List of Figures

Figure No	Title	Page No
1.1	Diagram of C ₆₀	2
1.2	Electric Arc Discharge method	3
1.3	Laser Ablation Method	4
1.4.a	Chemical Vapor Deposition Method	4
1.4.b	Chemical Vapor Deposition Method	5
1.5	Structures of Diamond, Graphene and Fullerene	5
1.6	Illustration of (a) [6,6]-bond; (b) [6,5]-bond; and (c) the	6
	[5]radialene and 1,3,5-cyclohexatriene substructures of C ₆₀	
1.7	Fullerene solutions in Toluene	9
1.8	AFM images of C ₆₀ clusters deposited from A) water-toluene	14
	dispersion;B) water-methyl benzoate dispersions; C) STM image	
	of C ₆₀ from toluene solution	
1.9	Overview of the possible modifications of C_{60} . a) Exohedral	22
	functionalization; b) Heterofullerenes; c) Endohedral	
	functionalization; d) Cage-opening modifications and e) Alkali	
	metal fullerides	
1.10	Examples of reactions involving C ₆₀	24
1.11	Industrial applications of [60] fullerene	25
1.12	A dendrimer built on a fullerene nucleus	26
1.13	Potential biological applications of Fullerene	28
1.14	Commercial cosmetic products containing fullerene	29
1.15	Monocarboxylic acid- C ₆₀	30
1.16	p,p-bis (aminoethyl)phenyl fullerene[60]	30
1.17	C ₆₀ – paclitaxel conjugate	31
2.1	Schematic representation of emulsion study	36
2.2	Schematic representation of microemulsion study	37
2.3	Fluorescence spectroscopy	39
3.1.a.1	Plot of amount of Water required versus ratio (Toluene/1-	46
	alkanol) using Tween 80 without [60] fullerene	
3.1.a.2	Plot of amount of Water required versus ratio (Toluene/1-	46
	alkanol) using Tween 80 with [60] fullerene	
3.1.b.1	Plot of amount of Water required versus ratio (Toluene/1-	51
	alkanol) using Triton X 100 without [60] fullerene	
3.1.b.2	Plot of amount of Water required versus ratio (Toluene/1-	51
	alkanol) using Triton X 100 with [60] fullerene	
3.1.c.1	Plot of amount of Water required versus ratio (Toluene/1-	56

	alkanol) using SDS without [60] fullerene	
3.1.c.2	Plot of amount of Water required versus ratio (Toluene/1-	56
	alkanol) using SDS with [60] fullerene	
3.1.d.1	Plot of amount of Water required versus ratio (Toluene/1-	61
	alkanol) using CTAB without [60] fullerene	
3.1.d.2	Plot of amount of Water required versus ratio (Toluene/1-	61
	alkanol) using CTAB with [60] fullerene	
3.2	Microemulsion and emulsion	64
3.2.a.1	Triangular phase diagram for TW-80-1-propanol-Toluene and	67
	water in absence of [60] fullerene	
3.2.a.2	Triangular phase diagram for TW-80-1-propanol-Toluene and	67
	water in presence of [60] fullerene	
3.2.a.3	Triangular phase diagram for TW-80-1-butanol-Toluene and	70
	water in absence of [60] fullerene	
3.2.a.4	Triangular phase diagram for TW-80-1-butanol-Toluene and	70
	water in presence of [60] fullerene	
3.2.a.5	Triangular phase diagram for TW-80-1-prentanol-Toluene and	73
	water in absence of [60] fullerene	
3.2.a.6	Triangular phase diagram for TW-80-1-pentanol-Toluene and	73
2.2 =	water in presence of [60] fullerene	
3.2.a.7	Triangular phase diagram for TW-80-1-hexanol-Toluene and	75
2.2	water in absence of [60] fullerene	7.
3.2.a.8	Triangular phase diagram for TW-80-1-hexanol-Toluene and	75
	water in presence of [60] fullerene	
3.2.a.9	Triangular phase diagram for TW-80-1-octanol-Toluene and	77
	water in absence of [60] fullerene	
3.2.a.10	Triangular phase diagram for TW-80-1-octanol-Toluene and	77
	water in presence of [60] fullerene	
3.2.b.1	Triangular phase diagram for TX 100-1-propanol-Toluene and	81
	water in absence of [60] fullerene	
3.2.b.2	Triangular phase diagram for TX 100-1-propanol-Toluene and	81
	water in presence of [60] fullerene	
3.2.b.3	Triangular phase diagram for TX 100-1-butanol-Toluene and	84
	water in absence of [60] fullerene	
3.2.b.4	Triangular phase diagram for TX 100-1-butanol-Toluene and	84
	water in presence of [60] fullerene	
3.2.b.5	Triangular phase diagram for TX 100-1-prentanol-Toluene and	86
	water in absence of [60] fullerene	
3.2.b.6	Triangular phase diagram for TX 100-1-pentanol-Toluene and	86

