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Symbols 

c     radial clearance (m) 

C           dimensionless damping matrix defined in equation (6.54) 

1 1R RC       dimensionless radial principal damping 

1 1T TC       dimensionless tangential principal damping 

1 1 1 1
,R T T RC C  dimensionless cross-coupled damping coefficients 

DJ         journal diameter (m) 

e       eccentricity 

fR  dimensionless radial component of fluid film force defined in equation (6.36)     

 for  static case  

1Rf    dimensionless radial component of fluid film force defined in equation (6.51)     

 for dynamic case 

fT  dimensionless tangential component of fluid film force defined in equation (6.37)  

 for static case  

1Tf   dimensionless tangential component of fluid film force defined in equation (6.52) 

 for dynamic case 

f              dimensionless coefficient of friction on the journal defined in equation (6.42) 

F               frictional force on the journal defined in equation (6.40) (N) 

FF             ferrofluid 

F              dimensionless frictional force on the journal defined in equation (6.41) 

h                film thickness (m) 

h

t




            squeeze velocity of the journal, 1(m s )

 

H  dimensionless film thickness defined in equation (6.22) 
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H                magnetic field vector  

H              magnetic field strength (magnitude of H) (A m1) 

I                 sum of moments of inertia of the particles per unit volume (N s2 m2) 

Bk               Boltzmann’s constant (J 1o )K(  ) 

K             dimensionless stiffness matrix defined in equation (6.53) 

1 1R RK        dimensionless radial principal stiffness 

1 1T TK  dimensionless tangential principal stiffness 

1 1 1 1
,R T T RK K   dimensionless cross-coupled stiffness coefficients 

î , ĵ , k̂   unit vectors along the x, y, z  axis, respectively  

L length of the bearing in the y – direction (m) 

m               magnetic moment of a particle (A m2) 

M               magnetization vector 

M0              equilibrium magnetization (A m1) 

MF             magnetic fluid 

n                 number of magnetic particles per unit volume (m3)   

N  frequency of revolutions / s 

o        bearing center   

O         journal center  

p                 fluid pressure in the film region (N m2)  

P                dimensionless film pressure defined in equation (6.22) for static case 

P                dimensionless film pressure defined in equation (6.46) for dynamic case 
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q=(u, v, w) fluid velocity vector, where u , v, w  are components of the fluid in the x, y  

                    and z – directions, respectively 

 

RB            bearing radius (m) 

RJ   journal radius (m) 

S       Sommerfeld number 

S                   internal angular momentum (K m2 s1) 

t                  time (s)  

T                 temperature (oK) 

R, T radial and tangential co-ordinates (m) 

R1, T1 radial and tangential co-ordinates (m) 

R̂ , T̂  unit vectors along the R, T – axis, respectively 

1R̂ , 1T̂  unit vectors along the R1, T1 – axis, respectively 

U, W  velocities of the journal in the x and z – directions, respectively (m s1) 

W                 load-carrying capacity defined in equation (6.38) (N) 

W               dimensionless load-carrying capacity defined in equation (6.39) 

x, y, z Cartesian co-ordinates (m) 

w.r.t. with respect to 

Greek symbols 

/e c         bearing eccentricity ratio (0 1)    

 0                permeability of free space (N A2) 

                  viscosity of the suspension (N s m2) 

5
0 2
(1 )    Einstein viscosity relation 

0                 viscosity of the carrier liquid (N s m2) 
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   angular coordinate related to a fixed direction    

      Langevin’s parameter which is a measure of dimensionless field strength  

             volume concentration of the particles  

   attitude angle  

B                   Brownian relaxation time (Brownian rotational diffusion time) (s) 

s                magnetic moment relaxation time (s) 

   instantaneous load direction 

2 N        angular ( or rotational) velocity of the journal (rot s1) 

1
2

 v      local angular velocity of rotation of the fluid (rad s1) 
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6.1 Introduction   

Journal bearings consist of a shaft which rotates freely in a metal sleeve, known as 

bearing surface. The shaft and metal sleeve are separated by thin film of lubricant. It is used 

widely as indispensable bearings in industry because of superior vibration absorption quality, 

shock resistance, long life, low wear and good damping characteristics, for example, they are 

used in internal combustion engines, centrifugal pumps etc. 

