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Symbols 

c radial clearance (m) 

e eccentricity 

FF   ferrofluid 

h              film thickness (m) 

h              squeeze velocity, 1/ (m s )dh dt 

 

H              magnetic field vector  

H              magnetic field strength (magnitude of H) (A m1) 

H*                thickness of the porous facing (m) 

*H                dimensionless porous thickness parameter defined as * *( / )H H c  

 I                sum of moments of inertia of the particles per unit volume (N s2 m2) 

k  quantity chosen to suit the dimensions of both sides of equation (5.24) (A2 m4) 

 

Bk               Boltzmann’s constant (J 1o )K(  ) 

L length of the bearing (m) 

m               magnetic moment of a particle (A m2) 

M               magnetization vector 

M0             equilibrium magnetization (A m1); / BmH k T 
 

M                 magnitude of M 

MF magnetic fluid 

n               number of magnetic particles per unit volume (m3)   

p               fluid pressure in the film region (N m2)  

P               fluid pressure in the porous region (N m2) 

R              radius of the journal (m) 
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s slip constant (m1) 

S                sum of angular momentums of particles per unit volume (K m2 s1) 

t                  time (s)  

T                 temperature (oK)   

u , w           velocity components in the film region in the x and z  directions, respectively 

(m s1) 

,u w           velocity components in the porous region in the x and z  directions, 

respectively  (m s1) 

q                  fluid velocity vector   

V              volume of the particle (m3) 

VMF variable magnetic field 

W                load-carrying capacity (N) 

W               dimensionless load-carrying capacity defined in equation (5.29) 

x, y, z co-ordinates (m) 

Greek symbols 

                 inclination of the magnetic field with the x  axis 

  eccentricity ratio 

0                permeability of free space (N A2) 

                  viscosity of the suspension (N s m2) 

0                 viscosity of the carrier liquid (N s m2) 

x               porosity in the x  direction 

x               permeability of porous facing in the x  direction (N A2) 

z                permeability of porous facing in the z  direction (N A2) 

                  volume concentration of particles 
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B                 Brownian rotational diffusion time (Brownian relaxation time) (s) 

s               internal angular momentum relaxation time (s) 


 

dimensionless permeability parameter 

x   dimensionless permeability parameter in the x – direction defined in equation 

(5.21) 

z   dimensionless permeability parameter in the z – direction defined in equation (5.21) 

  Langvin parameter 

1
2

 q    local angular velocity of rotation of the fluid (rad s1) 
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5.1 Introduction  

Journal bearing consists of a shaft which rotates inside a sleeve with a layer of lubricant 

separating these two parts. It is designed to support radial load. It is known as journal bearing 

because neck of the shaft is called journal. When the journal bearings operated under 

hydrodynamic lubrication conditions, they are known as hydrodynamic journal bearings. 

They are widely used bearings in the industry because of long life, shock resistance, vibration 

absorption. It is mostly used in turbo machinery. Following are some recent references of 

different journal bearings from different viewpoints. 

Kuzhir [1] predicted the shape of a Ferrofluid (FF) free boundary in the presence of a 

static load and magnetic field in journal bearing. It is shown that the lubricant leakage 

diminished due to magnetic field effect. Patel et. al. [2] studied performance of a 

hydrodynamic short journal bearing. The results show the nominal increase in load-carrying 

capacity with respect to magnetic parameter while significant increase with respect to 

eccentricity ratio. Lin et. al. [3] investigated short journal bearings using non-Newtonian FFs 

as lubricant and the micro-continuum theory of Stokes. The results show that bearings can 

support higher load capacity as compared to conventional lubricant. Comparing with 

Newtonian FF case, the effects of couple stresses of non-Newtonian FFs enhance load 

capacity while reduction in the friction parameter. Hsu et. al. [4] investigated long journal 

bearings with the effects of stochastic surface roughness and magnetic field.  They also 

showed transverse roughness enhance film pressure, load capacity, while reduced the attitude 

angle and modified friction coefficient. The longitudinal roughness shows the opposite effect. 

