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Symbols 

 

p fluid pressure (as in (2.1)) (N m2) 

 density of fluid  (Ns2 m4) 

k        permeability in porous material (m2) 

P           pressure in porous region (as in (2.3)) (N m2) 

V           average velocity in porous material (m s1) 

q        fluid velocity vector 

, ,u v w   velocity components along the x, y, z  directions, respectively. 

H       magnetic field vector 

H       magnitude of the magnetic field (amp m1) 

m       magnetic moment 

M      magnetization vector 

M       magnitude of magnetization (amp m1) 

B       magnetic induction/flux vector (weber  m2) 

Greek symbols 

         fluid viscosity  (Ns m2) 

          shear stress (N m2) 

       magnetic permeability 

       magnetic susceptibility 

0  free space permeability 

        angular velocity vector 
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This chapter mainly deals with the brief introduction of various physico-mathematical 

concepts which are necessary to understand subsequent chapters. The materials are taken 

from various sources [1-22]. 

2.1 Basic Definitions  

 
 Def. 2.1.1 (Fluid) 

A fluid is a substance which is capable of flowing and deforms continuously without limit 

under the action of tangential force or shearing force. This continuous deformation under the 

application of tangential or shearing forces causes fluid to flow.   

 

Figure 2.1 

Def. 2.1.2 (Pressure and Shear stress)     

Pressure is defined as force per unit area.  

Mathematically, 

0
lim
A

F dF
p

A dA




 

                                                    
(2.1)

 

where F is a force acting normally on small area A . 

The unit of pressure is N m2. 

 If a force F acting tangent to the small area A , then (2.1) defines shear stress. It is 

defined by  . The shear stress is responsible for fluid motion. 

Def. 2.1.3 (Viscosity)     

The viscosity of a fluid is a measure of its resistance to flow. The resistance arising from 

intermolecular forces and  internal friction. 
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The unit of viscosity is  Ns m2.  

Thick fluids (such as oil) have relatively high viscosity than thin fluids (such as water).  

Def. 2.1.4 (Density)     

The mass density ρ of a fluid is the mass of a unit volume of the fluid.  

Mathematically,  

0
lim ,
v

m

v







                                                       
(2.2)

 

where m  is the small elemental mass, and v  is the volume of the small elemental mass. 

The unit of density is Ns2 m4. 

Def. 2.1.5 (Compressible Fluids)     

These are the fluids in which the density of the fluid changes from point to point or in other 

words the density is not constant. 

 Def. 2.1.6 (Incompressible Fluids)     

These are the fluids in which the density of the fluid is constant. 

Def. 2.1.7 (Surface Tension)     

It is defined as the tensile force acting on the surface of a liquid when the liquid is in contact 

with a gas. It is also defined on the surface between two immiscible liquids such that the 

contact surface behaves like a membrane under tension.  

The unit of surface tension is N m2. 

Def. 2.1.8 (Ideal Fluids/Inviscid Fluids)    

These are the fluids which have no viscosity, surface tension and are incompressible. Since 

there is no viscosity, there is no shear stress between adjacent fluid layers, and that between 

the fluid layers and the boundary. Only normal stresses can exist in an ideal fluid flow.  
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 Def. 2.1.9 (Real Fluids/Viscous Fluids/Practical Fluids) 

These are the fluids which possesses properties like viscosity, surface tension and 

compressibility. Due to existence of viscosity shear stress comes into play when fluids are in 

motion. These fluids are actually available in nature.  

Def. 2.1.10 (Shear Strain) 

 

Figure 2.2 

The shear strain is the rate of angular deformation of fluid element when the fluid element 

lies within the range of viscous influence. For a unidirectional flow it can be expressed as         

u

z




,
 
where u  is the velocity of upper edge of the rectangular fluid element and z is the 

width of fluid element.  

Mathematically, 

0
lim .
z

u du

z dz 





 

Def. 2.1.11 (Newtonian and Non-Newtonian Fluids) 

In Newtonian fluids, 

Shear stress    Rate of shear strain. 

For example, Glycerin, silicone oils, air, gases, etc.  