Nada and Osman [1] studied Magnetic fluid (MF) lubricated finite hydrodynamic 

journal bearings using couple stress effect. The modified Reynolds equation is solved for 

different bearing characteristics. The results indicate the significant influence of couple 

stresses and magnetic effects on the bearing characteristics. Hsu et. al. [2] investigated long 

journal bearing for the combined effects of stochastic surface roughness using Ferrofluid (FF) 

lubricant. They showed that transverse and longitudinal roughnesses have opposite effects on 

the bearing characteristics. Hu and Xu [3] studied journal bearing using cohesion forces & 

couple stresses of MFs, and the effect of squeeze dynamics. The results show that 

dimensionless load-carrying capacity increases while friction coefficient decreases with the 

increase of squeeze parameter, cohesion force coefficient and couple stress parameter of the 

MF. Bhat et. al. [4] made comparative study of journal bearing with the use of conventional 

engine oil, FF and MR fluid as lubricant. The results show that frictional forces at the bearing 

surface are much higher when lubricated with magnetized MR fluid as compared to 

conventional oil.  

 The static and dynamic performances of FF lubricated long journal bearing using 

Shliomis model have been studied in this Chapter. The transverse uniform magnetic field is 

considered in this study. Modified Reynolds equation is derived using equation of continuity. 

For static case, dimensionless expressions for load-carrying capacity, frictional force and 
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coefficient of friction are studied. For dynamic case, dimensionless expressions for stiffness 

and damping coefficients are studied. 

6.2 Analysis 

The schematic diagram of the impermeable journal bearing with center o and radius 

RB, where journal is having center O and radius RJ, is shown in Figure 6.1. Here, the bearing 

surface is stationary.  Let the x and z  axis is along the circumference of the bearing at A and 

perpendicular to it, respectively. Let î  and k̂ be the unit vectors along the x  axis and z  

axis, respectively. Here, the journal bearing is lubricated with FF lubricant, whose flow 

behaviour is given by Shliomis model [5]. Let U and W be the velocities of the journal in the 

x and z – directions, respectively. The perpendicular distance between the journal surface and 

bearing surface is known as film thickness h = h (x, t) and is given by the approximate 

expression 

cos (1 cos ) [1 cos{ ( )}]; / ,h c e c c e c                                (6.1) 

where c is the radial clearance, e is the eccentricity,  is the angular coordinate related to a 

fixed direction  through the attitude angle    and the instantaneous load direction  , and 

(0 1)    is the bearing eccentricity ratio.  

Assuming steady flow, neglecting inertia and the second derivative of the internal 

angular momentum S, the basic FF flow equations using Shliomis model [1,6,7] are as 

follows.  

Equation of motion 

2 0
0+ ( ) ( )

2
p


        q M H M H 0                                 (6.2) 

Equation of magnetization for a strong magnetic field 

 

0 ( )
M

  M H H
H

 ;  
0 01

B

B sM

I




  



H

                                (6.3) 
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Equation of continuity 

                                         = 0q                                                  (6.4) 

 

Maxwell’s equations 

=H 0                                                                 (6.5) 

( ) 0  M H                                                            (6.6) 

where p is the fluid pressure in the film region, is the viscosity of the suspension, 

= ( , , )u v wq is the fluid velocity vector, 
0 is the permeability of the free space, M is the 

magnetization vector, H is the applied magnetic field vector, M0 is the equilibrium 

magnetization, H  is magnetic field strength, 1
2

 q   is the local angular velocity of 

rotation of the fluid, 
B  is the Brownian relaxation time, 

s is the magnetic moment 

relaxation time and I is the sum of moments of inertia of the particles per unit volume. 

