a known volume of tris 

buffer. To 0.2 ml of Tris buffer, 0.2 ml EDTA, 0.1 ml sodium azide and 0.5 ml tissue 

homogenate were added and mixed well. To this mixture 0.2 ml of GSH followed by 

0.1 ml H2O2 solution were added. The contents were mixed and incubated at 37 ⁰C for 

10 minutes along with a control containing all reagents except tissue homogenate. After 

10 minutes the reaction was arrested by the addition of 0.5 ml of 10% TCA. Tubes were 

certrifuged and the supernatant was assayed for GSH. The value are expressed as µg of 

/min / mg protein. 

 

Assay of glutathione-s-transferase (GST) (EC 2.5.1.18) 

Glutathione-S-Transferase in different tissue was determined using the method of 

Beutler et al., (1986). 

Principle:  

 Glutathione transferase catalyse the conjugation of 2,4, dinitrobenzene (DCNB)  or 3,4 

dichloronitrobenzene (DCNB ) with reduce glutathione  (GSH) to produce a yellow  

product that has a n absorbance  maxima at 340-360 nm and rate of product formation, 

that indicate enzyme activity, can be calculated by following increasing aborbance at 

340 nm. 

Reagent 

a. 0.5 M phosphate buffer (pH 6.5)  

b. 25 mM of 1-chloro-2, 4- dinitrobenzene (CDNB) in 95% ethanol 

c. 20 mM glutathione (GSH) 
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Procedure: 

All the tissues were homogenized in 0.5 M phosphate buffer. The reaction mixture 

contained 200 µl phosphate buffer, 20 µl CDNB and 680 µl distilled water. Then the 

tubes were incubated at 37⁰C for 1 minutes and added 50 µl of GSH. After mixing well, 

added 50 µl of tissue extract to the tube. Increase in absorbance was noted at 340 nm for 

5 minutes in a UV-visible spectrophotometer. Values are expresses in µmoles of CDNB 

complexed / min / mg protein. The extinction coefficient between CDNB-GSH 

conjugate is 9.6 m/M/cm. 

 

Assay of Lipid peroxidase (LPO)  

LPO was estimated by the method of Niehaus and Samuelson, 1958 

Principal: Lipid peroxide leads to formation of an endoperoxide that is 

malondialdehyde (MDA), which reacts with thiobarbituric acid (TBA) and gives 

thiobarbituric acid reactive substance (TBARS). TBARS gives a characteristic pink 

colour that can be measured caloriemetrically at 532nm. 

Reagents: 

TCA-TBA-HCl reagent: 15% (W/V) Trichloro acetic acid, 0.375% (W/V) 

Thiobarbituric acid (TBA) in 0.25 N HCl. 0.1 M Tris-HCl buffer (pH 7.5). 

Procedure: 

The tissue homogenate of different tissues were prepared in Tris-HCl buffer and was 

combined with thiobarbituric acid reagent and mixed thoroughly and heated for 15 

minutes in a boiling water bath. It was then cooled and centrifuged for 10 minutes at 

600 g. The absorbance of the sample was read spectrophotometrically at 535 nm against 

a reagent blank that contained no tissue extract. The extinction coefficient for 

malondialdehyde is 1.56 x 10
5
/ M/ cm. The values are exptresses as millimoles / 100g 

wet wt of tissue. 

Statistical Analysis: 

The statistical analysis was carried out using the software Graph pad prism 5 package. 

For determining the significant difference between different treatments in biochemical 

parameters, Two-way ANOVA followed by Tukey’s test for multiple comparisons 

between different concentration of IMI and CZ was done. Significance level (P value) 

was set at 0.05 in all tests 
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Result: 

Ascorbic acid: 

Two-factor ANOVA followed by Tukey’s test showed that there was significant 

(P<0.05), variation in ascorbic acid content in both the fishes expose to IMI and CZ. 

There was statistically significant (P<0.05) different changes in the ascorbic acid level 

between the treated groups and the control. All the tissues, gills, liver, kidney and 

muscle showed significantly (P<0.05) elevated activity compared to control. 

Table: 4.1 Effect of IMI and CZ on SOD activity (mean ± SEM) in O.mossambicus 

and L.rohita. 

Ascorbic acid 

O
.m

o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
29.23 

±0.401 
52.000 

±0.537* 

79.00 
±0.451*** 

29.23 
±0.401 

39.89 
±0.550 

54.780 
±0.577* 

Liver 
258.00 
±0.491 

309.000 
±0.389** 

335.00 
±0.423*** 

258.00 
±0.491 

299.00 
±0.306* 

311.000 
±0.339** 

Kidney 
316.00 
±0.462 

397.000 
±0.397* 

437.00 
±0.741*** 

316.00 
±0.462 

345.00 
±0.787* 

392.000 
±0.577** 

Muscle 
36.00 

±0.446 
69.500 

±0.451* 

108.00 
±0.445** 

36.00 
±0.446 

48.00 
±0.889* 

71.340 
±0.026** 

L
.r
o
h
it
a
 

Gills 
45.23 
±0.89 

79.000 
±0.537 

108.00 
±0.451** 

45.23 
±0.89 

56.00 
±0.331 

74.800 
±0.429** 

Liver 
301.00 
±0.436 

345.000 
±0.568* 

412.00 
±0.885** 

301.00 
±0.436 

315.00 

±0.306* 

376.000 
±0.427** 

Kidney 
328.00 
±0.443 

414.000 
±0.258* 

509.00 
±0.030*** 

328.00 
±0.443 

387.00 
±0.787* 

426.000 
±0.532** 

Muscle 
47.00 

±0.787 
85.000 

±0.210* 

108.00 
±0.613*** 

47.00 
±0.787 

59.00 
±0.357 

87.401 
±0.881** 

� Values are expressed as mg/ g wet tissue. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 4.1 Effect of IMI and CZ on SOD activity (mean ± SEM) in O.mossambicus 

and L.rohita. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ascorbic acid IMI

G
ill

Li
ve
r

K
id
ne
y

M
us
cl
e

0

200

400

600

**

***

**

*

*

***

***
*

Ascorbic acid CZ

G
ill

Li
ve
r

K
id
ne
y

M
us
cl
e

0

100

200

300

400

500

**

**

**
*

*

**

*

Ascorbic acid IMI

G
ill

Li
ve
r

K
id
ne
y

M
us
cl
e

0

100

200

300

400

500

*

***

***

**
*

** *

Ascorbic acid CZ

G
ill

Li
ve
r

K
id
ne
y

M
us
cl
e

0

100

200

300

400

500

**

**

*

* **

**

Control Low High

O. mossambicus 

L. rohita 



Chapter IV 

 

Effects of agro-chemicals on antioxidant enzymes and lipid peroxidation in Oreochromis mossambicus 

and Labeo rohita 

117 

 

 

Total reduced Glutathione (GSH) 

Two-factor ANOVA followed by Tukey’s test showed that there was significant 

(P<0.05), variation in total reduced glutathione content between treated groups and 

between tissues treated with IMI and CZ. There was statistically significant (P<0.05) 

different changes in the GSH level among the treated groups compared to control. 

Among the tissues, gills, liver and muscle showed significantly (P<0.05) elevated 

activity compared to control but the kidney in both the treated groups showed 

statistically significant (P<0.05) reduced activity compared to control. 

Table: 4.2 Effect of IMI and CZ on GSH activity (mean ± SEM) in O.mossambicus 

and L.rohita. 

GSH 

O
.m

o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
1532 

±0.985 

2972 

±1.568*** 

3289 

±4.01*** 

1532 

±0.985 

2189 

±1.88*** 

2376 

±2.01*** 

Liver 
1872 

±0.938 

3121 

±2.48*** 

3401 

±3.87*** 

1872 

±0.938 

2698 

±1.56*** 

2888 

±2.359*** 

Kidney 
1413 

±0.755 

1324 

±3.872 

1298 

±5.65 

1413 

±0.755 

1399 

±2.055 

1356 

±2.95 

Muscle 
742 

±0.564 

832 

±0.788 

857 

±1.992 

742 

±0.564 

798 

±2.44 

806  

±3.54 

L
.r
o
h
it
a
 

Gills 
1253 

±2.67 

1410 

±2.69*** 

1598 

±7.21*** 

1253 

±2.67 

1321 

±6.56*** 

1441 

±7.75*** 

Liver 
1751 

±3.89 

2212 

±7.26*** 

2681 

±9.004*** 

1751 

±3.89 

1919 

±5.02*** 

2189 

±6.43*** 

Kidney 
1678 

±4.26 

1591 

±6.98* 

1473 

±3.34*** 

1678 

±4.26 

1601 

±3.98*** 

1563 

±3.78*** 

Muscle 
818 

±0.011 

1037 

±5.71*** 

1281 

±18.29*** 

818 

±0.011 

992 

±11.56*

** 

1053 

±12.98*** 

� Value are expressed as mg / g wet wt of tissue. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 4.2 Effect of IMI and CZ on GSH activity (mean ± SEM) in O.mossambicus 

and L.rohita. 
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Glutathione peroxidase (GPx): 

Glutathione peroxidase activity showed an overall significant change (P<0.05) in 

experimental groups of animal compared to control. Tukey’s test showed significant 

difference between agro-chemical treated groups compared to control. Increased activity 

in liver and kidney of the treated groups compared to control. Whereas gills treated with 

IMI and CZ showed a decreased GPx activity compared to control. On treatment with 

both Curzate and Imidacloprid muscle showed a significantly (P<0.05) elevated activity 

compared to control. 

Table: 4.3 Effect of IMI and CZ on GPx activity (mean ± SEM) in O.mossambicus 

and L.rohita. 

GPx 

O
.m

o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
11.78        

±0.103 

16.76 

±0.129*** 

17.11 

±0.154*** 

11.78 

±0.103 
12.36 

±0.102*** 
13.87 

±0.119*** 

Liver 
10.58 

±0.057 

19.98 

±0.106*** 

22.06 

±0.124*** 

10.58 

±0.057 

13.46 

±0.028*** 

17.91 

±0.084*** 

Kidney 
12.39 

±0.091 

10.79 

±0.030*** 

10.07 

±0.054*** 

12.39 

±0.091 

11.48 

±0.024*** 

11.02 

±0.048*** 

Muscle 
6.01 

±0.062 

7.99 

±0.089*** 

8.16 

±0.100 

6.01 

±0.062 

7.18 

±0.072*** 

7.66 

±0.079*** 

L
.r
o
h
it
a
 

Gills 
5.97 

± 0.068 

7.71 

±0.062*** 

9.03 

±0.033*** 

5.97 

± 0.068 

6.47 

±0.054 

8.12 

±0.053* 

Liver 
6.80 

±0.046 

8.13 

±0.084*** 

10.34 

±0.099*** 

6.80 

±0.046 

7.80 

±0.052 

8.69 

±0.048* 

Kidney 
13.21 

±0.128 

10.45 

±0.005*** 

8.01 

±0.051*** 

13.21 

±0.128 

12.12 

±0.077 

11.80 

±0.005 

Muscle 
2.24  

±2.32 

3.81 

±0.114*** 

5.72 

±0.008*** 

2.24 

±2.32 

3.01 

±0.296 

4.23 

±0.126 

� Value are expressed as µg of GSH/min/mg protein. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 4.3 Effect of IMI and CZ on GPx activity (mean ± SEM) in O.mossambicus 

and L.rohita. 
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Glutathione-S-transferase (GST) 

In the present study, glutathione-s-transferase activity in different tissues of 

O.mossambicus and C.mrigala treated with different pesticides showed significant 

variations (P<0.05), compared to control group. Tukey’s test showed significant 

difference among the pesticides treated groups and also with the control. Among the 

tissues treated with different pesticides highest GST activity was seen in liver. Both 

kidney and muscle showed significantly (P<0.05) decreased GST activity compared to 

control. Significant differences were found in GST activity between the Curzate and 

Imidacloprid treated groups and also with the control. 

Table: 4.4 Effect of IMI and CZ on GST activity (mean ± SEM) in O.mossambicus 

and L.rohita. 

GST 

O
.m

o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
23.48 

±0.309 

32.89 

±0.377*** 

33.68 

±0.453*** 

11.78 

±0.103 

12.36 

±0.102*** 

13.87 

±0.119*** 

Liver 
33.23 

±0.304 

49.98 

±0.426*** 

50.18 

±0.442*** 

33.23 

±0.304 

44.81 

±0.162*** 

46.27 

±0.353*** 

Kidney 
18.69 

±0.184 

21.09 

±0.088*** 

23.890 

±0.204*** 

18.69 

±0.184 

19.810 

±0.061** 

19.98 

±0.128*** 

Muscle 
6.93 

±0.081 

5.89 

±0.042*** 

5.10 ± 

0.025*** 

6.93 

±0.081 

6.12 

±0.051* 

6.08 

±0.046* 

L
.r
o
h
it
a
 

Gills 
19.53 

±0.380 

23.98 

±4.108 

27. 83 

±0.171* 

19.53 

±0.380 

21.24 

±0.301* 

24.69 

±0.270*** 

Liver 
29.41 

±0.349 

31.12 

±0.561 

34.21 

±0.558 

29.41 

±0.349 

30.78 

±0.360 

32.01 

±0.307*** 

Kidney 
21.87 

±0.299 

24.48 

±0.019 

27.31 

±4.81 

21.87 

±0.299 

22.91 

±0.216** 

24.12 

±0.016 

Muscle 
9.89 

±0.306 

11.34 

±0.547 

16.89 

±0.040* 

9.89 

±0.306 

10.94 

±1.609** 

12.21 

±0.578 

� Values are expressed in µmoles of CDNB complexed /min/mg protein, 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 4.4 Effect of IMI and CZ on GST activity (mean ± SEM) in O.mossambicus 

and L.rohita. 
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Superoxide dismutase: 

Two-factor ANOVA followed by Tukey’s test showed that there was significant 

(P<0.05), SOD activity was found to be significantly (P<0.05) elevated in gills, liver 

and kidney of O.mossambicus treated with Curzate compared to control and among 

these tissues liver showed the maximum activity, whereas the fishes treated with 

Imidacloprid showed significantly elevated acivity in liver, kidney and muscle 

compared to control. A significantly (P<0.05) decreased activity compared to control 

was shown by gills treated with Imidacloprid and muscle treated with Curzate. 

Table: 4.5 Effect of IMI and CZ on SOD activity (mean ± SEM) in O.mossambicus 

and L.rohita. 

SOD 

O
.m

o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
11.58 

±0.100 

23.11 

±0.301*** 

24.68 

±0.369*** 

11.58 

±0.100 

15.67 

±0.171*** 

17.99 

±0.212*** 

Liver 
15.16 

±0.132 

24.84 

±0.302*** 

31.01 

±0.457*** 

15.16 

±0.132*** 

19.98 

±0.217*** 

20.89 

±0.233*** 

Kidney 
12.57 

±0.109 

17.83 

±0.302*** 

14.79 

±0.148*** 

12.57 

±0.109*** 

14.79 

±0.148*** 

15.86 

±0.166*** 

Muscle 
3.560 

±0.028 

5.010 

±0.052*** 

5.290 

±0.059*** 

3.560 

±0.028 

4.62 

±0.045*** 

4.890 

±0.050*** 

L
.r
o
h
it
a
 

Gills 
1.390 

±0.010 

2.54 

±0.014*** 

3.21 

±0.010*** 

1.39 

±0.010 

1.98 

±0.013*** 

2.77 

±0.014*** 

Liver 
1.78 

±0.010 

2.81 

±0.010*** 

3.69 

±0.010*** 

1.78 

±0.010 

2.01 

±0.008*** 

2.89 

±0.010*** 

Kidney 
1.57 

±0.007 

2.72 

±0.006*** 

3.24 

±0.005*** 

1.57 

±0.007 

1.99 

±0.006*** 

2.93 

±0.007*** 

Muscle 
0.61 

±0.022 

0.98 

±0.016*** 

1.24 

±0.003*** 

0.61 

±0.022 

0.82 

±0.011*** 

1.09 

±0.023*** 

� Values are expressed as units/mg protein. One unit is defind as the amount of 

enzyme which gives 50% inhibition of formazon formation/minute. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 4.5 Effect of IMI and CZ on SOD activity (mean ± SEM) in O.mossambicus 

and L.rohita. 
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Catalase: 

In the present study catalyse activity in different in different tissues of O.mossambicus 

treated with different pesticides showed significant variations (P<0.05), compared to 

control group. Tukey’s test showed significant difference between pesticides treated 

groups and also with the control. On treatment with both Curzate and Imidacloprid gills, 

liver and kidney showed significantly elevated CAT activity compared to control. 

Comparison between groups treated with different pesticides revealed that there was 

significant increase (P<0.05) in CAT activity in all tissues compared to control except 

in muscle. Muscle showed a statistically significant decreased activity compared to 

control. 

Table: 4.6 Effect of IMI and CZ on CAT activity (mean ± SEM) in O.mossambicus 

and L.rohita. 

CAT 

O
.m

o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
11.14 ± 

0.092 

14.54 ± 

0.146*** 

14.78 ± 

0.136*** 

11.14± 

0.092 

14.54 ± 

0.146*** 

14.78 ± 

0.136*** 

Liver 
11.54 ± 

0.069 

32.84 ± 

0.497*** 

36.71 ± 

0.626*** 

11.54± 

0.069 

28.79 ± 

0.409*** 

29.92 ± 

0.435*** 

Kidney 
4.980 ± 

0.023 

10.12 ± 

0.026*** 

14.61 ± 

0.144*** 

4.98 ± 

0.023 

8.08 ± 

0.013*** 

9.80    

±0.039*** 

Muscle 
3.160 ± 

0.022 

3.89 ± 

0.028 

4.210 ± 

0.034* 

3.16 ± 

0.022 

3.48 ± 

0.023 

3.670 ± 

0.025* 

L
.r
o
h
it
a
 

Gills 
6.910 ± 

0.094 

8.87 ± 

0.084*** 

11.88 ± 

0.064*** 

6.91 ± 

0.094 

8.12 ± 

0.091*** 

10.09 

±0.087*** 

Liver 
17.87 ± 

0.192 

28. 79 ± 

0.194*** 

39.98 ± 

0.206*** 

17.87± 

0.192 

8.32 ± 

0.060*** 

9.02 

±0.052*** 

Kidney 
10.12 ± 

0.080 

21.98 ± 

0.098*** 

31.75 ± 

0.102*** 

10.12± 

0.080 

10.89 ± 

0.063*** 

22.28 

±0.095*** 

Muscle 
9.130   

±0.650 

10.81 

±0.340*** 

13.44  

±0.053*** 

9.13 

±0.650 

10.65 

±0.584*** 

10.99  

±0.453*** 

� Value are expressed as IU/change in absorbance at 230 nm/min, Extinction 

Coefficient = 0.021. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 4.6 Effect of IMI and CZ on CAT activity (mean ± SEM) in O.mossambicus 

and L.rohita. 
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Lipid peroxidation (LPO): 

In the present study LPO level in different in different tissues of O.mossambicus treated 

with different pesticides showed significant variations (P<0.05), compared to control 

group. Tukey’s test showed significant difference between pesticides treated groups and 

also with the control. Highest LPO level was found in the gill of fishes treated with 

Imidacloprid. On treatment with both Curzate and Imidacloprid liver, kidney and 

muscle showed significantly elevated LPO level compared to control (Table 4.5 and Fig 

4.5)..  