Rao et. al. [5] analyzed long journal bearing with porous layer using displaced infinitely long 

wire magnetic field model. Dimensionless load-carrying capacity and coefficient of friction 

are studied for different parameters like permeability, thickness of porous layer and lubricant 

layer, magnetic field intensity and distance ratio parameter. The results show the increase in 
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load-carrying capacity and reduction in coefficient of friction. Hu and Xu [6] mathematically 

studied lubrication performance of the journal bearing using cohesion forces & couple 

stresses of MFs, and the effect of squeeze dynamics. The bearing characteristics like load-

carrying capacity, attitude angle, friction coefficient and side leakage are studied. The results 

show that dimensionless load-carrying capacity increases with the increase of squeeze 

parameter, cohesion force coefficient and couple stress parameter of the Magnetic Fluid 

(MF). Laghrabli et. al. [7] studied finite journal bearings, where a magnetic field is created by 

displaced finite wire. The results show the increase in pressure, load capacity, attitude angle 

and side leakage while decrease in friction factor when the value of each control parameter 

(magnetic force coefficient and viscosity) increased at low and medium eccentricity ratios. 

However, at high eccentricity ratios the FF viscosity parameter decreases the load capacity 

and increases the friction factor. 

This Chapter discusses the problem of porous journal bearing using variable magnetic 

field using Shliomis model [8]. The variable and strong magnetic field is used because of 

retaining contributions from all magnetic terms of the Shliomis model. The modified 

Reynolds-Darcy equation for porous journal bearing is derived by considering equation of 

continuity in the film as well as porous region, and by assuming the validity of the Darcy’s 

law in the porous region. While deriving the equation, the effects of squeeze velocity, 

anisotropic permeability and slip velocity are also included. The expression for dimensionless 

load-carrying capacity (W ) is obtained from the pressure equation and studied for different 

parameters.  

5.2   Mathematical Formulation of the Problem 

Assuming steady flow, neglecting inertia and the second derivative of the internal 

angular momentum S, equations governed by Shliomis becomes   [9,10] 
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2

0 0

1
( ) ( ) ,

2
p          q M H M H 0  

                               
(5.1) 

0 s B
0 B( ) [ ( )],M

H I

  
     

H
M M M M H

                             
(5.2) 

where  

0
0

B

1
coth , .

mH
M nm

k T


 



 
   

                                       

(5.3) 

 

Referring to [8,11], for colloidal suspensions the condition 
B 1 

 
is always 

satisfied, equation (5.2) then can be approximated as  

0 [ ( )],
M

H
 M = H H

                                           
(5.4) 

where 

B

0 B s
0

.

1 M H
I




  



                                              

(5.5)

 

Choose an external oblique radially VMF [12]  

( )(cos ,0,sin ),H x  H                                          (5.6) 

where  being inclination of the magnetic field with the x  axis. This is the case of a sample 

magnetic field. Other suitable form of magnetic fields can be chosen similarly as per 

requirement. 

By assuming that the velocity gradient across the film predominate, equation (5.4) for 

small , and equation 1
2

 q   implies 

0 .M H   M H 
                                                

(5.7) 
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 Under usual assumption of lubrication, the x  component of the equation (5.1), using 

equation (5.4) and (5.7) becomes 

2

0 02

0 0

1
,

1
4

u dp dH
M

z dx dxM H


 




  
  

    
 

                               

(5.8) 

where u is velocity component in the film region in the x – direction.  

 Using (5.3) and defining the following quantities for a suspension of spherical 

particles [8, 9] 

B s

B

3
, , ,

6

V I
nV

k T


  


  

                                        

(5.9) 

equation (5.8) takes the form 

2

B2

1 sinh 
ln

(1+ )

u d
p nk T

z dx



  

 
  

                                 

(5.10) 

using equation  

3 tanh
.

2 tanh

 
 

 





 

 

5.2.1  Mathematical modeling of FF based porous journal bearing 

        Figure 5.1 shows physical configuration of the porous journal bearing, where the bearing 

surface is attached with a porous facing (or porous matrix or porous region or porous layer) of 

uniform thickness H* and the journal is a solid surface of radius R. Let x  and z be the 

permeabilities of the porous facing in the x and z  directions, respectively. The region 

between the journal and porous facing is known as film region (having film thickness h) and is 

filled with FF lubricant. The origin O, the x  axis and the z  axis of the system is shown in 



9 | P a g e  

 

figure. Assume that the bearing is infinite along its axis lying along the y  axis. Figure 5.2 

shows the configuration of figure 5.1 opened up at O, where the circumference of the journal 

lies over 0 2   on the   axis and the film is symmetrical about the line   .  