For an axially symmetric flow under a uniform magnetic field 
0(0, 0, )HH  and 

defining the following quantities for a suspension of spherical particles [6, 7] 

1
0 B s

B B

3
(coth ) , , , , ,

6

m V I
M nm V τ

k T k T n


  
  


     

H
                     (6.7) 

equations (6.2), (6.3) yields 

                                              
2

2

0

1
,

5
1 (1 )

2

u p

z x
  

 


  
  

 

                                             (6.8) 

where  

3 tanh
,

2 tanh

 
 

 





                                                      (6.9) 

n is number of magnetic particles per unit volume, m is  magnetic moment of a particle, 
Bk  is 

the Boltzmann’s constant, T is the temperature,   is the volume concentration of the 
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particles,   is Langevin’s parameter which is a measure of dimensionless field strength and 

5
0 2
(1 )    (

0 is the viscosity of the carrier liquid) is the Einstein viscosity relation. 

Solving equation (6.8) for u using no-slip boundary conditions  

0 when 0 and whenu z u U z h                                   (6.10) 

yields 

2

0

.
5

2 1 (1 )
2

z hz p Uz
u

x h
  

 
 

 
  

 

                                       (6.11) 

Substituting equation (6.11) into the integral form of continuity equation (6.4) and 

integrated across the film thickness (0, h), yields  

3

0 Due to squeeze effectDue to wedge effect

6 6 12
5

1 (1 )
2

h p U h h
h U

x x x x t
  

 
     
    

           

                  (6.13) 

using Leibnitz’s rule, 
0 0w   (because bearing surface is stationary and impermeable), and 

squeeze velocity of the journal /W h t   (where t is time). 

 Decomposing velocities U and W in terms of rotation and translation yields 

                                                     ,r t r tU U U W W W    ,                                           (6.14) 

respectively. The direction of components
rU , 

tU  and 
tW are shown in figure 6.1 at B. 

 For Journal bearings [8] 

                                                            
3(10 )t

r

U
O

U

                                                     (6.15) 

and so 

                                                     rU U  and ,t

h
W W U

x


 


                                      (6.16) 

referring figure 6.1. 
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 Using equation (6.16), equation (6.13) becomes  

                                   
3

0

6 ( ) 12 .
5

1 (1 )
2

h p h
hU

x x x t
  

 
    
   

          

                       (6.17) 

 When journal is rotated with an angular velocity , then the position of the journal is 

moved to new position, say in (R, T) coordinate system centered at O (having unit vectors 

R̂ and T̂ , respectively) as shown in figure 6.1. Due to this movement, there is an existence of 

components of translational velocities e  and ( )e    measured along the line of centers 

oO  and perpendicular to it, respectively. Then the components of the translational velocity of 

the journal in the x and z – directions related with the components of the translational velocity 

as defined above ( e  and ( )e   , respectively) by  

sin ( )cos , cos ( )sin .t tU e e W e e                               (6.18) 

Using equations (6.1), (6.14) and (6.18), the first term of right hand side of equation 

(6.17) becomes 

6 ( ) 6 [ ( )]r thU h U U
x x

 
 

 
 

                                                       6 1 t
r

r

U
hU

x U

  
   

   
                                                                                                            

                                                                   6 1 sin cosJ

J

c
hR

x R

  
   

 

     
     

      

 

                                                              6 ,J

h
R

x






                                                     (6.19) 

which is good to order c/RJ, provided that , ande   are all of order  or smaller. 

Therefore, equation (6.17), using equations (6.1) and (6.19), becomes 
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3

0

6 12[ cos ( )sin ],
5

1 (1 )
2

J

h p h
R e e

x x x
    

  

 
   
     

         

          (6.20) 

which is the modified Reynolds equation for the present study. This equation can be used for 

the study of both static ( 0, 0, 0)e      and dynamic ( 0, 0, 0)e      performances of 

the bearings as discussed below. 

6.3 Static Performance  

In this case Reynolds equation (6.20) becomes 

                                    
3

0

5
6 1 (1 ) .