Table: 4.7 Effect of IMI and CZ on glucose-6-phosphatase activity (mean ± SEM) 

in O.mossambicus and L.rohita. 

LPO 

O
.m

o
ss
a
m
b
ic
u
s 

 IMI CZ M8 

Tissues C LD HD C LD HD 

Gills 
0.72 

±0.251 

1.28 

±0.349* 

1.41 

±0.338** 

0.72 

±0.251 

0.89 

±0.309 

1.03 

±0.338 

Liver 
0.45 

±0.0210 

1.17 

±0.390** 

1.23 

±0.409*** 

0.45 

±0.210 

0.82 

±0.155 

0.99 

±0.328 

Kidney 
0.145 

±0.032 

0.59 

±0.083 

0.064 

±0.194 

0.145 

±0.32 

0.38 

±0.058 

0.48 

±0.122 

Muscle 
0.68 

±0.066 

0.98 

±0.021 

1.09 

±0.026 

0.68 

±0.066 

0.84 

±0.037 

0.98 

±0.031 

L
.r
o
h
it
a
 

Gills 
0.559 

±0.003 

0.73 

±0.002*** 

0.99 

±0.002*** 

0.559 

±0.003 

0.66 

±0.003*** 

0.799 

±0.002*** 

Liver 
0.529 

±0.002 

0.79 

±0.006*** 

0.93 

±0.001*** 

0.529 

±0.005 

0.69 

±0.002*** 

0.81 

±0.003*** 

Kidney 
0.419 

±0.001 

0.69 

±0.001*** 

0.829 

±0.001*** 

0.419 

±0.001 

0.54 

±0.001*** 

0.719 

±0.001*** 

Muscle 
0.209 

±0.004 

0.339 

±0.003*** 

0.519 

±0.001*** 

0.209 

±0.004 

0.26 

±0.002*** 

0.319 

±0.005*** 

� Values are expressed as mmoles MDA liberated/ 100g wet tissue. 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Figure: 4.7 Effect of IMI and CZ on glucose-6-phosphatase activity (mean ± SEM) 

in O.mossambicus and L.rohita. 
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Discussion: 

The effects of agro-chemicals in the form of insecticide (IMI) and fungicide (CZ) in the 

previous chapters have proved their toxicity on exposure of sub-lethal concentrations by 

way of showing alterations in their haematological and biochemical profile. Hence, in 

the present study an attempt is made to find out the modus operandi of detoxification. 

Detoxification path at tissue level can be detected by biochemical markers of OS (Van 

der Oost et al., 2003).  

The first line of defence to oxidative stress is the use of antioxidant scavengers, such as 

ascorbic acid (vitamin C), vitamin E, uric acid, carotenoid and glutathione. In the 

present study the response of the antioxidant scavengers (ascorbic acid and GSH) are 

presented in Table 4.1 and 4.2 and Fig 4.1 and 4.2. The second line of defence includes 

cellular mechanism which helps in removing excess ROS and avoids oxidative damage. 

It includes GPx, GST, CAT and SOD. The altered response of the enzymatic defense is 

presented in Table: 4.3 to 4.6 and Fig: 4.3 to 4.6. 

In the present study agrochemical stress has significantly increase ascorbic acid content 

in liver, kidney and gills (Table 4.1 and Fig 4.1). Ascorbic acid content plays an 

important role in detoxification of the foreign bodies or toxicants in metabolic process. 

Ascorbic acid is an important water soluble antioxidant in biological fluid and essential 

micronutrient required for normal metabolic functioning. It acts as a biological reducing 

agent for hydrogen transport. It neutralizes reactive oxygen molecules and reduces 

oxidative DNA damage and genetic mutations (Frei, 1994). Furthermore, ascorbic acid 

also protects host cells against harmful oxidants released into the extracellular medium 

(Ray and Husain, 2002). The free metal ion-independent protein oxidation in cells is 

exclusively prevented by ascorbic acid. A recent review highlighted the bioregulatory 

rate of ascorbic acid to protect extracellular protein function through gene expression 

(Griffiths and Lunec, 2001). Ascorbic acid is necessary for the synthesis of collagen; 

growth and maintained of epithelial tissues. It can act as a hydrogen carrier. It may have 

an essential role in the metabolism of protein; fats and carbohydrates. The utilization of 

these components for production of energy, due to stress condition involves active 
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synthesis of new substances and a number of anabolic and catabolic reactions. These 

reactions may require ascorbic acid since it is known to act as a cofactor for many 

oxidations reduction reactions. Due to its anti-oxidant role and as a part of redox buffer 

system increased ascorbic acid is probably inhibiting the oxidative metabolism and 

preventing the production of electrophilic metabolites and is able to scavenge harmful 

free radical metabolites/ ROS (Sato et al., 1990; Guha and Khuda-Bakhsh, 2002). 

Hence, the high level of ascorbic acid observed in the present study as agro-chemical 

induced stress condition is justifiable. The indication to detoxifying enzymes is reported 

to be accompanied by increase in ascorbic acid content of liver, kidney and gills, which 

stimulate detoxification of toxicant, suggestive of liver, kidney and gills to be the sites 

of detoxification. Our results are in agreement with earlier reported elevated ascorbic 

acid content in Channa gachua (Ali and Ilyas, 1981); in Oreochromis mossambicus 

(Guha and Khuda-Bukhsh, 2001); in Clarias batrachus (Kamble et al., 2001; 2011) and 

Puntius ticto (Ganeshwade, 2011). 

Glutathione is a tri peptide that is mainly present in cells in its reduced form (GSH), 

which basically acts as an intracellular reductant and neucleophile (Vardharajan, 2010). 

It functions in the synthesis of proteins and DNA, amino acid transport, maintenance of 

thiol – disulphide status, free radical scavenging, signal transduction, as an essential co-

factor of several enzymes, as a non toxic storage form of cysteine, and as a defence 

against oxidizing molecules and potentially harmful pesticides (Di Mascio et al., 1991; 

Kelly et al., 1998; Pena-Llopis et al., 2001; Dorval and Hontela, 2003; Elia et al., 

2003). In the present study there was a significant increase in the GSH activity in liver, 

kidney and gills on exposure of agrochemicals in a dose dependent manner (Table 4.2 

and Figure 4.2). Among the tissues GSH level was found to be highest in the liver 

compared to other tissues which may be due to an adaptive mechanism to oxidative 

stress in its synthesis which can be provided for the increased GSH activity. However, a 

depletion of GSH was observed in kidney which illustrates that severe oxidative stress 

may have suppressed GSH levels due to loss of adaptive mechanisms and the oxidation 

of GSH to GSSG. During scavenging the ROS, GSH is oxidized and forms glutathione-

protein mixed disulphides; hence, the ability of cell to reduce or synthesize GSH is the 

key to how effectively the cell can manage the oxidative stress. Total glutathione will be 

a protective biological index to indicate exposure to pesticides (Stein et al., 1992). Due 
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to its function in resisting the reactive oxygen toxicity, the changing degree for total 

glutathione can serve as markers of exposure to pollutants which disturb the piscine 

oxyradicals (Vardharajan, 2010). 

The second cellular mechanism to remove excess ROS and avoid oxidative damage is 

maintained through enzymatic defence strategy. These enzymatic defences include 

glutathione peroxidase (GPx), glutathione-s-transferase (GST), catalase (CAT) and 

superoxide dismutase (SOD). GPx activity showed an overall significant change in 

agrochemical exposed group of fishes (Table 4.3 and Fig 4.3) compared to control. GPx 

level was found to be increased in gills and liver which might be because of the 

induction, as in the case of any other defensive antioxidant enzyme. GPx is an enzyme 

with peroxidase activity and broad substrate spectrum (Lushchak, 2012). This enzyme is 

known to protect the fish from the damage caused by H2O2 and reduces it to lipid 

hydroperoxides (Flora et al., 2008; Vinodhini and Narayana, 2009; Banaee, 2013). An 

increase in GPx activity in liver, kidney and gills is probably eliminating the access of 

H2O2 and lipid hydrogen peroxide produced in the fishes exposed to agro-chemicals. 

Similar results have been observed in the liver of Cyprinus Carpio (Li et al., 2003; 

Vinodhini and Narayana, 2009); Rainbow trout (Orun et al., 2003). Liver is a main 

detoxification organ of the fish for ingested of agro-chemical showing an adaptation to 

oxidative conditions and is seen reflecting the organotropism effect (Lenartova et al., 

1997; Mieiro et al., 2011).  Increase GPx activity have also been observed in kidney of 

S.senegalensis (Velma and Tchounwou, 2011; Oliva et al., 2012), in C.batracus 

(Bhattacharya and Bhattacharya, 2007) and in O.mossambicus (Basha and Rani, 2003). 

As proposed by Tsangaris et al., (2007), GPx is not only an important component of 

antioxidant defence system but its response is known to be accompanied by the action 

of other anti oxidants (GST) and Scavenger (GSH) molecules. Tissue specific increase 

of GPx in the present study indicates the adaptive approach by the fish to defend the 

OS, generated as a consequents of agro-chemical exposure and that the increased 

production of H2O2 due to OS is thus scavenged by the enzyme GPx. Elevated GPx 

activity also indicates that the regulation of ROS generated due to agro-chemicals is 

efficiently achieved by GSH pathway. 
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GST is one of the major phase II, GSH-dependent ROS- an electrophilic xenobiotic 

detoxifying enzyme (Meierjohann et al., 2002; Comakli et al., 2011) by making the 

xenobiotic chemicals more hydrophilic for transportation or excretion (Egaas et al., 

1993). This enzyme differs from the other enzymes and antioxidants in that it catalyses 

the direct conjugation of GSH with an offending toxicant (Ahmad, 1995). When severe 

oxidative damage prevents the primary antioxidants (mentioned above) from 

functioning GST can still remove the harmful substance, allowing the cell to regain 

homeostasis (Perl-Treves and Perl, 2002). In animals the toxicant conjugate is marked 

for excretion, GST is therefore considered a ‘detoxification enzyme’ rather than a 

traditional antioxidant (Ahmad, 1995).  The elevated levels of GST in the present 

studies indicate the shift towards a detoxification mechanism under agro-chemical 

exposure (Table 4.4 and Fig 4.4). There is more GST activity in hepatic tissue compared 

to kidney and gills, which is due to effective role of liver in xenobiotic detoxification 

(Goering et al., 1995). 

Biotransformation reactions of toxic chemical in the organisms occur in three phases 

(transformation, conjugation and excretion). In the present study, fish organ-based GST 

assay reflected a dose dependent significant increase in liver, kidney and gills of both 

the fishes exposed to agro-chemicals. The increase in the activity of GST reported in the 

present study indicates the biotransformation pathway used a protective response in fish 

towards exposure to an oxidative stress inducing agro-chemicals. Similar kind of results 

have been reported earlier in liver, kidney and gills of freshwater murrel C.punctatus 

(Dabas et al., 2012), obtained by in O.niloticus (Wengu et al., 2009 and Gad, 2011) and 

in O.mossambicus (Anushia et al., 2012). 

Among the enzymes that compromise the defence system against toxicity also includes 

superoxide dismutase (SOD) and catalase (CAT) (Dorval and Hontela, 2003). 

Antioxidant enzymes are used by the organisms as natural endogeneous protection 

against the generation of ROS (Metwalli and Elmegd, 2002). SOD catalyses the 

destruction (dismutation) of superoxide free radicals produced during oxidation of 

pesticide (Otitoju and Onwurah, 2007). The action of SOD therefore results in the 

protection of the biological integrity of cells and tissues against the harmful effects of 

superoxide free radicals (Van der Oost et al., 2003). To ameliorate the damage caused 
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by the hydroxyl radicals formed from superoxide radical and hydrogen peroxide, 

organisms have evolved mechanisms to regulate the concentrations of the two reactants. 

SOD is an important isoenzyme functioning as superoxide radicals’ scavenger in the 

living organisms. It is an important enzyme family in living cells for maintaining 

normal physiological conditions and coping with stress (Otitoju, 2005). The antioxidant, 

CAT, is a hematin-containing enzyme based in the peroxisomes of cells and is an 

extremely important component of intracellular and antioxidant defences of aquatic 

organism (Jamil, 2002). It reduces the H2O2 into water and oxygen to prevent oxidative 

stress and in maintaining cell homeostasis. CAT is often induced concomitantly with the 

antioxidant SOD, as a result of OS. The formation of highly ROS is a normal 

consequence of essential biochemical reactions including mitochondrial and microsomal 

electron transport systems. The present study revealed that SOD and CAT activities in 

the liver, kidney and gills of O.mossambicus and L.rohita exposed to agrochemicals 

were increasing significantly (Table 4.5 and 4.6 and Fig 4.5 and 4.6). The induction of 

SOD and CAT may be a physiological adaptation for the elimination of ROS generation 

(Gad, 2011). As reported by Halliwall (1994), an increased in SOD is followed by a 

parallel increase in CAT, since both enzymes are linked functionally and occur in 

tandem. Also SOD is the enzyme metabolizing superoxide radical and its level is 

directly related to CAT activity. Therefore, the SOD-CAT system provides the first 

defense against oxygen toxicity induced by agro-chemicals. Similar results have been 

observed in the Sparus aurata, Oreochromis mossambicus, Labeo rohita  and Carassus 

auratus (Sayeed et al., 2003. Gull et al., 2004; Zhang et al., 2004; Nam et al., 2005; 

Wilhelm-Filho et al., 2005; Sun et al., 2006; Correia et al., 2007; Sivaperumal, 2008; 

Zaidi and Soltani, 2010). Considering the results for each tissue, it was found that the 

liver showed the highest SOD and CAT antioxidant activity compared to kidney and 

gills. Both enzymes appeared to have an important role in combating the generation of 

superoxide radical (O2
-
) and hydrogen peroxide (H2O2) from the intense metabolic 

activity characteristic of liver. Furthermore, significant increase in SOD and CAT 

activities in gills and kidney represents an adaptive response to protest the fish from free 

radical toxicity induced by agrochemicals.  

The overall effect of pesticide radicals is the increased production of free radicals in the 

system and the concomitant decrease in the antioxidant activity due to the utilization of 



Chapter IV 

 

Effects of agro-chemicals on antioxidant enzymes and lipid peroxidation in Oreochromis mossambicus 

and Labeo rohita 

134 

 

the antioxidant enzymes to neutralize the free radicals generated. All the major 

biomolecules like lipids, proteins, and nucleic acids may be attacked by free radicals, 

but lipids are probably the most susceptible to peroxidative damage (LPO) (Ray and 

Akhtar, 2002).   

LPO has been identified as one of the basic deteriorative reactions in cellular 

mechanisms of the agro-chemical induced OS in fresh water fishes (Vardharajan, 2010). 

OS is a chain event which cascades into widespread chain reactions that produces many 

deleterious products in concentrations many magnitudes greater than the initiator 

(Ahmad, 1995). This is exemplified by the fact that thousands of polyunsaturated fatty 

acid molecules are destroyed by a LPO chain reaction initiated by a single initiator free 

radical. In order to prevent this vicious chain reaction the O2 radical cascade to O2
-
 and 

H2O2 must be attenuated, and the peroxides converted to innocuous metabolites. MDA 

is a major oxidation product of polyunsaturated fatty acids and increase MDA content is 

an indicator of LPO. MDA levels were measured as thiobarbituric acid reactive 

substances (TBARS) which served as an index of extent of lipid peroxidation. A dose 

dependent increase in the level of LPO, as expressed by MDA formed, was observed in 

liver, kidney and gills of the fishes exposed to IMI and CZ (Table 4.7 and Fig 4.7).  

Elevated MDA level was observed in all the tissues on exposure to agrochemicals 

indicating that elevated antioxidant enzyme activities were not enough to prevent lipid 

peroxidation. Significant oxidative damage and lipid peroxidation should theoretically 

occur if antioxidant defences were overwhelmed by ROS production (Kappus, 1987; 

Halliwell and Gutteridge, 1989; Winston and Di Giulio, 1991; Vardharajan, 2010). 

Furthermore, significant increases in MDA ascribes to an excessive production of ROS, 

which could be related to antioxidant enzyme leakage (Yonar et al., 2012). Our results 

are corroborated with previous studies reported by other investigators (Paulino et al., 

2005; Miller, 2006; Li et al., 2007; Oruc, 2010; Kavitha and Rao, 2008; Sharbidre et al., 

2011; Lopez-Lopez, 2011).  
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Thus, from the present study it can be concluded that the response of antioxidant 

enzymes (SOD, CAT, GPx, and GST) and non-enzymatic antioxidant/scavengers 

(ascorbic acid and GSH) showed that the fishes are under severe oxidative stress and 

that the agro-chemicals are acting as potent free radicals generators. Lipid peroxidation 

(MDA) level proves that extensive lipid peroxidation has occurred on exposure of the 

agro-chemicals. And that both the antioxidants interact in a concerted manner to 

eliminate ROS and prevent damage to cellular components. This suggests that IMI and 

CZ at levels below median lethal concentration are capable of causing oxidative damage 

in O.Mossambicus and L.rohita. 
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CHAPTER V 

 

Condition factor, organo-somatic indices and histoarchitecture of liver, 

spleen and gonads of freshwater teleosts on exposure to Imidacloprid and 

Curzate 

 

Measurements of condition factor, which relates weight and length, and organo-somatic 

indices, which indicate the proportional sizes of target organs, are standard procedures in 

fish physiology studies and are used as indicators of the well-being of individual organisms 

(Di Giullo et al., 2008). The condition factors are used as indicator of the well being of 

individual organism, because it integrates many levels of the organizational processes. For 

example, a decrease in condition factor is considered a reflection of depletion in energy 

reserves because these indices are positively related to muscle and livers energy content 

(Goede and Barton, 1990; Haque et al., 1998; Jones et al., 1999; Lizama et al., 2002; Hasan 

and Secer, 2003). The condition factor is an organism-level response, with factors such as 

nutritional status, pathogen effects, and toxic chemical exposure causing greater-than-

normal or less-than-normal weights (Andu and Kangur, 1996; Maxwell and Dutta, 2005; 

Azmat et al., 2007). Organo-somatic indices reflect the status of organ systems, which may 

change in size due to environmental factors more rapidly than organism weights and 

lengths increase or decrease. Schmitt and Dethloff (2000) are of the opinion that: "The 

indices also integrate, at the organ system and organism level, the combined effects of 

multiple contaminants and the combined effects of contaminants and other stressors. 

