CONCLUSIONS

From the variation in amount of co-surfactants study it has been found that amount of water consumed with [60]fullerene is more in case of both the non ionic surfactants Tween 80 and Triton X 100 than without [60] fullerene. While in case of ionic surfactants SDS and CTAB amount of water consumed does not differ with [60]fullerene than without [60]fullerene in the system. The increase in amount of co-surfactants shows more water consumption gradually. It was also found that as co-surfactant is changed from 1-propanol to 1-octanol, water consumption decreases. Thus as the polar nature of co-surfactant reduces i.e. carbon chain increases the water required for the formation of the emulsion is decreased.

To understand the behavior of [60] fullerene in microemulsion system phase diagrams were plotted. Triangular phase diagrams illustrated that monophasic region ie. microemulsion area increases in presence of [60]fullerene in case of cosurfactants 1-alkanols (n=3,4and 5) than in absence of [60]fullerene. While monophasic region decreases ie. microemulsion area decreases in presence of [60]fullerene in case of cosurfactants 1-alkanols (n=6 and 8) than in absence of [60] fullerene, Triton X 100, SDS and CTAB.TW-80 showed variation in the microemulsion area. It is also to be noted that for the microemulsion systems, as cosurfactant is changed from 1-propanol to 1-octanol the microemulsion region increases gradually in presence as well as in absence of [60]fullerene using Tween 80, Triton X100, SDS and CTAB surfactants at room temperature i.e. at 30^{0} C. Use of co-surfactants builds the microemulsion system stable for a long period of time.

As carbon chain increases the microemulsion area decreases in presence of [60]fullerene than without [60]fullerene. These results support the solubility trends of [60]fullerene based on molar volumes. It has been shown that higher alcohols dissolve [60]fullerene better than lower alcohols i.e the solubility if [60]fullerene is better in higher alcohols than in lower alcohols. The basis for this increased solubility has been explained due to the molar volume ratios of the [60]fullerene and the alcohol. Since fullerene is more soluble in hexanol and octanol, the microemulsion region decreases.

Table4.1	Phase region	of	Emulsion	and	Microemulsion	for	Tween	80/[60]
fullerene-tol	uene /Water/1-	alka	anol system					

Co-surfactants	With	out C ₆₀	With C ₆₀		
	E region	μE region	E region	μE region	
	(%)	(%)	(%)	(%)	
1-Propanol	16.89	83.11	23.69	76.31	
1-Butanol	17.82	82.18	18.32	81.68	
1-Pentanol	4.12	81.68	3.03	96.97	
1-Hexanol	2.27	97.73	2.86	97.14	
1-Octanol	2.02	97.98	2.69	97.31	

Table 4.2 Phase region of Emulsion and Microemulsion for Triton X 100/[60]fullerene-toluene /Water/1-alkanol system

Co-surfactants	Without C ₆₀		With C ₆₀		
	E region	μE region	E region	μE region	
	(%)	(%)	(%)	(%)	
1-Propanol	25.30	74.70	24.45	75.55	
1-Butanol	13.28	86.72	12.27	87.73	
1-Pentanol	4.62	95.38	4.79	95.21	
1-Hexanol	3.19	96.81	4.54	95.46	
1-Octanol	1.26	98.75	1.93	98.07	

Table 4.3 Phase region of Emulsion and	d Microemulsion for SDS/ [60] fullerene-
toluene /Water/1-alkanol system	

Co-surfactants	Witho	out C ₆₀	With C ₆₀		
	E region	μE region	E region	μE region	
	(%)	(%)	(%)	(%)	
1-Propanol	33.19	66.81	26.97	73.03	
1-Butanol	16.97	83.03	12.77	87.23	
1-Pentanol	4.54	95.46	4.12	95.88	
1-Hexanol	2.69	97.31	3.61	96.39	
1-Octanol	1.34	98.66	1.51	98.49	

Table 4.4 Phase region of Emulsion and Microemulsion for CTAB/[60] fullerene-toluene /Water/1-alkanol system

Co-surfactants	With	out C ₆₀	With C ₆₀		
	E region	μE region	E region	μE region	
	(%)	(%)	(%)	(%)	
1-Propanol	24.29	75.71	21.26	78.74	
1-Butanol	8.82	91.18	8.66	91.34	
1-Pentanol	2.69	97.31	3.61	96.39	
1-Hexanol	3.11	96.89	3.19	96.81	

Area under the curve as well as upper area of the curve was calculated using digital planimeter (Koizumi, PLA COM, KP-90) with accuracy of $\pm 0.2\%$. As observed from the results obtained by UV-VIS spectroscopy, [60]fullerene forms reverse micelle with structurally different non ionic surfactants like Tween 80 and Triton X 100. Absorbance of surfactant solution with [60] fullerene in toluene is lower than that of pure [60]fullerene in Toluene in all the four systems.

Break point in the spectra gives the value for critical reverse micelle, C_{rmc} , for that particular surfactant. By considering the value of C_{rmc} , thermodynamic properties like standard free energy, enthalpy and entropy of reverse micelle were calculated. The values for ΔG° , ΔH° and ΔS° for Tween 80, Triton X 100, SDS and CTAB are found to be negative at 30^oC and 40^oC. It indicates the spontaneous and exothermic formation of a reverse micelle. Entropy values found to be increasing due to significant decrease in enthalpic interactions for the surfactants Tween-80, Triton X 100, SDS and CTAB in [60]fullerene-Toluene solution at higher temperature that is at 40^oC than at 30^oC.

From the fluorescence spectroscopy results, it shows that [60]fullerene-toluene solution gives peak at 700nm at room temperature which is in agreement of previous results given by Kim et al¹⁸³ and Y Zhao et al¹⁸⁴. It can be observed from the spectra that as nature of cosurfactants changes to more polar i.e. from 1-octanol to 1-propanol intensity of peaks decreases.

Using cosurfactants, strong and very well resolved fine spectra were observed due to strong interactions with [60]fullerene molecules and strong solute-solvent interactions between [60]fullerene-toluene-surfactant solution.