2
J

p h
h R

x x x
   

     
     

     
                                (6.21) 

Introducing the dimensionless quantities 

                                           
2

0

, , ,
J J

x h p
H P

R c R
N

c





  
 
 
 

                                      (6.22) 

equation (6.21), because of  constant uniform transverse magnetic field and under the 

assumption of constant viscosity, reduces to 

3 5
12 1 (1 ) ,

2

d dP dH
H

d d d
  

  

   
     

   
                                  (6.23) 

where 2 N  (N is frequency of revolutions / s),  H is the dimensionless film thickness and 

P is the dimensionless film pressure.  

Solving equation (6.23) for P using Sommerfeld boundary conditions with zero 

ambient pressure  

                                    0 when 0 and 0 when 2P P                                (6.24) 

yields 
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2

2

0

22 3

0 0

3

0

1

5 1 1
12 1 (1 ) .

2 1

d
H

P d d
H H

d
H



 





    



  
  

            
   
   


 



                (6.25) 

 Using Sommerfeld variable transform [9, 10] 

21
1 cos

1 cos


 

 


 


                                                 (6.26) 

Therefore, using equations (6.1), (6.22), and (6.26),   

      
2 1/2

1

(1 )
d

H







                                      (6.27) 

                                        
2 2 3 2

1 1
( sin )

(1 )
d

H
   


 

                                    (6.28) 

and 

                                   
2 2

3 2 5 2

1 1 sin 2
2 sin .

(1 ) 2 4
d

H

   
   



 
    

  
                 (6.29) 

Using equation (6.26), the boundaries  

0 0    and 2 2 .        

Therefore, using equations (6.27) - (6.29),  

2

2 1/2

0

1 2

(1 )
d

H








                                              (6.30) 

                           

2

2 2 3 2

0

1 2

(1 )
d

H








                                            (6.31) 

and 

                              

2 2

3 2 5 2

0

1 (2 )
.

(1 )
d

H


 







                                            (6.32) 

Using equations (6.28), (6.29), (6.31), (6.32), (6.25) becomes  
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2

2 2 3 2

5
12 1 (1 ) sin (2 cos )

2
.

(2 )(1 )
P

       

 

 
    

 
 

                         (6.33) 

Using equation (6.26), 

cos
cos

1 cos

 


 





 and 

2 1/2(1 ) sin
sin = ,

1 cos

 


 




                             (6.34) 

 therefore, equation (6.33) in terms of original variable   becomes 

                            
2 2

5
12 1 (1 ) sin (2 cos )

2
.

(2 )(1 cos )
P

      

  

 
   

 
 

                             (6.35) 

Using equations (6.1), (6.22) and (6.25), the dimensionless form of radial component 

of fluid film force is 

                                           

2

0

1
cos 0.

2
Rf P d



                                               (6.36) 

Similarly, using equations (6.1), (6.22), (6.25), (6.27)  (6.32), the dimensionless 

form of tangential component of fluid film force is 

                           

2
2

2 2 1 2

0

5
12 1 (1 )

1 12
sin ,

2 (2 )(1 )
Tf P d

S

    

 
 

 
  

   
                        (6.37) 

where S is Sommerfeld number. 

6.3.1 Calculation of bearing Characteristics 

(a) Load-carrying capacity  The load-carrying capacity is given by 

                                                 

2

2 2 1/2

0 ( ) ,J
J R T

R
W LD N f f

c


 
  

 
                                    (6.38) 

where DJ is the journal diameter and L length of the bearing in the y – direction. 

Using equations (6.36) and (6.37), the dimensionless form of W becomes 
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2

2 2 2 1 2

0

5
12 1 (1 )

2
.

(2 )(1 )
J

J

W
W

R
LD N

c

   

 


 
  

  
  

 
 

                         (6.39) 

(b) Frictional Force on the Journal The frictional force on the journal is given by 

22

2 0

.
JRL

z hL

u
F dxdy

z









                                               (6.40) 

Using equations (6.1), (6.11), (6.22), (6.30), (6.37), 2 N  and 
JU R  , the 

dimensionless form of F becomes 

2 2

2 2 1 2

0

5 4 (1 2 )
1 .