Hence, they reflect adverse effects of chemical exposure that are not monitored routinely by 

water quality programs.  

Commonly used organosomatic indices in various stress related studies include 

hepatosomatic index (HSI), viscerosomatic index (VSI), spleenosomatic index (SSI), 

gonadosomatic index (GSI) and Cardiosomatic index (CSI).  
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Singh and Canario (2004) observed that hepatosomatic index is one of the most 

investigated biomarker due to important role of liver in detoxification of pollutants, while 

Dogan and Can (2011), observed that organosomatic index is an appropriate bioindicator 

for endocrine disruption in fish consequent of chemical exposure. HSI is the weight of the 

liver expressed as a percentage of total body weight; it is also known as the liver somatic 

index. Gingerich (1982), in summarizing the  extensive literature on the biology of the fish 

liver, reported that the liver constitutes, on average, about 2% of body weight in mature 

teleost fishes. Alterations in liver size may reflect changes in the metabolism and energy 

reserves of an individual fish (Busacker et al., 1990). Because of the energy storage and 

metabolic functions of the liver, alterations in liver size due to environmental stressors are 

of interest. Evaluation of the HSI must consider the role of both endogenous and exogenous 

factors. The HSI varies with seasonal cycles (Saborowski and Buchholz, 1996; Delahunty 

and de Vlaming, 1980; Beamish et al., 1996; Slooff et al., 1983). Because of the liver’s role 

in storage and metabolism, nutritional quality and regimes also affect relative liver size 

(Swallow and Fleming, 1969; Heidinger and Crawford, 1977; Fabacher and Baumann, 

1985; Daniels and Robinson 1986; Förlin and Haux, 1990; Grady et al., 1992; Scott and 

Pankhurst, 1992; Foster et al., 1993).  

Of the organo-somatic indices, the HSI is the one most often associated with contaminant 

exposure (Adams and McLean, 1985). Several investigators have suggested that relative 

liver enlargement in fish indicates exposure to environmental carcinogens or other toxic 

chemicals. Increased HSI has been reported in brown bullheads (Ameiurus nebulosus) from 

sites polluted with polycyclic aromatic hydrocarbons (PAHs) (Fabacher and Baumann, 

1985; Gallagher and Di Giulio, 1989), in rainbow trout (Oncorhynchus mykiss), Atlantic 

cod, and winter flounder (Pleuronectes americanus) exposed to waters containing a mixture 

of PAHs and other pollutants (Poels et al.,  1980;  Kiceniuk and Khan, 1987; Fletcher et al.,  

1982) and in redbreast sunfish exposed to industrial discharge containing PAHs and 

polychlorinated biphenyls (PCBs) (Adams   et al.,  1989).  

In contrast with the studies described above, a number of laboratory studies found that liver 

size decreased following exposure to contaminants. Exposure of rainbow trout to sodium 

pentachlorophenate (Hickie and Dixon, 1987) caused a reduction in the HSI, as did 
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exposure of perch (Perca fluviatilis) to a mixture of metals (Larsson et al., 1984); Atlantic 

salmon (Salmo salar) to cyanide (Ruby et al., 1987); Asian redtail catfish (Mystus 

nemurus) to hydrogen sulfide (Haque et al., 1998); and striped mullet (Mugil cephalus) to 

crude oil (Chambers, 1979). These decreases may have reflected glycogen loss in the liver 

as energy stores were utilized (Barton et al., 1987). Exposure to carbofuran also decreased 

HSI in the green snakehead (Channa punctatus); the decrease was linked to histological 

changes in the liver, including hepatocyte damage and degeneration (Ram and Singh 1988; 

Adams et al., 1992; McMaster et al., 1991).  

 The spleno-somatic index (SSI) is the weight of the spleen expressed as a percentage of 

total body weight. Alterations in this index could indicate an abnormal condition in the 

spleen such as necrosis or swelling due to infection (Goede and Barton, 1990). Spleen size 

is considered a useful diagnostic factor because the spleen is a hematopoietic organ 

(Anderson, 1990) and dysfunction could have effects at the whole-organism level. The SSI 

has not been as thoroughly investigated as the HSI, but certain endogenous and exogenous 

factors are known to affect it. The range of spleen sizes varies among fishes (Anderson et 

al., 1982) and among populations of the same species (Lipskaya and Salekhova, 1980). 

Relative spleen weight may also differ with gender, age, size, gonadal development, and 

growth rate (Krykhtin, 1976; Ruklov, 1979). Seasonal changes also affect the SSI (White 

and Fletcher, 1985). Finally, as with the HSI, factors that cause a disproportionate change 

in body weight will affect the SSI. 

Nonspecific stressors (e.g., hypoxia) can result in altered spleen morphology. Studies on six 

species of teleost fish found that transient hypoxic conditions or severe exercise caused the 

spleen to contract fully and then decrease in size and hemoglobin content (Yamamoto and 

Itazawa, 1985; Yamamoto, 1988). Acute stressors including increased temperature, 

exhaustive exercise, hypoxia, and simulated transport led to spleen contraction and 

decreased spleen mass in young European sea bass (Dicentrarchus labrax), dab (Limanda 

limanda), and in Trematomus bernachii, a benthic Antarctic teleost (Hadj-Kacem et al.,  

1987; Davison et al.,  1994; Pulsford et al.,  1994). Alterations in spleen morphology due to 

nonspecific stressors are paralleled by alterations at the cellular level: the release of 

erythrocytes into circulation, a decrease in the total numbers of white blood cells, an 
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increase in the proportion of atypical cells (erythrocytes and macrophage-like cells), and 

enhanced red blood cell degradation in the spleen (Yamamoto and Itazawa, 1983; Maule 

and Schreck, 1990). 

Chemical contaminants can also alter the SSI. A trend of elevated SSI was seen with 

chronic exposure phenol of redbreast sunfish (Adams et al., 1992). Decreased SSI occurred 

in cunners (Tautogolabrus adspersus) exposed to petroleum for six months, in Atlantic cod 

exposed to Venezuelan crude oil for 21 or more days, and in gobies (Zosterisessor 

ophiocephalus) residing at a polluted site (elevated PCBs, PAHs, metals) in the Venice 

Lagoon (Payne et al., 1978; Kiceniuk and Khan, 1987; Pulsford et al., 1995). Juvenile 

rainbow trout exposed for 24 h to a component of industrial effluent experienced significant 

decreases in the SSI and hemoglobin oncentration.  A significant increase in the SSI and 

leukocrit, and significantly higher cumulative mortality after disease challenge were seen 

after a 25-d exposure (Johansen et al., 1994). Histological data show cellular changes 

occurring in the spleen with exposure to contaminants, supporting the use of the SSI as a 

relevant indicator of spleen dysfunction. Chronic exposure of rainbow trout to bis(tri-n-

butyltin) oxide resulted in a concentration-related splenic lymphocyte depletion. 

Reticuloendothelial cells proliferated in the spleen, suggesting an increased need for 

phagocytes to remove damaged blood cells, and increased erythrophagia was noted 

(Schwaiger et al., 1992). Certain contaminants can affect organs such as the spleen directly 

or they can suppress immune system functions (Anderson et al., 1989; Hutchinson and 

Manning, 1996), increasing disease prevalence and thus causing enlargement of the spleen. 

The histopathology of the spleen due to exposure to chemicals is not as well investigated as 

that of the gills and liver. The spleen being a haemopoietic and important immune organ is 

bound to be affected by chemical pollutants absorbed into the blood stream.  

The gonado-somatic index, the weight of the gonads expressed as a percentage of total 

body weight. The GSI and gonadal histopathology fall into a category of indicators that 

provide structural, rather than functional, information about gonadal health and 

maturational stage (Ackermann, 2008). The GSI is one of several organosomatic indices, 

including the HSI and SSI, which establishes a ponderal relationship between the organ and 

the entire body. There is substantial evidence that most animal species undergo 
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reproductive cycling and, frequently, dramatic variation in gonadal size throughout the 

cycle (de Vlaming et al., 1981). Consequently, calculating gonadal weight as a percentage 

of body weight has routinely been used to determine reproductive maturity, as well as 

assess gonadal changes in response to environmental dynamics or exogenous stresses. 

Gonadal histopathology is often utilized alone, or in conjunction with the GSI, to confirm 

gonadal phenotype, determine the state of sexual development, and investigate reproductive 

impairment. Although gonadal histopathology is routinely used to detect higher level 

responses expressed as morphological abnormalities, observed alterations in cells and 

tissues are often reflective of previous biochemical and physiological modifications. The 

utilization of the GSI as a reproductive biomarker was first reported in 1927 in a study 

describing the yearly variations of female yellow perch (Perca flavescens) ovaries (Meien, 

1927). Years later, Nikolsky (1963) endorsed this method on the premise that “…the effects 

of fish size on gonadal weight are eliminated by expressing gonadal weight as a percentage 

of body weight.” There is significant evidence that exposure to various environmental 

pollutants can result in gonadal alterations such as a decreased GSI, morphological 

changes, or both. Pollutants may also cause alterations in these two indicators. A reduction 

in the GSI and impaired gonadal development (growth and structural pathologies) have 

been reported in response to environmentally relevant doses of dietary mercury in juvenile 

walleye (Stizostedion vitreum) (Friedmann et al., 1996), organophosphate insecticides in 

female striped catfish (Mystus vittatus) (Choudhury et al., 1993), and metacid-50 and 

carbaryl in climbing perch (Anabas testudineus) (Haider and Upadhyaya, 1985). Oocyte 

atresia, as defined by an involution or resorption of unfertilized eggs by the ovaries, is a 

normal physiological event in all fish, but it has become a pathological condition noted in 

fish after exposure to certain environmental contaminants (Johnson et al., 1988; Cross and 

Hose, 1988; Kirubagran and Joy, 1988). The ability to detect increased degeneration or 

necrosis of developing oocytes by histological examination has inspired the use of oocyte 

atresia as a biomarker of reproductive impairment. Fish under stress will experience 

changes in tissue and organ function to maintain homeostasis.   
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The size or weight of the liver, spleen, and gonads relative to fish length or weight 

signifies overall health and reproductive status. The current investigation was 

undertaken to understand the toxicity of sublethal dose of IMI and CZ in O.mossambicus 

and L.rohita by determining its effects on condition factor and organosomatic indices 

(HSI, SSI and GSI). If a change in function exists, there will be a gross change in the 

structure of organs or tissues. Taking the aforementioned into account, along with 

condition factor morphological alterations were  observed for liver, Gonads and Spleen.  
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Materials and Methods: 

Experimental design: 

Two freshwater teleosts, O. mossambicus and L. rohita of similar size in length and weight 

(12 ± 2 cm; 25 ± 1.9 g) and (25 ± 3 cm; 110 ± 5 g) respectively were brought from a local 

pond of Baroda district. Animals were transported to laboratory in large aerated plastic 

container and were acclimatized in glass aquaria containing 50 liter of well aerated 

dechlorinated tap water (with physic-chemical characteristics: pH 6.5- 7.5, temperature 

25±3ºC and dissolved oxygen content of 7-8ppm) for ten days. During an acclimation 

period of 10 days, the fish were kept under natural photoperiod and fed two times a day 

(10:00 and 16:00h) with commercial pelleted diet. The acclimatized healthy fishes of both 

sexes were selected randomly for the studies 

Sub-lethal exposure: 

Based on the result of the 48 h LC50, 30 tilapia fish were divided in 3 groups, 10 fish for 

each group: Group 1 served as control without any treatment of Agro-chemicals. Group 2 

were treated with low dose of IMI and CZ (LC50 / 10). Group 3 were treated with high dose 

of IMI and CZ (LC50 / 20) for a period of 21 days. Each concentration was replicated two 

times. Constant amount of the test chemical and test media were changed every 24 hours to 

maintain the toxicant strength and the level of dissolved oxygen as well as to minimize the 

level of ammonia during experiment. The fishes were fed once in a day throughout the 

duration of the sub-lethal toxicity tests. 

At the end of the experiment the fish were carefully netted to minimize stress, and the fish 

weighed. Fishes were sacrificed by pithing (damaging the brain and severing the spinal 

cord between the head and trunk region using a sharp needle). Then, the liver, Gonads and 

spleen along with the other organs for histological observations was carefully removed and 

weighed. 

 



Chapter V 

Condition factor, organo-somatic indices and histoarchitecture of liver, spleen and gonads of 

freshwater teleosts on exposure to Imidacloprid and Curzate 

 

143 

 

 

Morphological observation: 

Condition factor:  

Sample of 10 fishes from each experimental setup was taken for measuring weight, length 

to determine K factor. The condition factor of fish was calculated according to the method 

of Anderson et al., (1998) using the formula:  

K = W x 100/ L 
3 
(Where K= Condition factor; W= Weight of the fish; L=Length of the 

fish).
 

 

Organosomatic index 

The organosomatic indices of the liver, spleen and Gonads were then calculated for the ten  

fish according to Dogan and Can (2011) to get the organ weight to the body weight ratios 

of the fish as follows: weight of the fish/ weight of the organ x  100 

HSI: liver weight/ fish weight x 100 

SSI: spleen weight/ fish weight x 100 

GSI: Gonad weight/ fish weight x 100 

 

Histological observation: 

After measuring length and weight fresh tissues were fixed in 4% paraformaldehyde for 24 

hours, dehydrated, embedded in paraffin wax and sectioned at 10-12µm then stained with 

heamatoxylin and eosin and examined microscopically and photographed using digital 

camera. 

 

Statistical analysis: 

Data were analyzed using two-way Analysis of Variance (ANOVA) followed by Tukey’s 

multiple comparison test to determine differences between treatments means as well as 

control means at significant rate of P<0.05. Data were represented in mean ± SEM.  All 

statistics were carried out using Statistical Analysis program Graph pad prism 5. 
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Results: 

The mean organosomatic index and condition factor of O.mossambicus and L.rohita 

exposed to different concentrations of IMI and CZ are presented in Table 5.1 and Fig: 5.1 

and 5.2.  

The condition factor (K) calculated for O.mossambicus varied from 1.72±0.041 to 1.64 

±0.019 (low dose) followed by 1.58 ±0.010 (high dose) on IMI exposure and from 1.72 

±0.046 to 1.67 ± 0.031 (low dose) followed by 1.60 ± 0.027 (high dose) on CZ exposure. 

While that for L.rohita varied from 1.08 ± 0.035 to 1.01 ± 0.009 (low dose) followed by 

0.94 ± 0.011 (high dose) on IMI exposure and from 1.08 ±0.035 to 1.03 ± 0.034 (low dose) 

followed by 0.97 ± 0.019 (high dose) on CZ exposure.  

SSI index of O.mossmbicus showed a significant decrease from 0.048 ± 0.0016 to 0.032 ± 

0.002 (P<0.01) followed by 0.0182 ± 0.003 (P<0.05) on IMI exposure and from 0.0514 ± 

0.001 to 0.039 ± 0.02 (P<0.05) followed by 0.027 ± 0.002 (P<0.001) on CZ exposure in a 

dose dependent manner. SSI index of L.rohita showed a significant decrease from 0.0506 ± 

0.003 to 0.036 ± 0.003 (P< 0.01) followed by 0.024 ± 0.002 (P< 0.001) on IMI exposure. A 

non-significant decrease from 0.0516 ± 0.003 to 0.043 ± 0.003 (P>0.05) at low dose 

whereas a significant decrease up to 0.032 ± 0.003 (P<0.001) at high dose on CZ exposure. 

Of the HSI the significant decrease was observed only on IMI exposure from 1.216 ± 0.052 

to 1.050 ± 0.028 (P< 0.05) at high dose for O.mossmabicus and from 1.224 ± 0.043 to 

1.154 ± 0.029 (P< 0.01) at high dose for L.rohita.  

One of the most noticeable observations was at the end of the experiment for L.rohita 

showed that all the control as well as treated fishes turned out to be only females, hence 

male GSI was not reported. The female GSI exhibited a non-significant decrease on CZ 

exposure whereas, on IMI exposure there was a significant decrease from 1.098 ± 0.037 to 

0.960 ± 0.019 (P<0.05) followed by 0.872 ± 0.013 (P<0.001). Male GSI of O.mossambicus 

revealed a significant decrease on IMI exposure (P<0.05) at low dose and (P<0.01) at high 

dose. And that for CZ was (P<0.01) at low dose and (P<0.001) at high dose. Female GSI of 

O.mossambicus also exhibited a significant decrease (P<0.01) at low dose and (P<0.001) at 
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high dose of IMI exposure. High dose exposure of CZ demonstrated a significant decreased 

in female GSI (P<0.01).  

The histological alterations of the spleen, liver and gonad were observed and were found to 

exhibit dose dependent  changes for both the agro-chemicals in both the fishes. However 

the alterations were more pronounced in IMI exposed tissues of the fishes. The 

histoarchitecture of the tissues sections are presented (Photomicrogarph 1 to 7). Spleen 

showed mild to severe depletion of white pulp which was replaced by empty space and 

activation of melanomarophage centers (MMCs) along with hemorrhage, fibrosis and 

intracellular edema. Liver histology too showed distinct altered features such as necrosis in 

hepatocytes, intracellular edema, lipid infiltration, hemorrhage and cytoplasmic 

vacuolation. The histological alterations of the testis on exposure of agro-chemicals 

consists of altered structure of seminiferous tubules associated with damage and presence 

of large number of inter and intra tubular vacuoles and severe necrosis. Female gonads 

showed oocyte atresia and vacuolation. 
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Table: 5.1 Condition factor, HSI, SSI and GSI of O.mossambicus and L.rohita  

subjected  to sub-acute concentrations of IMI and CZ.  

