Table of Contents

	List of abbreviation	I-II
1	Introduction	1
	1.1 General Introduction	1
	1. 2 A brief historical background	1
	1.3 Emerging materials on the industrial perspectives	5
	1.4 Fundamental aspects and contemporary scenario of the catalysts	6
	1.5 Types of catalysts	7
	1.6 Metal and/or metal oxide nanoparticles	10
	1.7 Numerous solid supports	11
	1.8 Advantages of carbonaceous materials as catalyst support	13
	1.9 Literature Survey	14
	1.10 References	18
2	Synthesis and Characterization of Graphene-based materials	22
	2.1 Introduction of Graphene-based materials	22
	2.2 Experiment Section	27
	a) Materials	27
	b)Synthesis of Graphene oxide	28
	c) Synthesis of reduced graphene oxide (rGO)	30
	2.3 Results and discussion	31
	a) FT-IR spectra	31
	b) Thermogravimetric analysis	32
	c) X-ray diffraction pattern	33
	d)X-ray photo electronic	34
	e) RAMAN spectra	35
	f) BET analysis	36
	g) Transmission electron microscopy	36
	2.4 Physico and Chemical Techniques	37
	2.5References	46
3	Metal nanoparticles (MNPs)-decorated reduced graphene oxide	49

nanosheets as efficient catalysts for hydrogenolysis of benzyl	
alcohol	
3.1 Introduction	49
3.2 Experimental section	51
a) Materials	51
b) Synthesis of GO	51
c) Synthesis of rGO	51
d) Synthesis of MNPs@rGO nanocomposites	51
e) Catalytic hydrogenolysis of BzA	52
3.3 Results and discussion	52
a) Transmission electron microscopy	53
b) X-ray Diffraction Patterns	54
c) Raman Spectroscopy	54
d) FTIR spectra	55
e) X-ray Photo electronic spectroscopy:	56
f) BET analysis	57
g) Thermogravimetric analysis	58
3.4 Catalytic Activity	59
a) Effect of Solvents	60
b) Effect of Time	61
c) Effect of mole ratio	62
d) Effect of Catalyst dosage	63
e) Effect of Temperature:	64
3.5 Catalytic hydrogenolysis of various benzyl alcohol derivatives	65
3.6 Catalytic assessment	66
3.7Catalytic mechanism	68
3.8 Recyclability Test	69
3.9 Conclusions	70
3.10 References	71
4 Facile one-pot synthesis of ZnO nanoparticles on reduced	75

grapheneoxide nanosheet (ZnONPs@rGO) as a proficient	
heterogeneous catalyst for multicomponent A ³ -coupling	
4.1 Introduction	75
4.2 Experimental Section	77
a) Materials	77
b) Synthesis of graphene oxide (GO)	77
c) Synthesis of ZnO nanoparticles (ZnONPs)	77
d) Synthesis of ZnONPs@rGOnanocatalyst	77
e) Catalytic test	78
4.3 Results and discussion	78
a) Raman spectra:	78
b) X-ray diffraction study	79
c) X-ray photoelectron spectroscopy:	80
d) High resolution Transmission electron microscopy	82
e) FTIR spectra	83
f) Thermogravimetric study	84
4.4 Catalytic study	85
a) Effect of catalyst dosage	86
b) Effect of various solvents	87
c) Effect of Amount of Urea	88
d) Effect of Time	89
4.5 Biginelli reaction using diverse aldehydes, β -keto esters, and	90
urea over ZnONPs/rGO as a representative nanocatalyst	
4.6 The plausible reaction mechanism for Biginelli reaction using	92
ZnONPs/rGO as a representative catalyst	
4.7 Recyclability Test	93
4.8 Comparison study	93
4.9 Conclusion	95
4.10 References	95
5 Highly efficient FeNP-embedded hybridbifunctional reduced	99