2 (2 )(1 )J J

cF
F

LNR D

 


  

 
   

  
                           (6.41) 

(c) Coefficient of Friction on the Journal The coefficient of friction on the journal in 

dimensionless form is given by  

21 2
.

3 (1 )

F
f

W



 


 


                                                  (6.42) 

6.4 Dynamic Performance  

Due to rotation of the journal, there is an existence of residual imbalance and due to 

this the journal center is not confined to a point but moves along some locus. Thus, the orbit 

frequency, amplitude, operating conditions, fluid-film characteristics, etc. determines the 

dynamic behaviour of the bearing system. 

In general, due to squeeze velocity and  lubricant forces (or there is a small 

unbalanced force on the journal) 0, 0, 0e     , the position of the journal is moved from 

its position in (R, T) coordinate system centered at O (as mentioned above) to new 

instantaneous position, say in 
1 1( , )R T coordinate system centered at ON  (having unit vectors 

1R̂ and 1T̂ , respectively) as shown in figure 6.2 (which is continuation of figure 6.1). Due to 
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this new position, there is change in eccentricity from e to 
Ne e e   and attitude angle 

from  to 
N    . Moreover, the components of the lubricant forces in radial direction fR 

and tangential direction fT in coordinate system (R, T) is related with the components of the 

lubricant forces in radial direction  
1Rf  and tangential direction  

1Tf  in new coordinate system 

1 1( , )R T by 

                   
1 1 1 1

1 1 1 1

2

3
2

(cos ) [cos ( )] (cos ) (sin )

[cos ( )] (cos ) (sin ) (cos )

R R T R T

T R T R T

f f f f f

f f f f f





   

   

        


        

                  (6.43) 

If 0  , then the increase in force components  
Rf  and 

Tf becomes 

                                                   
1 1

1 1

R R T R

T R T T

f f f f

f f f f





    


     

                                                (6.44) 

 Using Taylor series expansion for 
1Rf  and 

1Tf about static equilibrium position and 

neglecting higherorder terms, yields 

                              .

R R R R
T

R

T T T T T
R

f f f f
f

df de dee e

df f f d f f d
f

e e

 

 

 

      
           

         
                    

                       (6.45) 

Equation (6.20) with the dimensionless quantities 

2

0

, ,
2

1
J J

x h p
H P

R c R
N

c







  
  
  

   

                               (6.46) 

becomes 

3 5 24
1 (1 ) 12 sin cos ,

2 2
1

P
H


    

  




 
 

                   
  

   

            (6.47) 

using equation (6.1), 2 N  , constant uniform transverse magnetic field and under the 

assumption of constant viscosity, considering only the radial component (that is, component 
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in the direction of oO ), and neglecting 2 /   for wedge effect since for wedge effect more 

concentration is given on rotational velocity of the journal rather than whirling motion of the 

journal. 

Solving equation (6.47) for P using Sommerfeld boundary conditions with zero 

ambient pressure  

                                    0 when 0 and 0 when 2P P                                 (6.48) 

yields 

2

2

0

22 3 3

0 0 0
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




                                            


  



   (6.49) 

using equations (6.1) and (6.46). 

 Using equations (6.28), (6.29), (6.31), (6.32), (6.34) and referring [10], equation 

(6.49) becomes 

2 2 2 2

5 sin (2 cos ) 1 1 1
12 1 (1 ) .

2 (2 )(1 cos ) (1 cos ) (1 ) 2
1

P


      

       



  
    
         

             

 (6.50) 

Using equations (6.1), (6.30)-(6.32) and (6.50), the dimensionless form of radial 

component of fluid film force is 

                            
1

2
2

2 3 2

0

5
12 1 (1 )

1 2
cos .

2 (1 ) 2
1

Rf P d


  
 

 



   
    

     
   

 

                       (6.51) 

Similarly, using equations (6.1), (6.30) - (6.32), (6.46), (6.50) and referring [10], the 

dimensionless form of tangential component of fluid film force is 
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1

2
2

2 2 1 2

0

5
12 1 (1 )

1 2
sin .