 

 

 
 

IMI CZ 

 INDICES C LD HD C LD HD 

O
.m

o
sa
m
b
ic
u
s 

HSI 
1.216  

±0.052 

1.108 

±0.028 

1.050 

±0.027* 

1.224 

±0.043 

1.192 

±0.300 

1.154 

±0.029 

MALE 

GSI 

0.240  

±0.012 

0.212 

±0.012* 

0.150 

±0.013** 

0.246 

±0.014 

0.232 

±0.08** 

0.146 

±0.009*** 

FEMALE 

GSI 

0.582 

±0.011 

0.508 

±0.016* 

0.404 

±0.009*** 

0.518 

±0.012 

0.450 

±0.07 

0.404 

±0.012** 

SSI 
0.048  

±0.007 

0.032 

±0.002*** 

0.0182 

±0.003*** 

0.0514 

±0.001 

0.039 

±0.02** 

0.027 

±0.002*** 

 
CF 

1.72 

±0.041 

1.64 

±0.019 

1.58 

±0.010*** 

1.72 

±0.046 

1.67 

±0.031 

1.60 

±0.027** 

L
..
ro
h
it
a
 HSI 

1.200 

±0.032 

1.090 

±0.023 

1.006 

±0.028** 

1.198 

±0.04 

1.148 

±0.02 

1.068 

±0.037* 

FEMALE 

GSI 

1.098 

±0.037 

0.960 

±0.019* 

0.872 

±0.013*** 

0.992 

±0.044 

0.91 

±0.022 

0.880 

±0.012 

SSI 
0.0506 

±0.003 

0.036 

±0.003** 

0.024 

±0.002*** 

0.0516 

±0.003 

0.043 

±0.003 

0.032 

±0.003*** 

 
CF 

1.08 

±0.035 

1.01 

±0.009** 

0.94 

±0.011*** 

1.08 

±0.035 

1.03 

±0.034 

0.97 

±0.019*** 

� Each value represents the mean ± SEM of six separate experiments. 

� Signifiacant level indicated by * (P<0.05); **(P<0.01);***(P<0.001) 
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Fig: 5.1 Condition factor of O.mossambicus and L.rohita  subjected  to sub-acute 

concentrations of IMI and CZ.  
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Fig: 5.2 HIS and SSI of O.mossambicus and L.rohita subjected to sub-acute 

concentrations of of IMI and CZ.  
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Fig: 5.3 GSI of O.mossambicus and L.rohita  subjected sub-acute concentrations of IMI and CZ.  
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Discussions 

The use of various organosomatic indices is based on the assumption that there is 

proportional relationship between fish size and the particular ratio in assessing fish stress 

by pollutant (Ronald and Bruce, 1990). In the present study, HSI revealed that there was a 

significant decrease in weight of the liver as the concentration of agro-chemicals increased. 

However, liver of both the fishes exhibited a greater diminution in HSI on IMI exposure 

compared to that of CZ.  Decreased HSI value is indicative of that the fish were under 

stress and that IMI was more toxic compared to CZ. Altered liver function markers (AST 

and ALT) also indicate liver damage. The alterations in the enzymatic activities directly 

reflect the metabolic disturbances and cell damage in specific organs (Chapter III). 

Decrease in the weight of liver suggests a decrease in the production of endoplasmic 

reticulum for protein synthesis in liver tissue under toxicant exposure (Bennet and Wolke, 

2004). Liver reduction could also be as a result of decreased lipid storage (Gabriel et al., 

2010; Areweriokuma et al., 2011). A similar report has been made by Soufy et al, (2007) 

when the fish Oreochromis niloticus was exposed to carbofuran; in rainbow trout after 

long-term exposure to a mixture of heavy metals (Vosylienë and Svecevièius, 1997); and of 

perch exposed to heavy-metal-containing effluent (Larsson et al., 1984 and Figueiredo-

Fernandes et al., 2007).  

 

Parallel to the decreased HSI, alterations in the histological structures were also observed. 

In the control fish, the liver was primarily composed of polyhedral hepatocytes typically 

with central nuclei and a prominent nucleolus (Photomicrograph 1A). Hepatocellular 

necrosis with parenchymal vacuolization, hypertrophy of hepatocytes, hemorrhages and 

widening of blood sinusoids were the distinct altered features in the agro-chemical exposed 

fish liver. At low dose only slight vacuolation and mild swelling of hepatocytes in which 

the nucleus retained a nearly normal shape was recorded (Photomicrograph 1B and 1D). At 

high dose the main alterations found in the liver were: irregular-shaped nuclei, nuclear 

hypertrophy, nuclear vacuolation and the presence of eosinophilic granules in the 

cytoplasm (Photomicrograph 1C and 1E). Cytoplasmic and nuclear degeneration was also 
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very common; melanomacrophages were identified as rounded aggregates of cells 

containing dark-yellowish granules of various sizes, normally close to the vessels 

(Photomicrograph 2B and 2D). Liver showed degeneration of the hepatocytes and 

intravascular haemolysis in blood vessels as shown in Photomicrograph 2C and 2E, 

congestion of central vein, hemorrhages, and nuclear pyknosis in the majority of hepatic 

cells. Liver showed fatty infiltration, these findings were apparent as the liver is considered 

the organ of detoxification and excretion. Liver of fish is sensitive to environmental 

contaminants because many contaminants tend to accumulate in the liver and exposing it to 

a much higher levels than in the environment, or in other organs. Several authors recorded 

many histopathological changes in the liver of freshwater fish treated by insecticides 

diazinon, dimethoate, malathion and glyphosate, respectively (Neskovic et al., 1996; Sakr 

et al., 2001; Van Dyk, 2003; Stentiford et al., 2003; Fanta et al., 2003; Mela et al., 2007 de 

Melo et al., 2008; Kunjamma et al., 2008; Mataqueiro et al., 2009). 

In the present study the SSI values were reported to be decreased in the agro-chemical 

exposed fishes compared to control. Alterations in relative spleen size could signal a 

dysfunction capable of affecting fish health. Decreased size has often been seen with acute, 

nonspecific stressors, but chronic exposure to a number of chemical contaminants also 

leads to this effect. The decrease seems to be due to necrosis and perturbations in cell 

processing, both of which could impact the overall condition of the individual fish.  

Reduced SSI may be the response of the fish to combat agro-chemical stress (Gabriel et al., 

2010). The SSI is of interest due to the spleen’s hematopoietic function which also makes it 

an immune system organ.  

It is also possible that environmental toxicants may increase the susceptibility of aquatic 

animals to various stressors by interfering with the normal functioning of their immune, 

reproductive and developmental processes (Couch and John, 1985). MMCs are focal 

accumulations of macrophages found in the spleen, head kidney, and sometimes liver of 

teleost fishes. in various MMCs parameters (e.g., number, size, percent area occupied) in 

relation to environmental contamination have been reported by several investigators 

(Wolke et al.,1985; Spazier et al.,1992; Wolke, 1992; Blazer et al.,1994; Couillard and 
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Hodson, 1996; Meinelt et al.,  1997; Facey et al.,  1999). Because MMCs are known to 

change in number, size, and pigment content in relation to fish health and environmental 

degradation, they qualify as anatomical and cytological biomarkers (Wolke 1992). The 

value of using MMCs as histological biomarkers lies in their ubiquity, availability, ease of 

measurement, and association with degraded environmental conditions. They are key cells 

for dealing with foreign material and cellular debris (Blazer et al., 1994; Evans, 1998). The 

role of MMC and their pigments has been used as a biomarkers for environmental pollution 

by several authors, but the relationship between these structure and the endogenous factors 

is not completely explained (Rabitto et al., 2005; Suresh, 2009). In the present study, 

Melanomacrophage centers (MMC) were scattered throughout spleen (Photomicrograph 

3B, 3C, 3D and 3E). There are published data on alterations in the number of MMC caused 

by environmental variation (Fournie et al., 2001; Schwaiger et al., 1996; Garcia-Abiado et 

al., 2004). Furthermore, the associated alterations observed in the spleen such as mild to 

severe depletion of white pulp which was replaced by empty space and activation of MMCs 

along with hemorrhage, fibrosis and intracellular edema is suggestive of an adaptive 

immune response to agrochemical stress. These findings are consistent with the earlier 

reports (Suresh and Veeraraghavan, 1998; Pulsford et al., 1992; Blazer et al., 1987; Brown 

and George, 1985; Falk et al., 1995; Simko et al., 2000; Decostere et al., 2001 and Ekman 

and Norrgren, 2003). MMCs are physiological features in fish spleen and kidney (Agius & 

Roberts, 2003). Wolke et al., (1985) first suggested MMC as potential monitors of fish 

health. MMC are a nonspecific response and numerous factors are involved in their 

formation and distribution. They are the deposition site for materials of exogenous (metals, 

biologically active particles) and endogenous (melanin, lipofuscin, ceroid, hemosiderin) 

origin (Vijayan and Leatherland, 1988).  

GSI values decreased in dose dependent manner. GSI is said to be the state of gonadal 

development and maturity. It has been use to assess the gonadal changes in response to 

environmental dynamics or contaminant exposure (Schmitt and Dethloff, 2000). 

Temperature is one of the important factors known to regulate GSI. Kamanga et al., (2002) 

in their studies have reported low GSI and are of the view that low temperature is one of the 

factor responsible for the reduce GSI. Hence, the room temperature in the present study 
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could be one of the possible causes in lowering the GSI. Furthermore, dose dependent 

decreased GSI observed has also been reported by Masud et al., (2003) in Cyprinus carpio 

and in Siganus rivulatus by Olfat and El-Griesy, (2007), in Rasbora danconius by Anjali 

and Kulshrestra, (1990), in Channa punctatus by  Kaur and Kaur, (2006) and Clarius 

batrachus by Begum & Vijayraghavan, (1995). Reduced GSI also indicates lowered 

reproductive activity (Bernard et al., 2001 and Hassanin et al., 2002). The reduced GSI in 

the present study may be due to lowered gonadal activity under agro-chemical stress. 

Deleterious effects of pesticides have been observed in earlier studies such as delayed 

maturity Dey & Bhattacharya (1989), abortion in Gambusia (Wani and latey, 1984), 

reduction reproductive efficiency (Mani and Saxena, 1985 and Kirubagran and Joy, 1992) 

and decrease in the percentage of different staged of oocytes along with reduction in GSI 

(Kulshretha and Arora, 1984; Pandey, 2000 and Mir et al., 2011). Histomorphological 

alterations are also supporting the reduced GSI observed and probably may be associated 

with the impairment of the production of steroid hormones which might have arrested the 

formation of germ cells and cause degeneration or necrosis (Photomicrograph 5, 6 and 7). 

Vacuolated follicular epithelium and oocyte atresia were the prominent observations in the 

present studies in female gonads. The histological alterations of the testis on exposure of 

agro-chemicals consists of altered structure of seminiferous tubules associated with damage 

and presence of large number of inter and intra tubular vacuoles and severe necrosis. Our 

results are in agreement with earlier studies reported by, Pandey and Shukla (1982), Dey 

and Bhattacharya (1989), Lakhani and Pandey, (1985), Khillare, (1992), Ruby et al., (1993) 

and Mir et al., (2011).  

As general indicators of the overall health and well-being of the fish, alterations in the 

indices indicate deleterious effect of the agro-chemicals. Thus, from the present study it is 

apparent that IMI and CZ have resulted in to considerable alteration in CF as well as HSI, 

SSI and GSI. It can be concluded that the histological changes induced by agro-chemicals 

varied in their expression and IMI was found to be more toxic than CZ.  
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Chapter VI 

Histological changes in the tissues of Oreochromis mossambicus and 

Labeo rohita on exposure to IMI and CZ 

 

Health of aquatic organisms cannot be measured directly. Instead, only indicator of 

health can be measured and in turn used to assess the “health” status. Histology and 

histopathology can be used as biomonitoring tools or indicators of health in toxicity 

studies as they provide early warning signs of disease (Meyers and Hendricks, 1985). 

Histopathological alterations are biomarkers of effect of exposure to environmental 

stressors, revealing prior alterations in physiological and/or biochemical function 

(Hinton et al., 1992). Fish is a suitable indicator for monitoring environmental pollution 

because they concentrate pollutants in their tissues directly from water and also through 

their diet, thus enabling the assessment of transfer of pollutants through the trophic web 

structural damages may occur in their target organs, histological structure may change 

(Fisk et al., 2001; Boon et al., 2002). Due to being exposed to pollutants, major and 

physiological stress may occur. This stress causes some changes in the metabolic 

functions. The changes in the functions are initiated with the changes in the tissue and 

cellular level. Although qualitative data are used in most cases to study the pathologies 

the environmental pollutants cause, quantitative data show better reactions of the 

organisms to pollutants (Jagoe, 1996). 

Histopathological investigations have long been recognized to be reliable biomarkers of 

stress in fish for several reactions (Teh et al., 1997; van der Oost et al., 2003). The gill 

surface is more than half of the entire body surface area. In fish the internal environment 

is separated from the external environment by only a few microns of delicate gill 

epithelium and thus the branchial function is very sensitive to environmental 

contamination. Gills are the first organs which come in contact with environmental 

pollutants. Paradoxically, they are highly vulnerable to toxic chemicals because firstly, 

their large surface area facilitates greater toxicant interaction and absorption and 

secondly, their detoxification system is not as robust as that of liver (Mallatt, 1985; 
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Evans, 1987). Additionally, absorption of toxic chemicals through gills is rapid and 

therefore toxic response in gills is also rapid. Gills have frequently been used in the 

assessment of impact of aquatic pollutants in marine as well as freshwater habitats 

(Haaparanta et al., 1997; Athikesavan et al., 2006; Craig et al., 2007; Fernandes et al., 

2007; Jimenez-Tenorio et al., 2007). Therefore, lesions in gill tissues can be the start of 

imbalance of the physiological and metabolic processes of fish. Gills are important not 

only for gaseous exchange but also for osmoregulation and excretion of toxic waste 

products (Robert, 2001), thus any harm in the gills leads to impairment of such vital 

functions revealing respiratory distress, impaired osmoregulation and retention of toxic 

wastes. The gills are  important  organs  in  fish  to  perform  respiration,  

osmoregulation,  acid  base  balance  and  nitrogenous waste  excretion  (Evans et al., 

2006).  Fish gills are also vulnerable to pollutants in water because of their large surface 

area and external location. For this reason, fish gills are considered to be the most 

appropriate indicators of water pollution levels (Alazemi et al., 1996). Various authors 

such as Karlsson-Norrgren et al. (1985), Mazon et al. (2002), Cerqueira and Fernandes 

(2002), Oliveira-Ribeiro et al. (2002) and Thophon et al. (2003) can be cited in regard 

to utilising the gills of fish as a tool for determining the toxicity of various pollutants in 

laboratory tests.  

In fish, as in higher vertebrates, the kidney performs an important function related to 

electrolyte and water balance and the maintenance of a stable internal environment. The 

kidney excretes nitrogen-containing waste products from the metabolism such as 

ammonia, urea and creatinine. Following exposure of fish to toxic agents such as 

pesticides, tissue alterations have been found at the level of the tubular epithelium and 

glomerulus (Teh et al., 1997). Hence, fish serve as excellent bioassay animal for 

toxicological impact studies and has been widely used for this purpose. Kidney of fishes 

receives much the largest proportion of postprandial blood and therefore renal lesion 

might be expected to be good indicators of environmental pollution (Hinton and Lauren, 

1990; Ortiz et al., 2003). There is evidence of glomerular and tubular lesions in fish 

kidney as a consequence of nephrotoxic effects of pesticides (Visoottiviseth et al., 

1999) as well as antibiotics used in aquaculture (Hicks and Geraci, 1984). Lesions in 

kidney interstitial tissue are mainly associated with viral and bacterial infections 
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(Roberts, 2001). Several renal pathological conditions, characterised by nephrolithiasis 

and granuloma, have been reported in cultured fish. Etiology is, at least partly, 

associated with nutrition (Paperna, 1987). Hence, in the present study an attempt is 

made to evaluate the effect of IMI and CZ on the histopathological alterations in gills 

and kidney of Oreochromis mossambicus and Labeo rohita. 
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Materials and Methods: 

Experimental design: 

Two freshwater teleosts, O. mossambicus and L. rohita of similar size in length and 

weight (12 ± 2 cm; 25 ± 1.9 g) and  (25 ± 3 cm; 110 ± 5 g)  respectively were brought 

from a local pond of Baroda district. Animals were transported to laboratory in large 

aerated plastic container and were acclimatized in glass aquaria containing 50 liter of 

well aerated dechlorinated tap water (with physic-chemical characteristics: pH 6.5- 7.5, 

temperature 25±3ºC and dissolved oxygen content of 7-8ppm) for ten days. During an 

acclimation period of 10 days, the fish were kept under natural photoperiod and fed two 

times a day (10:00 and 16:00h) with commercial pelleted diet. The acclimatized healthy 

fishes of both sexes were selected randomly for the studies 

Sub-lethal exposure: 

Based on the result of the 48 h LC50, 30 tilapia fish were divided in 3 groups, 10 fish 

for each group: Group 1 served as control without any treatment of Agro-chemicals. 

Group 2 were treated with low dose of IMI and CZ (LC 50 / 10). Group 3 were treated 

with high dose of IMI and CZ (LC 50 / 20) for a period of 21 days. Each concentration 

was replicated two times. Constant amount of the test chemical and test media were 

changed every 24 hours to maintain the toxicant strength and the level of dissolved 

oxygen as well as to minimize the level of ammonia during experiment. The fishes were 

fed once in a day throughout the duration of the sub-lethal toxicity tests. 

At the end of the experiment the fish were carefully netted to minimize stress, and the 

fish weighed. After this, Fishes were sacrificed by pithing (damaging the brain and 

severing the spinal cord between the head and trunk region using a sharp needle). Then, 

the liver, Gonads and spleen along with the other organs for histological observations 

was carefully removed and weighed. 
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Histological observation: 

After measuring length and weight fresh tissues were fixed in 4% paraformaldehyde for 

24 hrs, dehydrated, embedded in paraffin wax and sectioned at 10-12µm then stained 

with heamatoxylin and eosin and examined microscopically and photographed using 

digital camera. 

Semiquantitative scoring:  

Histopathological alterations were assessed using a score ranging from – to + + + 

depending on the degree and extent of the alteration: (-) none, (+) mild occurrence, (+ 

+) moderate occurrence, (+ + +) severe occurrence. A total of 10 slides were observed 

from each treatment. 
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Results: 

Photomicrographs 1A and 2A shows normal histological structures of the gills of O. 

mossambicus and L. rohita. The common histopathological observations in the gills of 

O. mossambicus and L. rohita  includes ploriferation of the epithelium of the gill 

filaments and secondary lamellae, resulting in fusion of secondary lamellae, severe 

degenerative necrotic changes in gill filaments and secondary lamellae, curling of 

secondary lamellae and mucus cells proliferations. Edematous changes, characterised by 

epithelial detachment were observed in gill filaments and secondary lamellae. 

Moreover, aggregations of inflammatory cells were noticed in gill filaments. Also, 

dialation and congetion in gill filaments were observed. Atrophy of secondary lamellae 

was seen. However, comparatively the degree of pathological changes observed on IMI 

exposure was more prominent compared to CZ for O. mossambicus as well as L. rohita. 

Distinct feature observed was hyperemia and hemorrhages in primary and secondary 

gill lamellaes at high dose of CZ (Fig 1B, 1C, 1D and 1E) exposure and at low dose of 

IMI (Fig 2B, 2C, 2D, and 2E) in L. rohita. 