The basic flow equations other than equation (5.10) are given as follows. 

Equation of continuity for the film region 

0
u w

x z

 
 

                                                          
(5.11)

 

Equation of Continuity for the porous region 

0









z

w

x

u

                                                       
(5.12)

 

Darcy’s law for the porous region 

B 0 0

sinh 1
ln , ( direction)

4

x u
u P nk T M H x

x z z

 
 

 

     
        

                

(5.13) 

B 0 0

sinh 1
ln , ( direction)

4

z u
w P nk T M H z

z x z

 
 

 

     
        

                

(5.14) 

where u, w are the velocity components in the film region, and ,u w  are the velocity 

components in the porous region in the x and z – directions, respectively. Whereas P being 

the fluid pressure in the porous region. 

Solving equation (5.10) under the boundary conditions 

0 when 0u z   

and 

1 5
when ; (slip boundary condition)

x x

u
u z h s

s z  


   


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implies 

2

B

(1 ) (2 ) sinh
ln ,

2 (1+ )(1 )

sh z h sh z d
u p nk T

sh dx



  

     
   

                          

(5.15)

 

where s is slip constant and x being the porosity in the x  direction.

 

Substituting equations (5.13) and (5.14) in equation (5.12), and integrating it with 

respect to z from h to h + H*, yields 

B

sinh
lnz

z h

P nk T
z







 
 

    

*

2
*

B 0 02

sinh 1
ln ( )

4

h H

x z x

h

d u
H P nk T M H

dx x z


    





    
      

              

(5.16)

 

using the fact that the surface z = h + H*
 is impermeable. 

Substituting value of 

*h H

h

u

z


 

 
 

from equation (5.15), equation (5.16) becomes 

B

sinh
lnz

z h

P nk T
z







 
 

    

2
* * 0 0

B B2

sinh 1 sinh
ln ( ) ln

4 1
x z x

M Hd d d
H p nk T H p nk T

dx dx dx

  
  

   

    
        

       

(5.17)

 
 

using Morgan-Cameron approximation [12,13]. 

Owing to the continuity of the fluid velocity components across the surface z=h, 

,z h z hw h w  
 

implies
 

2

B B

sinh 4 sinh
ln ln

8 (1 )(1 )

z z
z h

z h

sh d
w h P nk T p nk T

z x sh dx

   

    




       
          

           

(5.18) 
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using equations (5.14) and (5.15). Here, h is squeeze velocity.
 
 

Integrating continuity equation (5.11) over the film thickness (0, h) and using 

equations (5.15), (5.17), (5.18), the Reynolds-Darcy equation for the present study can be 

obtained as 
  

 

*3 2
*

B

12( )( 4) 6 sinh
12 ln 12

(1 )(1 ) 1

z xz
x

Hh sh shd d
H p nk T h

dx sh dx

    
 

  

      
       

        

(5.19) 

using the fact that the surface z =0 is impermeable. 

Using  

, (1 cos ), , ,
d e

x R h c
dt c


          

equation (5.19) can be expressed as 

*3 2
*

B

2

12( )( 4) 6 sinh
12 ln

(1 )(1 ) 1

12 cos ,

z xz
x

Hh sh shd d
H p nk T

d sh d

R c

    


    

  

      
      

      

  

(5.20) 

where c is radial clearance, e is eccentricity and  (0 ≤   ≤ 1)is the eccentricity ratio . 

Introducing the dimensionless quantities 

* * 22
* B

2 3 3 2 2

6
, , , , , , ,x z z

x z

H H nc k Th c p
s sc h p

c R c c c R

  
   

   
      

            

(5.21) 

equation (5.20) reduces to  

* sinh
ln 12cos ,

d d
G p

d d


 

  

  
   

                                  

(5.22) 

where 
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3 212( ) ( 4)

1 (1 )(1 )

x z h sh sh
G

sh

   

 

  
 

                                         

(5.23)

 

and 

2 2(2 ) (2 ) (2 ),H kx R x kR H k R            
                     

(5.24)
 

0 0 0

B B B

(2 ) (2 ); ,
mH m m kR

kR
k T k T k T

  
             

                

(5.25)

 

where k is a quantity chosen to suit the dimensions of both sides of equation (5.24). 