2 (2 )(1 )
Tf P d

    

 
 

 
  

  
                                 (6.52) 

6.4.1 Calculation of the dimensionless stiffness matrix K and  

 damping  matrix C 

  According to [8], and using equations (6.45), (6.51), (6.52), the dimensionless 

form of the stiffness matrix K and damping matrix C are given by 

1 1 1

1 1 1 1

1 1 1 1 1 1 1

R R T

R R R T

T R T T T T R

f f f

K K
K

K K f f f

   

   

  
       

      
  

                                    (6.53) 

and  

                                      

1 1

1 1 1 1

1 1 1 1 1 1

2

( )
,

2

( )

R R

R R R T

T R T T T T

f f

C C
C

C C f f

  
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 
      

     
  

                                   (6.54) 

respectively.  

It should be noted that the above two matrices can be found out for all forces and their 

derivatives which are evaluated under the conditions of static equilibrium. Moreover, the rate 

of change of 
Rf  with respect to   can be evaluated at arbitrary value of  (say zero). 

 Using (6.51)-(6.54), 
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           (6.55) 

and 
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                   (6.56) 

6.5 Results and Discussion 

The representative values of the different parameters taken in computations are as 

follows [11].  

 = 22/7,  = 0.0075, 25 1

0 1.75 10 (J A m),m     

H  105 (A m1),  
Bk  = 1.38 × 1023 J (oK)1,  T = 297 (oK),  

Also, for smaller values of  ,     

3 tanh
0.

2 tanh

 
 

 


 


 

Effect of variation of the eccentricity ratio (0 1)   on different dimensionless 

bearing characteristics for static and dynamic cases, is shown in figures 6.3-6.9.  

Case 1: Effect of FF lubricant with an applied transverse magnetic field:  = 0.0075,                  

 = 0.006981701344650 (which indicates the effects of volume concentration of the magnetic 

particles in the magnetic suspension as well as applied magnetic field on FF) 

Case 2: Effect of conventional lubricant:  = 0.0,  = 0.0 (which indicates no effects of 

volume concentration of the magnetic particles in the magnetic suspension as well as no 

applied magnetic field on FF) 



19 | P a g e  

 

 Case 3: Effect of FF lubricant without applied magnetic field:  = 0.0075,  = 0.0 (which 

indicates the effects of volume concentration of the magnetic particles in the magnetic 

suspension without applied magnetic field – the case of  FF lubricant without magnetic field 

effect) 

Figure 6.3 shows the variation in dimensionless load-carrying capacity W against the 

variation in the eccentricity ratio   for both Case 1(solid line) and Case 2 (dotted line). In 

general, it is observed that with the increasing value of  from 0.1 to 0.9, W  increases for 

both the Case1 and Case2 but because of FF as lubricant W  increase significantly (Case 1) 

than conventional lubricant (Case 2). Moreover, as compared to conventional lubricant, the 

growth rate of W  is continuously increasing with the increasing values of    from 0.1 to 0.9. 

This behaviour of W  is in contrast to the behaviour obtained in [12], in which, with the 

increasing values of   from 0.1 to 0.9, the effect of FF on W is reduced and become zero 

when 0.6.   

Figure 6.4 shows the variation in dimensionless frictional force F  against the 

variation of eccentricity ratio . It is observed from the expression (equation (6.41)) of F  

that there is no effect of magnetic field parameter  on  F . In this figure, there are two curves 

– one for  = 0.0075 (solid line) and second for  = 0.0 (dotted line). It shows, in general, 

that with the increasing value of , F  increases. However, the increase in the values of F is 

negligible for FF lubricant which may be due to slightly increase in the viscosity of FF 

lubricant than conventional lubricant. 

Figure 6.5 shows the variation in dimensionless coefficient of friction f  against the 

variation of eccentricity ratio .  Two curves one for  = 0.006981701344650  (solid line)  
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and second for  = 0 (dotted line) are shown in this figure. In general, it is observed that f  

decreases with the increasing values of . Moreover, the behaviour of f is almost same for 

both the curve as the two curves almost coincide over each other. 