Photomicrograph 3A and 4A shows the normal histological structure of kidney. 

Histological alterations in the kidney of both the fishes consist of severe degenerative 

and necrotic changes in the renal tubules with focal areas of necrosis and haemorrahage, 

haemolysis. Vacuolar degenerations in the epithelium of renal tubules and dialation in 

the capillary tubes of renal tubules were observed. Also edema of Bowman’s capsule 

with atrophy in the glomeruli and dialation in the renal blood vessels were observed. 

Kidney tissue from O. mossambicus and L. rohita showed mild necrosis and tubular 

degeneration on CZ (3B, 3C, 3D and 3E) exposure where as on IMI (4B, 4C, 4D and 

4E) exposure it showed severe necrosis, vacuolation and tubular degeneration. 
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Table: 6.1 Summary of histological changes observed in the gills and kidney of 

O.mossmbicus and L.rohita subjected to IMI and CZ are presented 

Tissues 
O.mossambicus L.rohita 
IMI CZ IMI CZ 

HD LD HD LD HD LD HD LD 

Gills         

Depicting proliferation of the epithelium 

of the Primary lamellae 
++ +++ + + +++ + ++ + 

Curling of secondary lamellae + ++ + ++ ++ + ++ + 

Enlargement of primary lamellae +++ ++ ++ + +++ ++ ++ + 

Degeneration of primary lamellae + ++ - - - - - - 

Cubbing of secondary lamellae +++ ++ + + - - - - 

Loss of secondary lamellae +++ + + ++ - - - - 

Distortion of epithelial lining of primary 

lamellae 
++ + + + +++ ++ ++ + 

Proliferation of epithelial cells +++ ++ + + +++ ++ ++ + 

Branchial filament with hyperplasia +++ + ++ - +++ + + - 

Fusion of secondary lamellae - - - - +++ ++ +  

Hyperplasia at the tip of secondary 

lamellae 
+++ ++ + - +++ ++ + + 

Branchial hemorrhage - - - - +++ + - - 

Uplifting epithelial lining of secondary 

lamellae 
++ + - - +++ ++ + - 

Kidney         

Intracellular vacuolation +++ ++ +++ + +++ ++ ++ + 

Degeneration of tubular epithelial cells ++ + +++ ++ ++ + ++ + 

Cytoplasmic vacuoles in epithelial cells 

of renal tubules with hypertrophied cells 

and lumen tubules diminished 

+++ ++ +++ ++ ++ + ++ + 

Renal tubule degeneration +++ ++ ++ + +++ ++ + ++ 

Haemorrhage in the epithelial cells of 

renal tubules 
+++ ++ + ++ ++ + ++ + 

Swelling in the epithelial cells of renal 

tubules 
+++ ++ ++ + +++ ++ ++ + 

Shrinkage of glomeruli +++ ++ ++ + +++ + ++  

Expansion of space inside the bowman’s 

capsule 
+++ + ++ + ++ + +++ ++ 

Increase inter cellular space ++ + +  ++ + ++  

Increase intracellular space +++ ++ ++ + +++ ++ ++ + 

Severe degenerative and necrotic 

changes in Renal tubules and glomeruli 
+++ ++ ++ + +++ ++ + + 

Severe necrosis in the epithelium of renal 

tubules 
+++ - + - +++ - + - 

(-) none, (+) mild occurrence, (+ +) moderate occurrence, (+ + +) severe occurrence. 
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Discussion: 

Results of the present study revealed that O. mossambicus and L. rohita on exposure of 

IMI and CZ manifest histopathological changes in gills and kidney. It is possible that 

the pathological alterations in the tissues of both studied fish with both agro-chemicals 

could be a direct result of the pesticides induced stress. The gills, which participating in 

many important functions in the fish, such as respiration, osmoregulation and excretion, 

remain in close contact with the external environment and particularly sensitive to 

changes in the quality of the water and thus are considered the primary target of the 

toxicant (Chandra and  Banerjee, 2003; Moitra, 2012). The gills of both studied fish 

showed degenerative, necrotic and proliferative changes in gill filaments and secondary 

lamellae, edema in gill filaments and sencondary lamellae along with congestion in 

blood vessels of gill filaments. These pathological changes may be a reaction to toxicant 

intake or an adaptive response to prevent the entry of the toxicant through the gill 

surface. Moreover, alterations like proliferation of epithelial cells, partial and total 

fusion of secondary lamellae as well as lifting of epithelium are defense mechanisms as 

this would result in the increase of the distance between the external environment and 

the blood thereby serving as a barrier to the entrance of the agro-chemicals (Fernandes 

et al., 2007; Mohamed, 2009). The cellular damage observed in the gills in terms of 

epithelial proliferation, separation of epithelial layer from supported tissue and necrosis 

can adversely affect the gas exchange and ionic regulation (Dobreva et al., 2008; 

Arnaudoa et al., 2008). The observed edematous changes in the gill filaments and 

secondary lamellae probably due to increased capillary permeability. Our results are 

parallel with earlier findings on the histopathological changes in the gills of different 

fish species exposed to pesticides (Sinhaseni and Tesprateep 1987; Gill et al., 1988; 

Richmonds and Dutta, 1989; Alazemi et al., 1996; Erkmen  et  al.,  2000). 

More prevalent and more pronounced changes in the gills of both the fish on IMI 

exposure were curling of secondary lamellae followed by disorganization, rupture in the 

secondary lamellae. Haemorrhage at primary lamellae and bulging at the tip of primary 

filament were also noticed. Our results are in agreement with earlier reported severe 

damage to gill architecture by Tkatcheva et al., 2004; Velcheva et al., 2010; Susithra et 

al., (2007).     
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The functional unit of the kidney is the nephron. The kidney of fish from the control 

group, had normal histological structure. Morphologically, the nephron of the control 

fish consists of intact structures of glomerulus, tubules and collecting ducts. The 

glomeruli, a cluster of capillaries surrounded by the Bowman’s capsule were very 

clearly seen. The structure of the proximal and distal convoluted tubules was 

undamaged. The teleostean kidney is one of the first organs to be affected by 

contaminats of the water (Thophon et al., 2003). The kidney is a vital organ of body and 

proper kidney function is to maintain the homeostasis. It is not only involved in removal 

of wastes from blood but it is also responsible for selective reabsorption which helps in 

maintaining volume and pH of blood and body fluids as well as erythropoesis (Iqbal et 

al., 2004). Kidney tissue from O.mossambicus on low dose exposure of CZ showed 

mild necrosis and shrunken glomeruli. However, at high doses the changes were more 

severe and the normal histoarchitecture of the kidney was lost. At low dose of IMI 

exposure led to complete degeneration of blood vessels in the glomeruli. The interstices 

of the tubules were seen to be enrich with haematopoetic tissue. At high dose there was 

complete degeneration of tubular epithelial cells and complete disorganized Bowman's 

capsules. Kidney tissue from L. rohita on low dose exposure of CZ showed mild 

swollen proximal tubular epithelial cells with dilated nuclei and at high dose it showed 

severe swelling of tubules with necrosis. At low dose of IMI exposure kidney showed 

expansion of space inside the Bowman's capsule and glomerular atrophy. At high dose 

of IMI exposure, severe degeneration of tubules, cloudy swelling and severe necrosis in 

nephritic tissue was observed.  

The degenerative necrosis of the renal tubules affects the metabolic activities and may 

promote metabolic abnormalities in the fish (Camargo et al., 2007).  The present result 

are in agreement with those observed in P. lineatus exposed trichlorfon (Veiga, 2002), 

L. calcarifer exposed to cadmium (Thophon et al., 2003); C. mrigala exposed to 

lambda-cyhalothrn and fenvalerate (Velmurugan et al., 2007); L. rohita exposed to 

fluoride (Bhatnagar et al., (2007), in O.niloticus exposed to alchlor (Peebua et al., 2008) 

and in O.mossambicus exposed to Dimethoate (Parikh et al., 2010).  

It is believed that kidney tissues are a sensitive indicator of environmental pollution as 

they act as primary osmoregulatory organs and function in cellular immunity (de Bravo 
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et al., 2005). As an important organ of the immunity response (Zapata and Cooper, 

1990) the observed mild to severe changes in the histoachitecture of the kidney may 

induce defense system changes harming the animal’s homeostasis and health. Adaptive 

immune system of several teleost has been explored by immunotoxicological analysis 

by various scientists (Roales and Perlmutter, 1977; Ansari and Kumar, 1987; 

Arunachalam and Palanichami, 1982; Babu et al., 1986; Zelikoff, 1994; Anderson and 

Zeeman, 1995; Hansen, 1997; Tsujii and Seno, 1990; Spazier et al., 1992; Lin et al., 

2005; Lee and Anderson, 2005; Duffy and Zelikoff, 2006; Reynaud and Deschaux, 

2006; Hansen et al., 2007; Costa et al., 2009; Bravo et al., 2011). However, in the 

present study the main focus was to have an insight in to the behavioural, physiological, 

biochemical and histological aspects. Hence, at this juncture it is difficult to propose the 

immunotoxic effect of the agro-chemicals and these aspects demands more detailed 

analysis for understanding the immunotoxicological effects and mechanisms and the 

consequences as well as risks that may have on human consumers as consequence of the 

bioaccumulation. 

As a conclusion, the findings of the present histological investigations demonstrate that 

the exposure of adult fresh water teleost fish, O.mossambicus and L.rohita caused 

moderate to severe damaging to gills and kidney.  
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General Consideration 

 

Pesticides are used worldwide in agriculture (Sancho et al., 2000, Oruç et al., 2004 and de 

Menezes et al., 2011). Considerable amounts enter runoff to become major pollutants in aquatic 

ecosystems causing disturbances of the delicate balance of aquatic ecosystems and affecting the 

health status of non-target aquatic organisms, such as fish (Oruç and Üner, 1999, Bretaudt et al., 

2000 and de Menezes et al., 2011).Because there are thousands of different pesticides used 

around the world, data on aquatic contamination for any particular pesticide is usually quite 

limited. However, studies conducted in lentic and lotic systems have detected a variety of 

pesticides including the insecticides malathion, endosulfan and diazinon as well as the herbicides 

atrazine and glyphosate (LeNoir et al. 1999, Hayes et al. 2002; Kolpin et al. 2002, Thompson et 

al., 2004). Interestingly, many pesticides found in aquatic systems are not intended or legally 

registered for application to aquatic systems, but they still appear. The concentrations found in 

surveys of natural habitats are  often lower than the concentrations used in experimental tests, 

although these surveys are typically snapshots in time that are not always designed to detect peak 

concentrations . In most cases, we simply lack extensive data on natural pesticide concentrations 

to properly evaluate the validity of concentrations used in experiments. Given that pesticides find 

their way into aquatic systems, the relevant question is whether they affect the species in these 

systems.  

Of the vast number of substances that have been introduced to aquatic systems around the world,  

a number posing serious environmental threats have primarily been identified either through 

single-species  toxicity testing in the laboratory, or they have been brought to light as a result of 

observing biological effects in situ. Examples include dichlorodiphenyl-dichloroethylene (DDE) 

and eggshell thinning in birds (Hickey et al., 1968), sex changes in freshwater fish associated 

with endocrine disrupting chemicals, EDCs (Vos et al., 2000), and  tumors in marine fish 

associated with polycyclic aromatic hydrocarbon (PAH) accumulation (Baumann and  

Harshbarger , 1995). These examples highlight the need for techniques that not only detect overt 

damage to organisms exposed to pollutants, but also the less obvious biochemical and 

physiological impairment that might ultimately result in ecological damage  (Depledge and  

Galloway, 2005). With more than 67 million organic and inorganic substances known to date 
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(CAS, 2012), monitoring and assessing effects of chemical pollution necessarily faces great 

challenges. The concentrations found in surveys of natural habitats are often lower than the 

concentrations used in experimental tests, although these surveys are typically snapshots in time 

that are not always designed to detect peak concentrations. In most cases, there is lack of 

extensive data on natural pesticide concentrations to properly evaluate the validity of 

concentrations used in experiments. Given that pesticides find their way into aquatic systems, the 

relevant question is whether they affect the species in these systems. 

The aquatic environment is particularly sensitive to the toxic effects of contaminants since a 

considerable amount of the chemicals used in industry, urbanization and in agriculture enter 

marine and other aquatic environment. The stressor in the environment exert their adverse effect 

at the organisms level leading to impairs on physiological functions in aquatic organisms. 

Xenobiotics are potentially harmful to fish by inducing tissue damage in gill, kidney and liver 

(Ahmad et al., 2004), growth retardation (Gad and Sadd, 2008), genotoxicity (Aas et al., 2000), 

reproductive disturbances (Maradonna et al., 2004), tissue bioaccumulation (Rice et al., 2000;  

Hellou and Leonard, 2004; Archana et al.,2011) 

Fish are highly vulnerable to the presence of contaminants and are considered to be important 

indicators of environmental pollution (Prusty et al., 2011). Among animal species, fishes are the 

inhabitants that cannot escape from the detrimental effects of these pollutants (Olaifa et al., 

2004; Clarkson, 1998; Dickman and Leung, 1998). Fish are widely used to evaluate the health of 

aquatic ecosystems because pollutants built up in the food chain and are responsible for adverse 

effect and death in the aquatic systems (Farkas et al.,2002;  Yousuf and El-Shahawi, 1999 and 

Okocha and Adedeji, 2011). Furthermore, the evaluation of hematological and biochemical 

characteristics in fish blood has become an important means of understanding possible 

mechanisms of toxicological impacts (Borges et al., 2007 ; Sudova et al., 2009 and Kavitha et 

al., 2010).  

 

Oreochromis mossambicus and Labeo rohita are the most popular fish species which are 

economically important for fisheries, aquaculture, game fishing and are also used extensively in 

biological, physiological and behavioural research (Skelton, 1993). Tilapia is a good biological 
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model for toxicological (Casas-Solis et al., 2007; Giron-Perez et al., 2007 and 2008) studies due 

to diverse characteristics, namely their high growth rates, efficiency in adapting to diverse diets, 

great resistance to diseases and handling practices, easy reproduction in capacity at prolific rate 

and finally, good tolerance to a wide range of environmental conditions (Fontainhas-Fernandes, 

1998; Kumar et al., 2011). 

The neonicotinoids are a new insecticide class which includes the commercial products 

imidacloprid, acetamiprid, nitenpyram and thiamethoxam (Stark et al. 1995; Yamamoto & 

Casida, 1999 and Suchail et al., 2000 and Isawa et al., 2003). Toxicity data for these new group 

of insecticides for aquatic invertebrate are far from enough , moreover, very less data exists for 

these chemicals on non-target organisms, especially those inhabiting fresh water aquatic systems 

are either insufficiently known or not reported yet. Imidacloprid (IMI) is a systemic 

chloronicotinyl insecticide. Toxicological studies on rats and mice and dogs have proved IMI to 

be moderately toxic (Tomizawa & Casida, 2003). Response to IMI toxicity in birds has shown 

varied behavioural changes in birds. Exposure to IMI has led to histopathological changes as 

reported by Kammon et al., (2010). Risks of this novel pesticides has also been reported to be 

genotoxic on frogs and toads (Feng et al., 2004; Li-tao et al., 2006).  IMI has been proved to be 

moderately toxic to fish. Toxic responses of IMI has been studied by Rajput et al., (2012) on 

fresh water fish, Clarias batrachus and have reported the adverse effect of these toxicant on the 

protein profile of the fish. IMI has also been found to have profound influence in serum 

biochemical profile of fresh water fish Channa punctatus (Padma priya et al., 2012). A review of 

toxicity data of IMI toxicity for terrestrial non-target organisms such as Mammals, birds, and 

amphibians as well as aquatic organisms such as fish, amphibians and various invertebrates 

presented here thereby suggests that they too are very sensitive to broad-spectrum neurotoxic 

insecticide IMI. Unfortunately, in spite of all the technical knowledge gathered in this area of 

science in recent decades, little effort has been made to study the toxicity of IMI insecticides to 

the non-target taxa particularly fresh water teleosts. Thus, it is important to assess the 

concentration at which these chemicals are toxic to non-target aquatic organisms. It is rational 

thus to select imidacloprid for the present study. 

Fungicides are either chemicals or biological agents that inhibit the growth of fungi or fungal 

spores; they also inhibit or kill fungi underlying diseases important to man. As reported by 
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Lorgue et al., (1996) pesticides are the most common cause of animal poisoning (45.5%), with 

fungicides accounting for 6.1% of all pesticides. The two most commonly involved species are 

dogs and cattle. The types of fungicides used in agriculture and food processing and storage 

range from those of relatively low toxicity to those, which can be lethal to animals (Oruc et al., 

2009). Understanding mechanisms of fungicide action and toxicity is important because humans 

and domesticated animals encounter these pesticides through a wide variety of applications. 

Unfortunately, most toxicity data are from model laboratory animal’s i.e rats, mice, and rabbits 

and offer little information on fresh water organisms.  

Curzate M8 (CZ) fungicide is formulated as a 72% wettable powder: a mixture of 8% cymoxanil 

and 64% Mancozeb. Cymoxanil is toxic to aquatic organisms, such as fish and crutaceans and 

chronic ecotoxicity of this compound has been proved in Daphnia magna (Baer, 1993 a & b; and 

Kraemer, 1996). Mancozeb, another constituent of CZ is chemically identified as 

ethylenebisdithiocarbamate (EBDC). Mancozeb and Cymoxanil have been individually studied 

in various animal models and found to be mild to moderately toxic. However no studies have 

been recorded on CZ which is a mixture of Mancozeb and Cymoxanil particular with reference 

to fresh water teleost fish. 

Acute toxicity is expressed as the median lethal concentration (LC50) that is the concentration in 

water which kills 50% of a test batch of fish within a continuous period of exposure which must 

be stated (Amweg et al., 2005).The application of the LC50 has gained acceptance among 

toxicologists and is generally the most highly rated test of assessing potential adverse effects of 

chemical contaminants to aquatic life (Brando et al., 1992;  Kumar, 2004; Fagr et al., 2008; Gad 

and Saad, 2008; Khayatzadeh and  Abbasi, 2010). The use of 96-h, LC50 has been widely 

recommended as a preliminary step in toxicological studies on fishes (Chapman, 2000; Ali and 

SreeKrishnan, 2001; ASTM, 2002; USEPA, 2005; APHA, 1998, 2005; Parrott et al., 2006; 

Moreira et al., 2008).  