It should be noted that the lubricant behaves as FF when there is an  effect of 

magnetic field. So, in order to define FF effect

 

0 <  < 2π.  

 

5.3 Solution 

Solving equation (5.22) under the boundary conditions  

0 when and 0 when 0
dp

p
d

  

   

                                 
(5.26) 

yields 

*

0

sinh sin
ln 12 .p d

G


 

 


  
                                        

(5.27)

 

If xW and zW are components of the load-carrying capacity W of the bearing, then 

2 2 ,x zW W W 
                                                      

(5.28)
 

where
 

2

0

sin 0,xW LR p d



  
2

0

cos ,zW LR p d


  
 

where L is length of the bearing.
 

Using (5.21) and (5.26), dimensionless load-carrying capacity can be obtained as 
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22 2
* *

3

0

sin
12 ,

Wc
W I d

LR G




 


    
 

therefore, 

2 2
* *

0

sin
12 ,W I d

G




   
                                            

(5.29) 

where 

2

*

0

1
sin coth

( ) .
(2 )

I d


 


   

  

 
 

  



                                    

(5.30)

 5.4   Results and discussion 

The results for the dimensionless load-carrying capacity W (given by equation (5.29)) 

are computed using Simpson’s one-third rule with the step size of π/5. The representative 

values of the different parameters taken in computations are as follows [9, 10].  

R = 0.002 m,  
Bk  = 1.38 × 1023 J (oK)1,    = 0.0075,  V = 1.02  1025 m3   

c = 2.5 × 105 m,  10.1s ,   
2

0 0.012 N s m  ,  H* = 0.00001 m, 0.25,x   

T = 297 oK, 25 1

0 1.75 10 J A mm    ,  11 210 mz
 , 

12 210 m ,x


11 2 410 / 3.951 A m02( ),k   

with the relations  

max0.3182( )ξ  , 
7

max0.3726 10 ( )k   . 

Also, for smaller values of  ,     
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1
coth 0ξ

ξ
  ,  

tanh
0.

tanh

ξ ξ

ξ ξ





 

Moreover,  

0 or2

1
( )sin coth

lim 0.
(2 ) 

   


  

 
  

  
  

The calculation of the order of magnetic field strength is shown below. 

From equation (5.24), 

2 5

max 3.95102 10H k   

3 11For (10 ), 10 / 3.95102, 0.0136.H O k     

In the present analysis, FF is controlled by radially VMF (given by equation (5.24)), 

whose strength (intensity) H2 is maximum at   . The order of magnetic field 

strength ( )O H for different values of k is shown in figure 5.3. It is observed that ( )O H  

increases with the increase of k whenever R is fixed. 

 The computed values of dimensionless load-carrying capacity W  for different 

parameters are displayed graphically in figures 5.4-5.7.  

The variation in W for different values of eccentricity ratio   is shown in figure 5.4 

for * 0.4.H   Three cases due to different permeabilities are discussed: x<z (anisotropic 

case: x = 6.40E04, z = 6.40E03), x=z (isotropic case: x = 6.40E03, z = 6.40E03), 

x>z (anisotropic case: x = 6.40E02, z = 6.40E03), where x and z are dimensionless 

permeability parameters in the x and z – directions, respectively. From the figure 5.4, it is 

observed that for the anisotropic case x<z and  x=z, the dimensionless load carrying 

capacity W increases significantly with the increase of  with almost the same behaviour. 

This behaviour is due to the formation of capillaries. For instance, in the anisotropic case of 
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x<z, permeability in the z direction is higher than the x direction. Therefore, formation 

of capillaries in the z direction, that is perpendicular to film region are higher than in the   x 

direction, that is parallel to outward radial direction. Hence, fluid easily flows to the film 

region, which results in to higher load carrying capacity W . The load carrying capacity 

W increases moderately with the increase of  for the anisotropic case x>z. The increase is 

almost linear. This is due to the fact that capillaries formation in the xdirection is higher 

than in the z  direction. Therefore, less fluid flows in to the film region. Thus, in this case 

porosity has no significant impact on the load carrying capacity. 