graphene oxide forKnoevenagel condensation with active	
methylenecompounds	
5.1 Introduction	99
5.2 Expermentals Section	102
a) Materials	102
b) Synthesis of graphene oxide (GO)	102
c) Synthesis of Amino modified graphene oxide (Am@GO)	102
nanocatalyst	
d) Synthesis of Fe/Am@rGOnanocatalysts	103
e) Catalytic test	103
5.3 Results and discussion	103
a) Raman spectra	104
b) X-ray diffraction study	106
c) High-resolution transmission electron microscopy	107
d) Scanning electron microscopy	108
e) Fourier Transfer Infrared spectroscopy	109
f) Thermogravimetric analysis	110
g) X-ray Photo electronic Spectroscopy	112
5.4 Catalytic study	113
a) Effect of catalyst dosage	115
b) Effect of mole ratio	116
c) Effect of solvent	117
d) Effect of Temperature	118
e) Effect of Time	119
5.5 Knoevenagel Condensation reaction using diverse aldehydes	119
with active methylene compounds over FeNPs/PPD@rGO as a	
representative nanocatalyst	
5.6 The plausible reaction mechanism for Knoevenagel condensation reaction using FeNPs/PPD@rGO as a representative catalyst	122

	5.7 Recyclability test	123
	5.8 Comparative Study	124
	5.9 Conclusions	126
	5.10 References	127
6	Highly Efficient reduced Graphene Oxide (rGO) Supported Acid-	132
	Base Bifunctional Catalyst for Carbon-Carbon bond-forming	
	Reactions under Solvent-Free Conditions	
	6.1 Introduction	132
	6.2 Experimental section	134
	a) Materials	134
	b) Synthesis of graphene oxide (GO) and reduced graphene	134
	oxide (rGO)	
	c) Synthesis of Amino modified graphene oxide	134
	(DETA@GO) nanocatalyst	
	d) Synthesis of Fe/DETA@rGO nanocatalysts	135
	e) Catalytic test	135
	Henry Reaction	
	AldolComdensation Reaction	
	6.3 Results and discussion	136
	a) Fourier Transfer Infrared spectroscopy	136
	b) Raman spectra	137
	c) High-resolution transmission electron microscopy	138
	d) Thermogravimetric analysis	139
	e) X-ray Photo electronic Spectroscopy	140
	f) X-ray diffraction study	141
	6.4 Catalytic Activity	142
	Henry reaction	
	a) Effect of catalyst dosage	144
	b) Effect of solvent	145
	c) Effect of Temperature	146

	d) Effect of Time	147
	6.5 Henry reaction using diverse aldehydes over FeNPs/DETA@rGO as a representative catalyst (Table 1)	148
	6.6 The plausible reaction mechanism for Henry reaction using FeNPs/DETA@rGO as a representative catalyst	150
	6.7 Catalytic activity Aldol Condensation Reaction	151
	a) Effect of catalyst dosage	153
	b) Effect of solvent	154
	c) Effect of Temperature	155
	d) Effect of Time	156
	6.8Aldol condensation reaction using diverse aldehydes over FeNPs/DETA@rGO as a representative catalyst (Table 2)	157
	6.9 The plausible reaction mechanism for Aldol condensation reaction using FeNPs/DETA@rGO as a representative catalyst	158
	6.10 Recyclability Test	160
	6.11 Conclusions	161
	6.12 References	161
7	Highly efficient metal nanoparticles immobilized on amino- functionalized reduced graphene oxide-based bifunctional catalysts for one-pot multi-steps Henry-Michael reaction	164
	7.1 Introduction	164
	7.2 Experimental section	166
	a) Materials	166
	b) Synthesis of graphene oxide (GO)	166
	c) Synthesis of Amino modified graphene oxide (Am@GO) nanocatalyst	166
	d) Synthesis of Fe/Am@rGOnanocatalysts	167
	e) Synthesis of Nb ₂ O ₅ /Am@rGOnanocatalysts	167

	f) Catalytic test	167
	7.3 Results and discussion	168
	a) Raman spectra	168
	b) Fourier Transfer Infrared spectroscopy	169
	c) High-resolution transmission electron microscopy	171
	d) X-ray diffraction study	172
	e) Thermogravimetric analysis	173
	7.4 Catalytic reaction	174
	a) Effect of catalyst dosage	176
	b) Effect of solvent	177
	c) Effect of Time	177
	7.5 Henry-Michael reaction using different aldehydes over	178
	Nb ₂ O ₅ NPs/PPD@rGO as a representative nanocatalyst	
	7.6 Recyclability Test	180
	7.7 Conclusion	181
	7.8 References	181
8	Conclusion&Future perspectives	185
9	List of paper publications & conferences/ Symposia/ Seminars/	190
	Workshop	
10	Achievement	196