Mortality is obviously not the only end point to consider and there is growing interest in the 

development of behavioural markers to assess the lethal effects of toxicants. Abnormal 

behaviour is one of the most conspicuous endpoints produced by these toxicants, but until 

recently it has been underused by ecotoxicologists (Little and Brewer, 2001; Dell’Omo, 2002; 

Gerhardt, 2007; Hellou, 2010). Behavioral disturbances may be observed in aquatic biota at 
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concentrations of contaminants that can exist in the field, the sensitivity of these responses thus 

allows improving environmental risk assessment (Amiard-Triquet, 2009). Therefore, the use of 

behavioral biomarkers, associated to biochemical and physiological markers in carefully selected 

species will reveal a risk of cascading deleterious effects at the community and ecosystem levels. 

Series of studies has been conducted on fingerlings (Ugwemorudong and Sunday. (2010); and 

adult fish (Gabriel Edwards et al., 1991; Kidd and James, 1991; Santhakumar et al., 2000; 

Battaglin and Fairchild, 2002; Chindah et al., 2004; Prasanth et al., 2005; Okey, 2009; Ujagwung 

et al., 2010; Parikh et al., 2010; Singh et al., 2010; Srivastava et al., 2010; Zhang et al., 2010; 

Barbieri and Ferreira, 2011; Maniyar et al., 2011) with a variety of pesticides. Perusal of 

literature reveals paucity of information on acute toxicity of IMI and CZ on freshwater fish, 

Oreochromis mossambicus and Labeo rohita. Hence, keeping in mind the importance of the 

acute toxicity as well as the behavioral responses, the present study has been focused to first 

evaluate the acute toxic effects on mortality and behaviour . 

IMI and CZ exposed fish exhibited reduced activity compared to the control fish. The intensity 

of the behavioural activities of the fish decreased with increasing concentration and duration of 

exposure. The fish exhibited irregular, erratic and darting swimming movements and loss of 

equilibrium due to exposure of IMI and CZ. They slowly became lethargic, hyper excited, 

restless and secreted excess mucus all over their bodies, was more pronounced at higher 

concentrations, suggesting sensitivity to the agrochemicals (Wu and Chen, 2004; Shwetha and 

Hosetti, 2009). 

The probit analysis revealed the fact that the LC50 value for L. rohita (0.8536 – IMI, 51.2689 – 

CZ) was much higher than O. mossambicus (0.7319 – IMI, 39.84 – CZ) for both the 

agrochemicals. It is evident from the result that CZ is less toxic than IMI. The toxicity of IMI 

and CZ  LC50 for freshwater fishes when compared, revealed the fact that O. mossambicus was 

more sensitive to both the agrochemicals than L. rohita.Hence, from the present studies one can 

conclude that the acute response of the both the agrochemicals demonstrated variation perhaps 

due to their physiological status and this reflected the change in their behaviour.  

Blood is most important and abundant body fluid. Its composition often reflects the total 

physiological condition (Venkatesan et al., 2012). The blood parameters have been considered as 

diagnostic indices of pathological condition, findings are important for the assessment of 
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systemic functions and overall health of animals. Furthermore, the findings also helps in 

diagnosing the structural and functional status of animals exposed to the toxicant (Atamanalp 

and Yanik, 2003; Talas et al., 2009 and Suvetha et al., 2010).Consequences of pesticides on 

hematological factors of a number of  fish species have been investigated in several studies: in 

Cyprinus carpio (Gluth and  Hanke , 1985; Satyanarayan et al., 2004; Salvo et al., 2008 and 

Abdulmotalib et al., 2012) and  Clarias batrachus  (Benarji and Rajendranath, 1990; Patnaik and 

Patra, 2006; Kharat and Kothavade, 2012; Summarwar and Verma, 2012) in Oreochromis 

mossambicus (Sampath et al., 1993; Ali and Ran, 2009; Desai and Parikh, 2012), in 

Heteropneustes fossilis  (Singh and Srivastava, 1994; Nath and Banerjee, 1996; Deka and Dutta, 

2012), in Cyprinion wabsoni (Khattak and Hafeez, 1996; ), and in Piaractus mesopotamicus 

(Tavares et al., 1999; Saxena et al. 2002; Carraschi et al., 2012).  

In spite of the immense literature available by way of scientific information available on the 

pesticide toxicity on fishes, limited information is available on the effect of IMI and CZ, 

particularly with reference to the sub-lethal concentration on the haematological modulation. 

Hence, the assessment of the haematological alterations in fresh water teleost fishes at different 

concentration of IMI and CZ was undertaken. A Significant decrease was observed in RBCs, Hb 

and PCV values in O.mossambicus exposed to IMI and CZ. While, in L.rohita, a significant 

elevated RBCs, Hb and PCV values was observed in a dose dependent manner as compared to 

control. A significant decrease in Hb on IMI and CZ exposure to O. mossambicus suggest that 

the fish was under stress of anaemia due to toxic action of agrochemicals on the erythropoietic 

tissue. A decrease in RBC, Hb content and PCV has been observed earlier in fishes exposed to 

different pesticides (Svobodova et al., 1997; Park et al., 2004; Kori-Siakpere and Oghoghene, 

2008; Palanisamy et al., 2011 and Saravanan et al., 2011). In O.mossambicus there was 

significant decreased in PCV associated with significant increase in MCV and MCH. Our results 

are parallel with the experiments performed by Nte et al., (2011) on fish hematology and have 

correlated the increase in MCV and MCH with decreased in PCV. The decrease in PCV indicates 

hypoxic condition of the fish due to anaemia on exposure of the pesticide. Furthermore, the 

observed low concentration of MCHC during the present work might have resulted from 

decrease in Hb synthesis consequent of effluent toxicity (Joshi et al., 2002; Shah, 2006; Parma et 

al., 2007; Adam and Agab, 2008; Rao, 2010; Ada et al., 2011; Desai and Parikh, 2012; 

Venkatesan et al., 2012). On exposure of IMI and CZ in L.rohita a significant increment of 



181 

 

MCV, MCH and MCHC associated with increment of PCV and Hb value were observed. In the 

present study the species specific differences in haematological indices were evident which are 

in agreement with the earlier reported work ( Kakuta and Nakai 1992; Adedeji et al., 2000; Orun 

et al., 2003; Velisek et al., 2009a  &b; Adedeji and Adegbile, 2011; Dikic et al., 2013). 

As a result from the present study it can be concluded that the exposure of fish to IMI and CZ 

pesticides resulted in significant alterations in haematological parameters. These alterations may 

negatively suppress normal growth, reproduction, immunity and even survival of fish in natural 

environment. And furthermore, the haematological studies provide a rapid and sensitive method 

for predicting the effects of sub-lethal exposure on general health and well being of fish. 

The utility of biochemical approaches in environmental pollution monitoring and 

characterization of exposure to stressor for the use in environmental risk assessment is based on 

the assumption that low concentrations of a toxicant will cause biochemical responses within 

individual organisms before these effects are observed at higher levels of biological organization 

(Sarkar et al., 2006).  Such biochemical responses are considered to be rapidly responding 

endpoints (Adams, 2002), and thus most biochemical biomarkers in the laboratory studies are 

assessed after acute exposure to chemicals. Changes in the biochemical profile indicate 

alterations in metabolism of the organism resulting from the effect of the pesticide and they 

make it possible to study the mechanisms of the effects of these pesticides (Luskova et al., 

2002). In the view of scantiness of information available on IMI and CZ toxicity,  to move a step 

ahead after observation of the heamatolgical alterations the present work was under taken to have 

an insight regarding its biochemical alterations in the four tissues i.e. Gills, Liver, Kidney and 

Muscles. 

The changes in the glycogen, protein and lipid profile exhibited a significant decrease in all the 

tissues in a dose dependent manner. Proteins are indispensable constituents required by 

organisms in tissure building and play a important role on energy metabolism (Yeragi et al., 

2003; Remia et al., 2008; Pang-Hung et al., 2008). In the present investigation there was an 

overall decrease in the protein content in liver, muscle, kidney and gills. The physiological status 

of animal is usually indicated by the metabolic status of proteins (Nelson & Cox, 2005; Magar & 

Shaikh, 2012). The depletion in the protein may have been due to their degradation and possible 

utilization for metabolic purposes. The decrease in the protein content was found to be maximum 

in liver followed by muscle, kidney and gill respectively, these variations in response of the 
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pesticides in both the fishes suggests difference in metabolic calibers of individual tissue 

(Satyanarayana, 2005; Venkataramana et al., 2006). Furthermore, the decrease in the protein 

content of all the tissues is also suggestive of impairment of protein synthesis or increase in the 

rate of its degradation to amino acids due to stress induced pesticide exposure, which can result 

in the production of free amino acids in the tricarboxylic acid cycle for energy production 

(Jankins et al., 2003; Radha et al., 2005; Naveed et al., 2010; Ganeshwade, 2011). Our results 

are in agreement with the earlier reported depletion in the protein content of O.mossambicus 

(Vijuen and Steyn, 2003; Aniladevi, 2008; Varadarajan, 2010; Al-Kahtani, 2011) and L.rohita 

(Ramesh et al., 1993; Das and Mukherjee 2003; Sivaperumal, 2008; Sharma and Singh, 2009; 

Indirabai et al., 2010; Rajput et al., 2012).  

Depletion of glycogen in the present study in O.mossambicus and L.rohita was maximum in liver 

followed by muscle, gills and kidney, may be due to direct utilization for energy generation, a 

demand caused by pesticide stress induced hypoxia. During stress an organism needs energy 

which is supplied from reserved glycogen. Thus, the depletion in glycogen level clearly indicates 

its rapid utilization to meet the enhanced energy demands in fish exposed to pesticides (Kawade 

and Khillare, 2012). Furthermore, the decrease in the level of total protein, and glycogen and 

concentrations of pesticide caused an increase in the glucose level leading to lethargy. Glucose 

increase is a general response of fish to acute and sub-lethal pollutant effects (Luskova et al., 

2002).  The dose dependent elevation in the glucose was reported for both the telesot fish. Thus, 

hyperglycemia can be viewed as a physiological response of the fishes to meet the critical need 

for energy under toxic stress. A significant decrease in the total lipid content of all the tissues 

(liver < muscle < kidney < gills) exposed to IMI and CZ in a dose dependent manner was 

observed. Decreased lipid content suggests that an impairment of the lipid storage has taken 

place in the fishes and that the lipid might have been channeled for other metabolic functions in 

which it probably plays a vital role during stress condition. Since lipids form the rich energy 

reserves whose calorific value is reported to be twice than that of an equivalent weight of 

carbohydrates or proteins (Sobha et al., 2007 and Gijare et al., 2011). Lipids serve as energy 

reserves to meet the metabolic demand for more energy to mitigate toxic stress. The decreased 

lipid content in the present investigation is parallel with the earlier reported altered lipid profile 

in Orechromis mossambicus (Amudha et al., 2002;  Leela et al., 2002 and Shivaparvathi et al., 

2002); in Perca flavescens (Levesque et al., 2002); in Cyprinus carpio (Swapna et al., 2006); in 
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Gambusia affinis (Revathi et al., 2005); in Anguilla Anguilla  (Febien pierron et al, 2007) and in 

Channa punctatus (Maruti and Rao, 2001), provide substantial support to the present findings. A 

significant decrease in cholesterol was reported, reduced cholesterol level may be due to the 

inhibition of cholesterol biosynthesis particularly in the liver as it plays a major role in 

cholesterol homeostasis by regulating lipoprotein metabolism and lipid output in bile (Marzolo 

and Rigotti, 1990;  Dietschy and Turley, 1993). The liver is a key organ in the synthesis and 

excretion of cholesterol, hence any type of obstruction in the liver will cause alterations in 

cholesterol. Pesticide induced toxicity has probably resulted into destruction of liver cells hence, 

the cholesterol level eventually falls below normal due to decrease synthesis (Kamath, 1972). 

Reduction in cholesterol could also be due to reduce absorption of dietary cholesterol (Jayntha 

Rao et al., 1984; Kanagaraj et al., 1993 and shakoori et al., 1996). However, Remia et al., (2008) 

reported that the decline of cholesterol may be due to utilization of fatty deposits instead of 

glucose for energy purpose. Similar results were observed by Fahmy (2011) in O.mossambicus 

on exposure to Malathion, by Shardamani and Shelvarani, (2009) in O.mossambicus by exposure 

of Metribuzin; by Ganeshwade, (2012) in Punctius ticto on exposure of Dimethoate and Singh et 

al., (2010) in Channa punctatus on exposure of Phorate. 

In the present study, compared to control, ALT and AST were found to be significantly elevated 

in all the tissues of fishes exposed to IMI and CZ in a dose dependent manner. The highest 

activity was observed in liver followed by kidney and muscle. As proposed by Vardharajan, 

(2010), the primary energy currency in fish is amino acids.  Elevated activity of transferases is 

possibly a result of a response to stress induced by pesticides to generate keto acids like α-keto 

glutarate and Oxaloacetate for contributing to gluconeogenesis and/or energy production 

necessary to meet the access energy demand. This clearly indicates that stress brings about, the 

metabolic reorientation in the tissues by raising energy resources through transaminases system. 

Similar studies have been reported by (Arshad et al., 2007; Gabriel et al., 2011; Rao, 2006 and 

Velmurugan et al., 2008) and they have inferred that the increased enzyme activity was due to 

increase utilization of amino acids for energy synthesis, as consequents of a fish suffering from 

toxic stress and energy crisis. 

ALP is also one of the important markers for liver and kidney. A significant increase in enzyme 

activity in liver might be due to a stress induced over activity of hepatobiliary cells, which have 

involved in detoxification mechanism. Further increased ALP activity also may be due to 
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pathological processes such as liver impairment and kidney dysfunction (Barse et al., 2003). 

Thus in the present study, increase in the levels of ALP and AST reflects liver damage, whereas 

an elevation in ALP activity may be indicative of renal and liver damage (Gill et al., 1990; 

Bhattacharya et al., 2005; Vardharajan, 2010; Stalin and Das, 2012). On exposure of IMI and CZ 

gills, liver and kidney showed an elevated pyruvate levels in a dose dependent manner compared 

to control. This might be due to the higher glycolysis rate which is the only energy producing 

pathway for the animal when it is under stress condition. Furthermore, the end product of 

glycolytic pathway is pyruvate. Pyruvate occupies an important junction between various 

metabolic pathways it may be decarboxylated to acetyl CoA which can enter the TCA cycle or it 

may be utilized for fatty acid synthesis. 

LDH acts as a pivotal enzyme between glycolytic pathway and TCA cycle. It catalyses the 

conversion of pyruvate into lactate, under anaerobic conditions (Lehninger, 1993). A fish under 

stress preferentially meets its energy requirements through anaerobic oxidation (Wallice - Luiz, 

1998). The LDH in the tissues (liver, kidney, muscle and gills) of fishes treated with IMI and CZ 

showed an elevated activity in a dose dependent manner compare to control. Increased LDH 

activity suggests a significant increase in the conversion of pyruvate to lactic acid, thereby 

leading to the accumulation of lactic acid. Thus, the observed increased LDH can be interpreted 

as a shift in the respiratory metabolism from aerobic to anaerobic in order to meet the enhanced 

energy demand under the toxic stress (Singh and Shrivatava, 1982; Ansari and Kumar, 1988; 

Ferrando and Andreu-Moliner, 1991; Kamalaveni et al., 2003; Gorbatiuk, 2010). 

An increase was observed in activity of GDH in all the tissues of the fish exposed to IMI and CZ. 

This suggests the active transdeamination of amino acids for the incorporation of keto acids in to 

the TCA cycle to release necessary energy required for the synthesis of new protein (Sreedevi et 

al., 1992; Shivramkrishna and Radhakrishnaiah, 1998; Prashanth and Neenagund, 2008). This 

increased activity may have helped in funneling more α-ketoglutarate into TCA cycle for more 

energy generation. This indicates higher oxidation of amino acids to combat the toxic effect of 

pesticide and the higher activity of GDH may result in efficient operation of oxidative 

deamination under toxic effect of IMI and CZ (Kumar et al., 2010). The oxidation of glutamate 

in kreb’s cycle leads to increased energy (Narasimha and Rama, 1985 and Naveed et al., 2010). 

A pesticide produces stress condition in any organism, including fish (Ateeq et al., 2002). In 

Pisces, three different pathways are exhibited followed by pesticide like stressor exposure. The 
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basic pathway followed is the activation of HPI axis and altered levels of cortisol. However, 

Major complications arise when the stressor is very effective and the body starts expressing other 

two mechanisms of stress response. They include lipid peroxidation and expression of various 

antioxidant mechanisms like GST, CAT, SOD and GPx and scavengers such as GSH and 

ascorbic acid. Expression of these two mechanisms is the clear indication of pesticide toxicity, as 

well as the counter mechanisms exhibited by the organism. An extensive survey of available 

literature indicates that for the last two decades pesticide-induced OS has been considered as a 

possible mechanism of toxicity and hence it has been a focus of toxicological research even 

today. The pesticides have been shown  to induce production of ROS by altering the balance 

between the  oxidants / prooxidants and antioxidants through promoting lipid peroxidation  

(LPO)  and  depleting  the  antioxidative  cellular  reserves (both the  enzymatic  and  non  

enzymatic)  leading to  a  condition of OS. The range of its impact spans from tissue injury, and 

aging through apoptosis, to onset of various known/unknown diseases.  However, the exact 

mechanism(s) of their action in fresh water fishes has still not been completely understood 

particularly for IMI and CZ. Hence, in the present work, an endeavour has been made to explore 

the mechanisms on pesticides induced OS, cellular events influenced by OS, in various key 

organs of pesticide exposed fishes. After establishing the haematological alterations as well as 

the biochemical parameters, it is worth exploring the effect of these agrochemicals on lipid 

peroxidation as well as their antioxidant defence mechanisms as this aspect of the toxicity data 

for this new group of insecticides for aquatic invertebrate are far from enough.  

Detoxification path at tissue level can be detected by biochemical markers of oxidative stress. 

The first line of defense to oxidative stress is the use of antioxidant scavengers, such as ascorbic 

acid (vitamin C), vitamin E, uric acid, carotenoid and glutathione. The second line of defense 

includes cellular mechanism which helps in removing excess ROS and avoids oxidative damage. 

It includes GPx, GST, CAT and SOD. The present study agrochemical stress has significantly 

increase ascorbic acid content in liver, kidney and gills. Ascorbic acid content plays an important 

role in detoxification of the foreign bodies or toxicants in metabolic process. It is identified that 

ascorbic acid is an antioxidant which might inhibit the oxidative metabolism of agro-chemicals 

and thus probably could prevent the production of electrophilic metabolites and as a part of 

redox buffer system it can scavenge harmful free radical metabolites/ reactive oxygen species 

(Sato et al., 1990; Guha and Khuda-Bakhsh, 2002). Hence, the high level of ascorbic acid 
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observed in the present study as agro-chemical induced stress condition is justifiable. The 

indication to detoxifying enzymes is reported to be accompanied by increase in ascorbic acid 

content of liver, kidney and gills, which stimulate detoxification of toxicant, suggestive of liver, 

kidney and gills to be the sites of detoxification. Our results are in agreement with earlier 

reported elevated ascorbic acid content in Channa gachua (Ali and Ilyas, 1981); in Oreochromis 

mossambicus (Guha and Khuda-Bukhsh, 2001); in Clarias batrachus (Kamble et al., 2001 & 

2010) and Puntius ticto (Ganeshwade, 2011). 