	water in presence of [60] fullerene	
3.2.b.7	Triangular phase diagram for TX 100-1-hexanol-Toluene and	88
	water in absence of [60] fullerene	
3.2.b.8	Triangular phase diagram for TX 100-1-hexanol-Toluene and	88
	water in presence of [60] fullerene	
3.2.b.9	Triangular phase diagram for TX 100-1-octanol-Toluene and	90
	water in absence of [60] fullerene	
3.2.b.10	Triangular phase diagram for TX 100-1-octanol-Toluene and	90
	water in presence of [60] fullerene	
3.2.c.1	Triangular phase diagram for SDS-1-propanol-Toluene and	94
	water in absence of [60] fullerene	
3.2.c.2	Triangular phase diagram for SDS-1-propanol-Toluene and	94
	water in presence of [60] fullerene	
3.2.c.3	Triangular phase diagram for SDS-1-butanol-Toluene and water	97
	in absence of [60] fullerene	
3.2.c.4	Triangular phase diagram for SDS-1-butanol-Toluene and water	97
	in presence of [60] fullerene	
3.2.c.5	Triangular phase diagram for SDS-1-pentanol-Toluene and water	99
	in absence of [60] fullerene	
3.2.c.6	Triangular phase diagram for SDS-1-pentanol-Toluene and water	99
	in presence of [60] fullerene	
3.2.c.7	Triangular phase diagram for SDS-1-hexanol-Toluene and water	101
	in absence of [60] fullerene	
3.2.c.8	Triangular phase diagram for SDS-1-hexanol-Toluene and water	101
	in presence of [60] fullerene	
3.2.c.9	Triangular phase diagram for SDS-1-octanol-Toluene and water	103
	in absence of [60] fullerene	
3.2.c.10	Triangular phase diagram for SDS-1-octanol-Toluene and water	103
	in presence of [60] fullerene	
3.2.d.1	Triangular phase diagram for CTAB-1-propanol-Toluene and	107
	water in absence of [60] fullerene	
3.2.d.2	Triangular phase diagram for CTAB-1-propanol-Toluene and	107
	water in presence of [60] fullerene	
3.2.d.3	Triangular phase diagram for CTAB-1-butanol-Toluene and	110
	water in absence of [60] fullerene	
3.2.d.4	Triangular phase diagram for CTAB-1-butanol-Toluene and	110
	water in presence of [60] fullerene	
3.2.d.5	Triangular phase diagram for CTAB-1-pentanol-Toluene and	112
	water in absence of [60] fullerene	
3.2.d.6	Triangular phase diagram for CTAB-1-pentanol-Toluene and	112

	water in presence of [60] fullerene	
3.2.d.7	Triangular phase diagram for CTAB-1-hexanol-Toluene and water in absence of [60] fullerene	114
3.2.d.8	Triangular phase diagram for CTAB-1-hexanol-Toluene and water in presence of [60] fullerene	114
3.3.a	UV-visible spectrum of [60] fullerene solution and TW 80-[60] fullerene solution at 30 ^o C	118
3.3.b	UV-visible spectrum of [60] fullerene solution and TX 100-[60] fullerene solution at 30 ^o C	119
3.3.c	UV-visible spectrum of [60] fullerene solution and SDS-[60] fullerene solution at 30°C	119
3.3.d	UV-visible spectrum of [60] fullerene solution and CTAB-[60] fullerene solution at 30°C	120
3.4.a.i	Critical reverse micelle for TW 80-[60] fullerene solution at 30 ^o C	120
3.4.1.ii	Critical reverse micelle for TW 80-[60] fullerene solution at 40° C	120
3.4.b.i	Critical reverse micelle for TX-100-[60] fullerene solution at 30°C	120
3.4.b.ii	Critical reverse micelle for TX-100-[60] fullerene solution at 40° C	120
3.4.c.i	Critical reverse micelle for SDS-[60] fullerene solution at 30 ^o C	122
3.4.c.ii	Critical reverse micelle for SDS-[60] fullerene solution at 40°C	122
3.4.d.i	Critical reverse micelle for CTAB-[60] fullerene solution at 30 ^o C	122
3.4.d.ii	Critical reverse micelle for CTAB-[60] fullerene solution at 40° C	122
3.4.a,b,c	Possible reverse micelle structures for non ionic and ionic Surfactants in [60] fullerene solution	124
3.4.d	Schematic representation of water-in-oil reverse micelles cationic surfactant salt CTAB (Cetyltrimethylammonium bromide)	125
3.5.a	Fluorescence spectra of [60] fullerene-Toluene solution +Water +TW 801-alkanol (co surfactant) microemulsion system	126
3.5.b	Fluorescence spectra of [60] fullerene-Toluene solution +Water +TX 100+ 1-alkanol (co surfactant) microemulsion system	126
3.5.c	Fluorescence spectra of [60] fullerene-Toluene solution +Water+SDS+ 1-alkanol (co surfactant) microemulsion system	127
3.5.d	Fluorescence spectra of [60] fullerene-Toluene solution +Water +CTAB+ 1-alkanol (co surfactant) microemulsion system	127
		•