In Non-Newtonian fluids above relation will not follow. 
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For example, slurries, tooth paste, gel, etc.  

Def. 2.1.12 (Porous Medium) 

When the solid particles are loosely arranged in a medium, then it is called a porous medium. 

For example, natural soil or sand, etc. 

 

Figure 2.3 

Def. 2.1.13 (Porosity) 

It is a measure of void spaces in a medium. It is defined as the ratio of pore (void space) 

volume to the total volume (including solid and void spaces) of a medium. It is a 

dimensionless quantity. 

Def. 2.1.14 (Permeability) 

It is a measure of how easily fluid flows through porous media.   

The unit of permeability is m2. 

Def. 2.1.15 (Darcy’s Law) 

Darcy in 1956 governs the law regarding the flow of fluids through porous material. 

According to this law, the space averaged velocity (Darcian Velocity) V in the porous 

material is given by 

                     

,
k

V P


  

                                                          

(2.3)
 

where k ,   and P are the  permeability, viscosity and pressure in the porous region, 

respectively.  
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The negative sign indicates that the flow is in the direction of decreasing pressure. 

Def. 2.1.16 (The No-Slip Boundary Condition) 

When a viscous fluid flows along a solid surface, the fluid element adjacent to the surface 

attain the velocity of the surface; in other words the relative velocity of the solid surface and 

the adjacent fluid particles is zero. This phenomenon is known as no-slip condition.  

2.2      Types of Flows 

 
In general, the flow velocity and other hydrodynamic parameters like pressure and density 

may vary from one point to another at any instant, and also from one instant to another at a 

fixed point. According to the type of variations, different categories of flows are described as 

follows. 

 Laminar /Stream Line/Viscous Flows  

This type of flow is characterized by a smooth flow of one lamina of fluid over another. This 

type of flow occurs when flow is having low velocity or for the liquids having a high 

viscosity.  

 Turbulent Flows  

These are the flows where fluid moving in a erratic and unpredictable way (i.e. zig-zag way). 

For example, flow of a river. 

 Rotational and Irrotational Flows  

Rotational flows are the flows where the fluid particles while moving in the direction of flow 

rotate about their mass centers. 

 Irrotational flows are the flows in which the fluid particles do not rotate about their 

own axis. 

 Steady and Unsteady Flows 

Steady flows are the flows where the fluid characteristics like  velocity, pressure, density, etc. 

at a point do not change with respect to time.  
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Mathematically, 

0 0 0( , , )

0,
x y zt

 
 

 

q
   

0 0 0( , , )

0,
x y z

p

t

 
 

 
   

0 0 0( , , )

0,
x y zt

 
 

 
 

 where q is the fluid velocity, p is fluid pressure and  is fluid density and ),,( 000 zyx is a 

fixed point in flow field.  

 When fluid characteristics like velocity, pressure, density,  etc. at a point changes with 

respect to time, then the flow is called unsteady flow.  

Mathematically,  

0 0 0( , , )

0,
x y zt

 
 

 

q
   

0 0 0( , , )

0,
x y z

p

t

 
 

 
    

0 0 0( , , )

0

x y z
t

 
 

 
 

 Uniform and Nonuniform Flows 

Uniform flows are those type of flows where the flow parameters like pressure, velocity, 

density, etc. at given time do not change with respect to space (length of direction of flow). 

Mathematically, 

constant

0,
t

p

s 

 
 

 
  ,0

constant














ts

q
  

constant

0
ts





 
 

 
 . 

 Nonuniform flows are the flows where parameters like pressure, velocity, density etc. 

at a given time change with respect to space (length of direction of flow). 

 Mathematically, 

constant

0,
t

p

s 

 
 

 
   ,0

constant














ts

q
    0

s constantt
















. 