In the present study there was a significant increase in the GSH activity in liver, muscle and gills 

on exposure of agrochemicals in a dose dependent manner. Due to its function in resisting the 

reactive oxygen toxicity, the changing degree for total glutathione can serve as markers of 

exposure to agrochemicals and the alterations to be an adaptive mechanism to oxidative stress.  

GPx level was found to be increased in gills and liver which might be because of the induction, 

as in the case of any other defensive antioxidant enzyme. An increase in GPx activity in liver, 

kidney and gills is probably eliminating the access of H2O2 and lipid hydrogen peroxide 

produced in the fishes exposed to agro-chemicals. Similar results have been observed in the liver 

of Cyprinus Carpio (Li et al., 2003; Vinodhini and Narayanan, 2009); Rainbow trout (Orun et 

al., 2005). Tissue specific increase of GPx in the present study indicates the adaptive approach 

by the fish to defend the oxidative stress, generated as a consequents of agro-chemical exposure 

and that the increased production of H2O2 due to OS is thus scavenged by the enzyme GPx. 

Elevated GPx activity also indicates that the regulation of ROS generated due to agro-chemicals 

is efficiently achieved by GSH pathway.The elevated levels of GST in the present studies 

indicate the shift towards a detoxification mechanism under agro-chemical exposure. There is 

more GST activity in hepatic tissue compared to kidney and gills, which is due to effective role 

of liver in xenobiotic detoxification (Goering et al., 1995). Organ-based GST assay reflected a 

dose dependent significant increase in liver, kidney and gills of both the fishes exposed to agro-

chemicals. The increase in the activity of GST reported in the present study indicates the 

biotransformation pathway used a protective response in fish towards exposure to an oxidative 

stress inducing agro-chemicals. Similar kind of results have been reported earlier in liver, kidney 

and gills of freshwater murrel C.punctatus (Dabas et al., 2012), obtained by in O.niloticus 

(Wengu et al., 2009 ; Gad, 2011) and in O.mossambicus (Anushia et al., 2012). 
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The present study revealed that SOD and CAT activities in the liver, kidney and gills of 

O.mossambicus and L.rohita exposed to agrochemicals were increased. Furthermore, a dose 

dependent increase in the level of LPO, as expressed by MDA formed, was observed in liver, 

kidney and gills of the fishes exposed to IMI and CZ . Elevated MDA level was observed in all 

the tissues on exposure to agrochemicals indicating that elevated antioxidant enzyme activities 

were not enough to prevent lipid peroxidation. 

Thus, from the present study it can be concluded that the response of antioxidant enzymes (SOD, 

CAT, GPx, and GST) and non-enzymatic antioxidant/scavengers (ascorbic acid and GSH) 

showed that the fishes are under severe oxidative stress and that the agro-chemicals are acting as 

potent free radicals generators. Lipid peroxidaton (MDA) level proves that extensive lipid 

peroxidation has occurred on exposure of the agro-chemicals. And that both the antioxidants 

interact in a concerted manner to eliminate ROS and prevent damage to cellular components. 

This suggests that IMI and CZ at levels below median lethal concentration are capable of causing 

oxidative damage in O.mossambicus and L.rohita.  

The size or weight of the liver, spleen, and gonads relative to fish length or weight signifies 

overall health and reproductive status. Hence, in the current investigation an attempt was also 

made to understand the toxicity of sublethal dose of IMI and CZ in O.mossambicus and L.rohita 

by determining its effects on condition factor and organosomatic indices (HSI, SSI and GSI). If a 

change in function exists, there will be a gross change in the structure of organs or tissues. 

Taking the aforementioned into account, along with condition factor morphological alterations 

were observed for liver, Gonads and Spleen. In the present study, HSI revealed that there was a 

significant decrease in weight of the liver as the concentration of agro-chemicals increased. 

However, liver of both the fishes exhibited a greater diminution in HSI on IMI exposure 

compared to that of CZ.  Decreased HSI value is indicative of that the fish were under stress and 

that IMI was more toxic compared to CZ. Parallel to the decreased HSI, alterations in the 

histological structures were also observed. 

Hepatocellular necrosis with parenchymal vacuolization, hypertrophy of hepatocytes, 

hemorrhages and widening of blood sinusoids were the distinct altered features in the agro-

chemical exposed fish liver. At low dose only slight vacuolation and mild swelling of 

hepatocytes in which the nucleus retained a nearly normal shape was recorded. At high dose the 
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main alterations found in the liver were: irregular-shaped nuclei, nuclear hypertrophy, nuclear 

vacuolation and the presence of eosinophilic granules in the cytoplasm. Liver showed fatty 

infiltration, these findings were apparent as the liver is considered the organ of detoxification and 

excretion. Liver of fish is sensitive to environmental contaminants because many contaminants 

tend to accumulate in the liver and exposing it to a much higher levels than in the environment, 

or in other organs. Several authors recorded histopathological changes in the liver of freshwater 

fish treated by insecticides diazinon, dimethoate, malathion and glyphosate, respectively 

(Neskovic et al. 1996; Sakr et al 2001; Van Dyk, 2003; Stentiford et al., 2003; Fanta et al., 2003; 

Mela et al., 2007 de Melo et al., 2008; Kunjamma et al., 2008; Mataqueiro et al., 2009 ; Parikh 

et al., 2010). 

In the present study the SSI values were reported to be decreased in the agro-chemical exposed 

fishes compared to control. The decrease seems to be due to necrosis and perturbations in cell 

processing, both of which could impact the overall condition of the individual fish.  Reduced SSI 

may be the response of the fish to combat agro-chemical stress (Gabriel et al., 2010). 

Histological observations also revealed the presence of Melanomacrophage centers (MMC) 

scattered throughout spleen. Furthermore, the associated alterations observed in the spleen were 

mild to severe depletion of white pulp which was replaced by empty space and activation of 

MMCs along with hemorrhage, fibrosis and intracellular edema is suggestive of an adaptive 

immune response to agrochemical stress. These findings are consistent with the earlier reports 

(Pulsford et al., 1992; Falk et al., 1995; Suresh and Veeraraghavan, 1998; Simko et al., 2000; 

Decostere et al., 2001; kman and Norrgren, 2003). 

GSI values decreased in dose dependent manner. Reduced GSI indicates lowered reproductive 

activity (Bernard et al., 2001 and Hassanin et al., 2002), under agro-chemical stress. 

Histomorphological alterations are also supporting the reduced GSI observed and probably may 

be associated with the impairment of the production of steroid hormones which might have 

arrested the formation of germ cells and cause degeneration or necrosis. Vacuolated follicular 

epithelium and oocyte atresia were the prominent observations in the present studies in female 

gonads. The histological alterations of the testis on exposure of agro-chemicals consists of 

altered structure of seminiferous tubules associated with damage and presence of large number 

of inter and intra tubular vacuoles and severe necrosis.  
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As general indicators of the overall health and well-being of the fish, an alteration in the indices 

indicates deleterious effect of the agro-chemicals. Hence, from the present study it is apparent 

that IMI and CZ have resulted in to considerable alteration in CF as well as HSI, SSI and GSI. It 

can be concluded that the histological changes induced by agro-chemicals varied in their 

expression and IMI was found to be more toxic than CZ. Histological alterations are biomarkers 

of effect of exposure to environmental stressors, revealing prior alterations in physiological 

and/or biochemical function (Hinton et al., 1992). Hence, in the present study an attempt is made 

to evaluate the effect of IMI and CZ on the histological alterations in gills and kidney of 

Oreochromis mossambicus and Labeo rohita. The common histological observations in the gills 

of O.mossambicus and L.rohita includes proliferation of the epithelium of the gill filaments and 

secondary lamellae, resulting in fusion of secondary lamellae, severe degenerative necrotic 

changes in gill filaments and secondary lamellae, curling of secondary lamellae and mucus cells 

proliferations. Edematous changes, characterized by epithelial detachment were observed in gill 

filaments and secondary lamellae. Moreover, aggregations of inflammatory cells were noticed in 

gill filaments. Also, dilation and congestion in gill filaments were observed. Atrophy of 

secondary lamellae was seen. However, comparatively the degree of pathological changes 

observed on IMI exposure was more prominent compared to CZ for O.mossambicus as well as 

L.rohita. Distinct feature observed was hyperemia and hemorrhages in primary and secondary 

gill lamellae at high dose of CZ exposure and at low dose of IMI in L.rohita. 

Histological alterations in the kidney of both the fishes included severe degenerative and necrotic 

changes in the renal tubules with focal areas of necrosis and hemorrhages, haemolysis. Vacuolar 

degenerations in the epithelium of renal tubules and dilation in the capillary tubes of renal 

tubules were observed. Also edema of Bowman’s capsule with atrophy in the glomeruli and 

dilation in the renal blood vessels were observed. Kidney tissue from O.mossambicus and 

L.rohita showed mild necrosis and tubular degeneration on CZ exposure where as on IMI 

exposure it showed severe necrosis, vacuolation and tubular degeneration. Thus from the present 

studies it can be concluded that both the agrochemicals i.e. IMI and CZ are toxic to O. 

mossambicus and L.rohita and has resulted into deleterious changes in liver and kidney. The 

present study reports the acute and sublethal toxicity of IMI and CZ on biochemical profile, 

organo-somatic index, physiological stress response, behavioral alterations and histological 
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changes in gills, liver, muscle and liver as well as the kidney tissues of O. mossambicus and 

L.rohita fishes.  

The important observations can be summarized. 

� The probit analysis revealed the fact that the LC50 value for L. rohita (0.8536 – IMI, 

51.2689 – CZ) was much higher than O. mossambicus (0.7319 – IMI, 39.84 – CZ) for 

both the agrochemicals. This indicated that IMI, even in microgram quantities can induce 

toxicity to fish. Of the two agro-chemicals CZ is less toxic than IMI. 

� IMI and CZ exposed fish exhibited reduced activity compared to the control fish. The 

intensity of the behavioural activities of the fish decreased with increasing concentration 

and duration of exposure. The fish exhibited irregular, erratic and darting swimming 

movements and loss of equilibrium due to exposure of IMI and CZ. They slowly became 

lethargic, hyper excited, restless and secreted excess mucus all over their bodies, was 

more pronounced at higher concentrations, suggesting sensitivity to the agrochemicals. 

� The exposure of fish to IMI and CZ pesticides resulted in significant alterations in 

haematological parameters. These alterations may negatively suppress normal growth, 

reproduction, immunity and even survival of fish in natural environment. And 

furthermore, the haematological studies provide a rapid and sensitive method for 

predicting the effects of sub-lethal exposure on general health and well being of fish. 

� Depletion in protein, Lipids, Cholesterol and Glycogen content indicated the requirement 

of large amounts of these metabolites under a toxic stress to compensate the energy 

demand and the metabolic requirements. The remarkable changes in activities of enzymes 

like LDH, GDH and Pyruvate suggested the impaired oxidation of carbohydrates through 

TCA cycle. Variations in the liver and kidney-specific ALT, AST and ALP enzyme 

activities indicated the role of the tissue in detoxification processes under agro-chemicals 

toxicity. The toxicity resulted in impaired metabolism leading to disturbed homeostasis.  

� The lipid peroxidation product namely malondialdehyde recorded an increase with 

increased concentration. A dose dependent increased level of antioxidant enzymes (CAT, 

SOD, GPx and GST) and scavengers (GSH and Ascorbic acid) was also observed. Thus, 

increase in their activity showed the efficiency of antioxidant system to defend the agro-

chemical-induced stress.  



191 

 

� As general indicators of the overall health and well-being of the fish, an alteration in the 

indices indicates deleterious effect of the agro-chemicals. From the altered values of CF 

and indexes in the present study it is apparent that IMI and CZ have resulted in to 

considerable alteration in the overall health and well-being of the fish. Further, the 

histological changes induced by agro-chemicals varied in their expression and IMI was 

found to be more toxic than CZ.  

� Histological observations envisaged the deleterious anatomical and morphological 

alterations induced in gill, liver, kidney, spleen and Gonads (Testis and Ovary) tissues by 

sub-lethal toxicity of the IMI and CZ agrochemicals. Each tissue showed specific sterical 

changes and revealed the incapability of these tissues to withstand the toxic effects 

induced by IMI and CZ.Histological damages in the tissues were found to intensified 

with increase in concentration and duration. Hepatocellular necrosis with parenchymal 

vacuolization, hypertrophy of hepatocytes, hemorrhages and widening of blood sinusoids 

were the distinct altered features in the agro-chemical exposed fish liver.The 

histopathological changes observed in the kidney were severe necrosis of tubular 

epithelial cells, thickening of the bowman’s capsule and shrinkage of the glomeruli along 

with severe degenerative and necrotic changes in the renal tubules with focal areas of 

necrosis and haemorrahage, haemolysis. Vacuolar degenerations in the epithelium of 

renal tubules. 

 

The present study revealed that the agrochemicals IMI and CZ are potent to cause toxic 

responses, even structural alterations, in non target aquatic organism like fish. Though it is 

degrading very readily, because of short half-life, the chances for acute toxicity are not 

avoidable. The hazards of environmental contamination are usually associated with unexpected 

side effects due to pesticides or pesticide-derived compounds. This report proves that IMI is  

highly toxic and that the CZ is moderately toxic. The toxic responses are reflected by the 

behavioral, biochemical and pathological changes. But concerted effort in reducing the use of 

pesticides and implementing natural remedies for pest-encroachment through organic farming 

can help resolving the problem of agrochemical pollution. Regulations limiting the use of 

agrochemicals, along with alternative solutions that are safer and non-toxic to the environment 

and humans should be encouraged. One such alternative is so called “natural pesticides” that are 
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not synthetically produced, but are derived from nature such as botanicals pesticides, 

microbial/biological agents and inorganic minerals. These solutions are generally assumed to be 

less toxic for human health than synthetic pesticides and could represent an interesting 

alternative. Further studies are needed on the occurrence, fate and impact of such pesticides on 

the ecosystem and public health.  There is also need to undertake such research that will give 

early warning signal on the lethal limits of pesticides in fresh water fish species. It is therefore 

imperative that safe limits/standard for fish and other aquatic fauna in the fresh waters should be 

developed using data obtained from agrochemical induced ecotoxicological studies. Genotoxicity 

can be expected on exposure to agrochemicals. The reviews of related work have suspected the 

chances for significant changes at the molecular level. But this perspective can be considered for 

future studies. 
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Abstract: Curzate, a fungicide, is currently registered for commercial use in over 50 countries on more than 15 crops, creates serious threat to the 

environment as well as target and non-target organisms like aquatic and land dwelling animals. The present investigation was carried out to study the 

impact of the fungicide on the hematological parameters of fresh water fish Oreochromis mossambicus. Adult fish of nearly similar weight (25 ± 1.9 g) 

and length (15.5 ± 1.2cm) were exposed to two sub lethal concentration i.e. 4.9 mg/l and 2.45 mg/l of Curzate for a period of  21 days. The hematological 

analysis showed significant reduction in red blood cells (RBCs) count, hemoglobin (Hb) value, packed cell volume (PCV) and mean corpuscular 

hemoglobin concentration (MCHC), while total white blood cells (WBCs) count, mean corpuscular volume (MCV) and mean corpuscular hemoglobin 

(MCH) were significantly increased in the treated groups as compared the control group. The present study shows that Curzate causes alterations in 

hematological parameters leading to physiological dysfunctions thus validating the toxic effect of the fungicide on the fish.  

 
Key words: fungicides, haematology, Blood indices and Oreochromis mossambicus 

________________________________________________________________________ 

1 INTRODUCTION 
Agricultural pesticides are indispensable in 

contemporary agriculture. They are beneficial by providing 

reliable, persistent and relatively complete control against 

harmful pests with less cost and effort [1].  Due to 

injudicious and indiscriminate use of these agrochemicals 

such as fertilizers, pesticides, insecticides and fungicides to 

boost crop production with the sole aim of getting more 

yield, water bodies like ponds, lakes, river and low lying 

water areas are continuously getting polluted. Normally 

these pesticides reach the aquatic environment through 

surface run off, sediment transport from treated soil and 

direct application as spray to water bodies to control the 

inhabiting pests [2]. 1 

 

These chemicals may be directly toxic, deteriorate 

the water quality by changing its physico-chemical nature 

and cause ecological imbalance leading to health hazards to 

different types of aquatic organisms in general and fishes in 

particular [3]. In extreme cases there are records of 

catastrophic mortality of the entire aquatic biota [2]. 
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The use of agrochemicals in the field has the 

potential to change the aquatic medium, affecting the 

tolerance limit of aquatic fauna and flora, as well as 

creating danger to the ecosystem. Ayoola (2008) has 

reported that water pollution by pesticides is a serious 

problem to all aquatic fauna and flora and to a considerable 

extent even man. These agrochemicals adversely affect the 

non-target organisms, especially fish which are one of the 

most widely distributed organisms in an aquatic 

environment and being susceptible to environmental 

contamination may reflect the extent of the biological 

effects of environmental pollution in waters [5].  

  Blood analysis is crucial in many fields of 

ichthyological research and fish farming and in the area of 

toxicology and environmental monitoring as possible 

indicator of physiological or pathological changes in fishery 

management and diseases investigation [6].  

Haematological indices are very important parameters for 

the evaluation of fish physiological status. The changes 

depend on fish species, age, the cycle of the sexual maturity 

of spawners, and diseases  [7; 8 and 9].  In warm-blooded 

animals, changes in the blood parameters, which occur 

because of injuries or infections of some tissues or organs, 

can be used to determine and confirm the dysfunction or 

injuries of the latter i.e. organs or tissues. However in fish, 

these parameters are more related to the response of the 

whole organism, i.e. to the effect on fish survival, 

reproduction and growth. 

A vast amount of scientific information is available 

on the pesticide toxicity on fishes but limited information is 

available on the effect of these pesticides, in minute 

concentration, on the physiology of haemopoietic system, 
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thought to be most sensitive indicator towards 

environmental pollutants. Therefore, the present study was 

undertaken to assess and contribute to knowledge on the 

haematological changes in fresh water fish, Oreochromis 

mossambicus at different concentration of Curzate. 