Figure 5.5 shows the variation of W  against the  variation of dimensionless porous 

thickness parameter * *( / )H H c  From the figure 5.5, it should be noted that increase of W  

for the anisotropic case x<z becomes more significant when the thickness of the porous 

matrix is thin. Here  = 0.7, x = 6.40E04 and z = 6.40E03 are fixed for this case. It is 

observed that as 
*H  increases, the load carrying capacity W decreases rapidly. 

 From the figure 5.6, it should be noted that dimensionless permeability parameter x 

has significant impact on W . Figure 5.6 shows the variation in W  against variation of 

dimensionless permeability parameter x when x<z for z = 6.40E03,  = 0.7 

and * 0.4.H   It is observed that  as we decrease the value of x the dimensionless load 

carrying capacity W  increases. This implies that load carrying capacity W can be increased 

by further decreasing the value of x < 6.40E04. 

 Figure 5.7 shows the variation in dimensionless load carrying capacity against the 

variation of dimensionless permeability parameter x when x>z  for z = 6.40E03,  = 0.7 

and 
* 0.4.H   Here, it should be noted that as x moves from 6.40E02 to 6.40E+02, there is 



16 | P a g e  

 

sudden decrease in dimensionless load carrying capacity W . This is due to the fact as 

discussed earlier that formation of capillaries in outward radial direction is higher than 

capillaries which are almost perpendicular to the film region. Therefore, capillaries in 

outward radial direction retains more fluid and hence fluid flows in the film region is less.  

5.5   Conclusions 

In this chapter the case of porous journal bearing is studied with the effects of squeeze 

velocity, anisotropic permeability and slip velocity. The modified Reynolds-Darcy equation 

for porous journal bearing is derived considering continuity equation in the film as well as 

porous region and by assuming the validity of the Darcy’s law in the porous region. The 

expression for dimensionless load-carrying capacity is obtained and studied for different 

parameters. The results and discussion shows the following observations. 

(1)  The order of magnetic field strength O (H) increases with the increase of k. 

The dimensionless load-carrying capacity W   

(2)   increases, in general, with the increase of eccentricity ratio  .  

(3)   performed best for the anisotropic case x<z  and then for isotropic case x=z, 

with the same behaviour. The increase rate of W is more significant for both the 

cases when 0.1.   

(4)  increases linearly and moderately with the increase of   for the anisotropic case 

x>z.  

(5)  increases with the decrease of dimensionless porous thickness parameter 
*H  for 

x<z.  

(6)   decreases rapidly with the increase of 
*H  for x<z. 

       (7)    increases with the decrease of x for x<z. 
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       (8)    decreases suddenly as x moves from 6.40E02 to 6.40E+02 for x>z . 

Thus, the dimensionless load-carrying capacity W  increases with the increase of 

eccentricity ratio   and the effect of magnetic field, and performed best for the anisotropic 

case x<z with the decrease of x for thin layer of porous matrix.   
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Figure 5.1.  Porous journal bearing. 
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Figure 5.2  Configuration of figure 5.1 opened up at O 

 

 

 

Figure 5.3 Order of magnetic field strength for different values of k 
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Figure 5.4 Variation in dimensionless load-carrying capacity W for different values of 

eccentricity ratio   for x<z (x = 6.40E04, z = 6.40E03), x=z       

(x = 6.40E03, z = 6.40E03), x>z (x = 6.40E02, z = 6.40E03) 

and * 0.4.H   

 

 

Figure 5.5 Variation in dimensionless load-carrying capacity W for different values of 

dimensionless porous thickness parameter * *( / )H H c  for  = 0.7, x = 

6.40E04, z = 6.40E03 
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Figure 5.6 Variation in dimensionless load-carrying capacity W for different values of 

dimensionless permeability parameter x when x<z (z = 6.40E03) and for  

= 0.7, * 0.4.H   
 

 

 

Figure 5.7 Variation in dimensionless load-carrying capacity W for different values of 

dimensionless permeability parameter x when x>z (z = 6.40E03) and for  

= 0.7, 
* 0.4.H   

 

 

 