The variation in dimensionless stiffness coefficients 
1 1R TK  and 

1 1T RK for different 

values of eccentricity ratio   is shown in figures 6.6 and 6.7, respectively, for Case 1 (solid 

line) and Case 2 (dotted line). It is observed, in general, that both 
1 1R TK  and 

1 1T RK increases 

with the increasing values of . Moreover, the effect of FF lubricant is more significant when 

  moves from 0.1 to 0.9 as compared to conventional lubricant.  

Figures 6.8 and 6.9 shows the variation in dimensionless damping coefficient 
1 1R RC  

and 
1 1T TC , respectively, for different values of eccentricity ratio   for Case 1(solid line) and 

Case 2 (dotted line). It is observed, in general, that both 
1 1R RC and 

1 1T TC  increases with the 

increasing values of ; that means, 
1 1R RC and 

1 1T TC  decreases with the increasing values of . It 

is also observed that effect of FF lubricant is more significant when   moves from 0.1 to 0.9 

as compared to conventional lubricant.  

6.6 Conclusions 

This chapter deals with the study of static and dynamic performances of FF lubricated 

long journal bearing. Using equation of motion of FF given by Shliomis [5] and equation of 

continuity, modified Reynolds equation is derived. The dimensionless expressions for load-

carrying capacity (W ), frictional force ( F ) and coefficient of friction ( f ) are studied for 

static case, while the dimensionless expressions for stiffness coefficients (
1 1R TK and 

1 1T RK ) 

and damping coefficients (
1 1R RC and

1 1T TC ) are studied for dynamic case.  
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The results conclude the following. 

1.  W  increases with the increasing values of eccentricity ratio , and the effects of FF 

lubricant in the presence of magnetic field is more significant than conventional lubricant. 

2.  F  increases with the increasing values of . However, there is almost negligible 

difference between the values of F  for  = 0.0075 and  = 0.0. 

3. f  decreases with the increasing values of , and the effects of FF lubricant in the presence 

of magnetic field is almost same as that of conventional lubricant. 

4.  All coefficients 
1 1R TK , 

1 1T RK , 
1 1R RC and 

1 1T TC  increases with the increasing values of . 

In all cases effect of FF lubricant is more significant when   moves from 0.1 to 0.9 as 

compared to conventional lubricant.  

Thus, FF lubricant in the presence of a transverse uniform magnetic field leads to an 

added advantage of higher load-carrying capacity without significantly increases in the 

frictional force. Moreover, comparing with conventional lubricant the bearing performance is 

significantly modified with the use of FF lubricant. 
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Figure 6.1   Journal bearing 
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Figure 6.2 Force decomposition in Journal bearing (which is continuation of Figure 6.1) 
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Figure 6.3 Variation in dimensionless load-carrying capacity W for different values of 

                   eccentricity ratio   for Case 1 (solid line) and Case 2 (dotted line) 

 

 

 

 

 
 

Figure 6.4  Variation in dimensionless frictional force F  for different values of 

                    eccentricity ratio   for  = 0.0075 (solid line) and  = 0.0 (dotted line) 
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Figure 6.5    Variation in dimensionless coefficient of friction f  for different values of 

                      eccentricity ratio   for  = 0.006981701344650 (solid line) and  = 0  

                      (dotted line) considering  = 0.0075 

 

 

 

 

 
 

Figure 6.6 Variation in dimensionless stiffness coefficient 
1 1R TK for different values of 

                   eccentricity ratio  for Case 1(solid line) and Case 2 (dotted line) 
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Figure6.7  Variation in dimensionless stiffness coefficient 
1 1T RK for different values of 

                   eccentricity ratio  for Case 1(solid line) and Case 2 (dotted line) 

 

 

 

 

 

 
 

 

Figure 6.8  Variation in dimensionless damping coefficient 
1 1R RC  for different values of 

                    eccentricity ratio  for Case 1(solid line) and Case 2 (dotted line) 
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Figure 6.9  Variation in dimensionless damping coefficient 
1 1T TC for different values of 

                    eccentricity ratio  for Case 1(solid line) and Case 2 (dotted line) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