 

 

2 MATERIALS AND METHODS 
2.1 Experimental design: 

 Fresh water fish Oreochromis 

mosssambicus (15 ± 2.6 cm and 24 ± 3 g) were obtained 

from a local pond of Baroda district and were acclimatized 

under laboratory condition. They were kept in glass 

aquaria containing 50 L of dechlorinated tap water. 

 

30 tilapia fish were divided in 3 groups, 10 fish for each 

group: 

Group 1 served as control without any treatment of 

fungicide. 

Group 2 were treated with fungicide Curzate i.e. 4.9 mg/l 

(LC 50 / 10). 

Group 3 were treated with fungicide Curzate i.e.  2.45 mg/l 

(LC 50 / 20). 

 

Constant amount of the test chemical and test 

media were changed every 24 hours and the experiment 

lasted for 21 days. The fishes were fed once in a day 

throughout the duration of the sub-lethal toxicity tests.  

 
2.2 Haematological estimation of fish: 

Test organism was removed, from each tank for 

blood analysis. About  4 - 5ml of blood was collected from 

the caudal peduncle using separate heparinized disposable 

syringes containing 0.5mg ethylene diamine tetra acetic 

acid (EDTA) as anticoagulant; properly mixed and stored at 

-20°C for haematological analysis. The blood was stored in -

4°C in deep freezer prior to analysis.  

 
2.3 Blood Cell Count: 

The red blood corpuscles (RBC) and White blood 

corpuscles (WBC) were counted using haemocytometer 

crystalline chamber using “Hayem’s” and “Turch’s” 

diluting fluid, respectively. 

 

Haemoglobin Estimation (HB) and Pack Cell Volume 

(PCV): 

 They were analyzed in NIHON KOHDEN 

Automated Hematology Analyzer (Celtics α, Japan). 

 

Mean Cell Haemoglobin Concentration (MCHC): 

 This refers to the percentage of 

haemoglobin in 100 ml of red blood cell. This was 

calculated by dividing the haemoglobin content in g/dL by 

the PCV % of red blood according to the formulae: 

MCHC = HB/PCV*1000 g/dL 

 

Mean Corpuscular Volume (MCV): 

 The value of the corpuscular volume was 

calculated from the haematocrit value (PCV %) and the 

erythrocyte count (106/ µL) using the formula 

MCV =PCV*1000/ RBCs fL 

 

Mean Corpuscular Haemoglobin (MCH): 

 Mean corpuscular Haemoglobin 

concentration expresses the concentration of haemoglobin 

in unit volume of erythrocyte. It was calculated from the 

haemogobin value (HB) and from the erythrocyte count 

according to the following formulae 

MCH = HB/RBCs pg 

 

 

Leucocyte differential count: 

 Leucocyte differential count was done 

using Giemsa stain. 

 
2.4 Statistical analysis:  

Statistical analysis was performed using Graph 

pad prism 5 software. The data was analyzed using two-

way ANOVA test. Results were presented as mean ± SE. 

The significance was set as P<0.05, P<0.01 and P<0.001. 

 

3 RESULTS AND DISCUSSION 
The changes of haematological parameters like, 

RBC, WBC, Hb, PCV, MCV, MCH and MCHC in the fish 

Oreochromis mossambicus both in control as well as 

sublethal concentrations of Curzate exposed after 21 days 

are shown in Table 1 and Fig: 1. The haematological 

analysis revealed a highly significant reduction in Red 

Blood Cell (RBCs) count from 1.807±0.006 106/µl in the 

control fish to 1.523±0.013 106/µl and 0.938±0.014 106/µl in 

the Low dose and High dose respectively. Also a significant 

decrease was recorded in hemoglobin (Hb) from 

7.475±0.030 g/dl in control to 5.922±0.111 g/dl and 

4.457±0.287 g/dl in low dose and high dose respectively. 

Haematocrit or PCV is essential in clinical haematology to 

determine alterations in blood. 

Red blood cell mass as measured by packed cell 

volume (PCV) and Hemoglobin content (Hb) of exposed 

fish groups showed a progressive decrease parallel to the 

increasing concentration of the fungicide. Wahbi et al., 

(2004) and Zaki et al., (2008) attributed the decrease in the 
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RBC to heamolytic crisis that results in severe anemia in 

fish exposed to heavy metals and herbicide respectively. 

Furthermore, the  reduction of RBC also leads  to 

development of hypoxic condition  which in turn leads to 

increase in destruction of RBC or decrease in rate of 

formation of RBC due to non availability of Hb content in 

cellular medium (Chen, et al., 2004). The damage of toxicant 

on erythrocyte may be secondary, resulting from a primary 

action of toxicant on erythropoietic tissues on which there 

exist a failure in red cell production and or due to increase 

in the erythrocyte destruction. These results are in 

affirmative agreement with that investigated by Wahbi, et 

al., (2004). 

 The values of MCV in the experimental groups 

showed significant increase (p<0.01), MCH values showed 

significant increase at high dose (p<0.001) and at low dose 

(P<0.01) respectively. MCHC values showed insignificant 

decrease at low dose and a significant decrease at high dose 

(p<0.01). The MCV, MCH and MCHC values are 

completely dependent upon the factors of PCV, RBC count 

and haemoglobin concentration. In the present study, the 

PCV, RBC and hemoglobin concentration is completely 

altered. So indirectly the values of MCV, MCH and MCHC 

were affected. In the present study the decreased PCV 

values with increased MCV and MCH associated with 

decreased MCHC values could probably due to stress 

induced by the fungicide and confirms the occurrence of 

haemolytic anemia in experimental fish which exaggerates 

further disturbances in haemopoietic activities of fish. 

Similar finding were also observed by a number of studies 

in different fish [12, 13, 14 and 15].  

Total WBCs count was significantly increased from 

11.31 ± 0.184 103 /µL in control fish to 13.09 ± 0.657 103 /µL 

and 15.48 ± 0.213 103 /µL at low dose and high dose 

respectively. Associated with the increase in total WBC 

count was a noticeable percentage increase in small 

lymphocytes (S.L) and neutrophils (Nt). WBCs are 

important cells in the immune system, because of their 

main defensive function. The WBC will respond  

immediately to the change in medium due to xenobiotic 

transformation [16]. During exposure period of curzate the 

WBC counts got  enhanced, indicating that the fish can 

develop a defensive mechanism to overcome the toxic 

stress. Our studies are in agreement with Lovell and 

Jantrarotai,(1991); Nanda, (1997); Wahbi, (1998); Hymavathi 

and Rao, (2000); Lebelo, et al.,(2001); Hassen, (2002) and 

Joshi, et al., (2002).  .    

  Examination of Giemsa stained blood 

smears of control fish showed well developed erythrocytes 

and neutrophil (Nt) with bilobed nucleus, (fig: 2 A) while 

examination of Giemsa stained blood smears of treated fish 

showed increased number of lymphocytes and neutrophils 

with associated morphological alterations similar to clinical 

features of neutrophilia and lymphocytosis. It is indicative 

of compensatory and defensive reaction to the toxicant in a 

dose dependent manner. (Fig: 2 B and C). 

The measurement of hematological parameters, 

which are used in this study, has provided valuable 

information which can contribute to the applied and basic 

research needs of aquatic toxicologists in the assessment of 

fish health and in monitoring stress responses. The present 

study suggests that the perturbations in the blood indices 

are a defense reaction against curzate toxicity. Whether 

these changes reflects compensatory mechanisms in the fish 

or biochemical results of the toxic action of the fungicide 

remains to be elucidated. Further biochemical and 

histomorphometry studies are required and will help in 

understanding the metabolic alterations. 
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Figure: 1. Graphical representation of Blood indices in Control as well as treated fish. 
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Table: 1. Blood indices in Control and treated fish. 

Parameters  

Concentration mg/l 

Control 

(0 mg/l) 

Low Dose  

(2.45 mg/l) 

High dose 

(4.9 mg/l) 

RBCs 10
6
 /µL 1.807±0.006 1.523±0.013*** 0.938±0.014*** 

HB g/dL 7.475±0.030 5.922±0.111*** 4.457±0.287** 

PCV (Htc) % 24.50±0.063 20.47±0.069*** 16.04±0.505*** 

MCV fL 135.0±1.00 148.2±0.881** 170.2±2.557*** 

MCHC g/dL 30.45±0.028 30.27±0.088 29.37±0.074** 

MCH pg 41.66±0.172 45.67±0.346** 51.15±1.011*** 

Total WBC 10
3
 /µL 11.31 ± 0.184 13.09 ± 0.657* 15.48 ± 0.213*** 

Small Lymphocytes % 65.82 ± 0.745 67.42 ± 0.144* 68.88 ± 0.170*** 

Large lymphocytes % 11.03 ± 0.051 10.20 ± 0.152** 7.798 ±0.170*** 

Neutrophils % 18.02 ± 0.063 19.01 ± 0.129** 21.46 ± 0.158** 

***Significant p < 0.001; **Significant p <0.01; *Significant p< 0.05; ± S E 

 

Fig: 2 Pathological observations of blood smear of curzate treated fish 

 

 

A B C 

Fig 2 A shows well developed erythrocytes and neutrophil (↑) with bilobed nucleus, Fig 2 B and C 

shows increased number of lymphocytes and neutrophils with associated morphological alteration (↑). 
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Present study was undertaken to assess the dose-response of O. mossambicus to different
concentrations of a insecticide, a fungicide and a plant nutrient and to estimate the LC50 of each using probit
analysis. The mortality data obtained was based on Finney’s Probit Analysis statistical method. The LC50
values of the insecticide (Imidacloprid), the fungicide (Curzate) and the plant nutrient (Librel) were found to
be 0.7442 mg/L, 49.61.0 mg/ L and 4932.16 mg/L respectively. Behavioral responses to all the three tested
chemicals exhibited profound changes.
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aquatic flora and fauna are affected by the toxic
substances which eventually enter in to their systems
or bring about external damages (Pant and Singh, 1983;
Hodson, 1988; Johal and Dua, 1995).

Toxicity tests are conducted to measure the
effects of one or more pollutants on one or more species
of organisms (Reish & Oshida, 1987). Data obtained
on the concentration of selected individual pollutants
which are lethal to fish provide very necessary
information, apart from identifying a boundary limit above
which fish are likely to be killed (Lockwood, 1976). One
of the commonly used measures of toxicity is the LC

50
,

i.e. the lethal median concentration that causes mortality
in 50% of test organisms. Probit Analysis is commonly
used in toxicology to determine the relative toxicity of
chemicals to living organisms.

The purpose of this study is to establish the
LC

50
 for some agrochemicals – Imidacloprid

(insecticide), a Imidacloprid, Curzate M8™
(fungicide), a systemic fungicide, and Librel™, a
rapidly soluble chelated micronutrient mixture.
Toxicity studies on Rainbow trout, Gold fish, catfish,
and carp have reported that Mancozeb is highly toxic

(16)

INTRODUCTION

Agricultural areas have the potential to pollute
the aquatic ecosystem via the popular use of pesticides
(chemicals), fertilizers (nutrients), salts and sediments.
Agricultural pesticides are indispensable in
contemporary agriculture as they are provide reliable,
persistent and relatively complete control against
harmful pests with less cost and effort. But their effects
are less than desirable when they leave the target
compartment of the agricultural ecosystem. Up to 90%
of the pesticides applied never reach the intended
targets (Sparling et al., 2001); as a result, many other
organisms sharing the same environment as pests are
accidentally poisoned. One of the non-target biological
groups mostly affected by pesticides is fishes;
(Velmurugan, 2006; Omitoyin, 2007). Agrochemical
fertilizers and their effluents have been shown to have
devastating effects on aquatic biota (Bobmanuel et
al., 2006; Ekweozor, et al., 2001; Chukwu and Okpe,
2006; Yadav, et al., 2007; De Solla and; Boone, et al.,
2007). Increased use of chemical pesticide results in
the excess inflow of toxic chemicals, mainly into the
aquatic ecosystem (Kalavathy et al., 2001). The



whereas, Cymoxanil has been proved to be slightly
toxic on carp, sheepshead minnow, mysid shrimp and
blue gill sunfish. (Edwards et al., 1991; Kidd and
James, 1991). However, there effects on
Oreochromis mossambicus are lacking. Hence, the
present study was designed to determine the LC

50

of the three tested chemicals and the behavioral
changes caused by these in Oreochromis
mossambicus.

MATERIALS AND METHODS

The specimens of freshwater fish, O.
mossambiccus of similar size in length (12 ± 2 cm)
and weight (25 ± 1.9 g) were brought from a local
pond of Baroda district. The fishes were acclimatized
in laboratory conditions in well aerated dechlorinated
tap water.  The acute fish bioassay experiments for
24, 48, 72 and 96 hours were conducted. Pilot
experiments were conducted to determine the
concentrations causing 10 to 90% mortality of the
test fish.

Preliminary tests were conducted to provide
guidance on range of concentration of pesticide to
be used in the bioassay. The nominal test
concentrations used in this study were 0.5mg/l, 0.55
mg/l, 0.6mg/l, 0.65mg/l, 0.7mg/l, 0.75mg/l, 0.8mg/l,
0.85mg/l, 0.9mg/l and 0.95 mg/l; for Imidacloprid,
36mg/l, 37 mg/l, 38 mg/l, 39 mg/l, 40 mg/l, 41 mg/l, 42
mg/l, 43 mg/l, 44 mg/l and 45 mg/l for Curzate and
4600 mg/l, 4700 mg/l, 4800 mg/l, 4900 mg/l, 5000 mg/
l, 5100 mg/l, 5200 mg/l, 5300 mg/l, 5400 mg/l and
5500 mg/l for Librel with three replicates each The
behaviour of specimens in response to each dose of
each test chemical was observed and death if any
was recorded for the 96-h test period of each
experiment.

Probit analysis (Finney, 1971) was used to
calculate the median lethal concentration and time
with their upper and lower confident limits. Data
(OBF, TBF and mortality) were subjected to analysis
of variance (ANOVA) for difference between means
of both the group using statistical programme (Biostat
2009 Professiojnal 5.8.1 and Graphpad Prism 5).
Other abnormal behaviours were noted and the extent
of mucus production on the skin and gills of exposed
fish was assessed by feeling with the fingers.
Opercular beat frequency (OBF), tail beat frequency
(TBF) and cumulative mortality was recorded. A fish

was considered dead when it failed to respond to
simple prodding with a glass rod. Death was defined
as complete immobility with no flexion of the
abdomen upon forced extensions (Lockwood, 1976).

RESULTS AND DISCUSSION

Of the three agrochemicals, Imidacloprid
was found to be most toxic compared to Curzate
and Librel. The order of toxicity of agrochemicals to
fish was Imidacloprid > Curzate > Librel. The
behavioral responses of the fish varied in accordance
with the test concentrations. Relatively reduced
activity was exhibited during early hours of exposure
at all the concentrations of Imidacloprid and Curzate,
but same was not true for Librel. Probably Librel,
being a plant nutrient, was not as lethal as the other
two. No mortality or morphological changes were
observed in the control experiment for the 96 h acute
toxicity test. Fishes in the control experiment appeared
active and healthy throughout the test period.
However, the proportion of abnormal avoidance
response in the control was less than 10%. The test
organisms exposed to varying agrochemical
concentrations for 96 hrs, recorded mortality for each
concentration. It was found that relatively Librel was
relatively least toxic as the mortality of test fish was
found at the higher concentration of the chemical.
Most of the fish which died during the experiment
exhibited symptoms of poisoning such as change in
colour as well as behavior. Initially their colour
darkened and they swam erratically with their body
inclined downwards.

The LC
50

 values observed for Imidacloprid,
Curzate and Librel with their LCL and UCL are
presented in Table – 1 and Fig 1(A, B, C). Different
behavioral responses were seen in the fishes exposed
to the agrochemicals. Behavioral effects were more
in case of Imidacloprid and Curzate compared to the
control group. Decreased swimming activity and
decreased abnormal hyperkinetic activity was more
pronounced at higher concentrations, suggesting
sensitivity to the agrochemicals. One of the most
common behavioural responses to biotic stressors,
however, is reduced movement (Chivers & Smith,
1998), and the alternative hypothesis of decreased
opercular movements would be consistent with overall
reductions in activity. OBF rate has been used to
provide a measure of response to stress in fishes.
(Gibson and Mathias, 2006). Fishes exposed to

(17)
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agrochemicals had profound impact on the behaviour
of fish. As Thompson and Schuster (1968) noted,
the study of toxic effects on the behavioural level
offers ecologists and environmentalists two major
advantages. First, chemical agents that produce only
behavioural changes and have serious and possibly
irreversible deleterious effects on the animals’ ability
to adapt can be identified and controlled. Second,
the behaviourally toxic effects of chemical agents
can be considered as an early warning system for
the detection of the toxicity before irreversible
structural and biochemical damage are caused by
them.

The study suggests that the all the three
agrochemicals (nutrient fertilizer, fungicide and
pesticide) have toxic effects and in fish. However,
further studies on the toxicity of these agrochemicals
using various other test systems/ animals are required

to corroborate the findings of this study.

Imidachloprid and Curzate exhibited decreased OBF.
This may be due to the gill damage, where the toxicant
acts as respiratory poison possibly affecting the gills,
impairing respiration and leading to various abnormal
behaviour and eventually death. Gabriel and Okey
(2009) have studied the effect of aqueous leaf extracts
of Lepidagathis alopecuroides on the behaviours
and mortality of hybrid catfish fingerlings and have
reported similar observation.

Exposure to Librel showed different
behavioural responses. Hyperkinetic activity was not
seen and the OBF and TBF were increased (Fig 2:
(2004), Chukwu and Okpe, (2006) and Omitoyin et
al. (2006).

 Behavioural changes are the most sensitive
indication of potential toxic effects of a chemical
studied. From the findings of the present investigation,
one can conclude that of the three tested

Table 1 LC
50

 values (mg/L) with their fiducial limits used in acute toxicity tests for Oreochromis mossambicus

Agrochemicals Application Duration LCL LC
50

UCL

Imidacloprid Insecticide 48 hrs 0.6896 0.7319 0.7742

Curzate Fungicide 48 hrs 38.67 39.84 40.78

Librel Plant Nutrient 24 hrs 4868.19 4985.63 5079.54

Note: LCL = Lower Confidence Limit, UCL = Upper Confidence Limit, LC
50

 = Lethal Concentration for 50 percent of
the exposed fish

A B C

(18)

to corroborate the findings of this study.

Fig 1:   Plot of adjusted probits and predicted regression line for three agro-chemicals  to Oreochromis
 mossambicus

Imidacloprid Curzate Librel
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Fig 2. Graphs showing the Opercular Beat Frequencies and Tail Beat Frequencies exposed to three
agrochemicals depending on the duration of exposure.
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