 Compressible and Incompressible Flows 

When the density changes are appreciable, then the flow is called compressible otherwise it is 

called incompressible flow. 
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2.3   Fundamental Equations of Fluid Dynamics 

 
2.3.1  Material Derivative and Acceleration 

 
Let the position of a particle at any instant t in a flow field be given by the space coordinates 

(x, y, z) with respect to a rectangular Cartesian frame of reference. The velocity components  

u, v, w of the particle along the x, y and z directions, respectively, can then be written in the 

Eulerian form as 

( , , , )

( , , , )

( , , , )

u u x y z t

v v x y z t

w w x y z t







 

 At any infinitesimal time interval t , let the particle move to a new position given by 

the coordinates ( , , )x x y y z z   , and its velocity components are given by 

,u u v v  and +w w .  Therefore,  

( , , , )

( , , , )

( , , , )

u u u x x y y z z t t

v v v x x y y z z t t

w w w x x y y z z t t

     

     

     

 

 Using Taylor series for right hand side of the above equations, 

( , , , ) higher order termsin , , ,

( , , , ) higher order termsin , , ,

( , , , ) higher orde

u u u u
u u u x y z t x y z t x y z t

x y z t

v v v v
v v v x y z t x y z t x y z t

x y z t

w w w w
w w w x y z t x y z t

x y z t

   
               

   

   
               

   

   
           

   
r termsin , , ,x y z t   

 

 Simplifying the above equations, dividing both side by t  and neglecting higher 

order terms in , ,x y z   and t , we get 
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u u u u u
u v w

t x y z t

v v v v v
u v w

t x y z t

w w w w w
u v w

t x y z t

    
   

    

    
   

    

    
   

    

 

 Considering the limiting forms of the equations, we have 

Du u u u u
u v w

Dt t x y z

Dv v v v v
u v w

Dt t x y z

Dw w w w w
u v w

Dt t x y z

   
   
   

   
   
   

   
   
   

 

(2.4) 

            From the above equations,  

D
u v w

Dt t x y z

   
   
   

 .                                                 (2.5) 

 Here, 
D

Dt
 is called the total differential with respect to time. The first term   

t



  
on 

the right hand side is called temporal or local derivative and the last three terms are together 

known as convective derivative. 

 From equation (2.4), the components of material or substantial acceleration are given 

as 

x

y

z

Du u u u u
a u v w

Dt t x y z

Dv v v v v
a u v w

Dt t x y z

Dw w w w w
a u v w

Dt t x y z

   
    

   

   
    

   

   
    

   
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Thus, 

             Material or substantial acceleration 

                        = Temporal (or local acceleration) + Convective acceleration 

 Similarly, the components of acceleration in cylindrical polar coordinate system can 

be written as 

2 2

r r r r r
r r z

r r
r z

z z z z z
z r z

v v vDv v v v v
a v v

Dt r t r r z r

Dv v v v v v v v v v
a v v

Dt r t r r z r

vDv v v v v
a v v

Dt t r r z

  

       










   
      

   

   
      

   

   
    

   

 

where the term 
2v

r

  in the radial component appears due to an inward radial acceleration 

arising from a change in the direction of v  (velocity component in the azimuthal         

direction  ). This is known as centripetal acceleration. The term rv v

r

  represents a 

component of acceleration in azimuthal direction caused by a change in direction of 
rv        

with   . 

2.3.2  Angular Velocity Vector 

 
In Cartesian coordinate system, considering u, v, w as the components of flow velocities in x, 

y, z directions respectively. Then the components of angular velocity are given as 

1

2

1

2

1

2

xy z

yz x

zx y

v u

x y

w v

y z

u w

z x

  
     

  

  
     

  

  
     

  

 

where xy  represents rotation in xy-plane which is equivalent to say z ,  which represents 

rotation  with respect to the z-axis.  Similarly  yz  represents rotation in yz-plane which is 
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equivalent to say  
x ,  which represents rotation with respect to the x-axis and 

zx represents 

rotation in zx-plane which is equivalent to say  y ,  which represents rotation with respect to 

the y-axis. Therefore, the angular velocity of fluid flow is represented by a vector as 

ˆ ˆ ˆ

1 1 1ˆ ˆ ˆ
2 2 2

1 ˆ ˆ ˆ
2

ˆ ˆ ˆ

1

2

1
( )

2

x y z

w v u w v u

y z z x x y

w v u w v u

y z z x x y

x y z

u v w

   

         
         

         

          
          

          

  


  

 

i j k

i j k

i j k

i j k

q









 

 

where ( , , )u v wq is a flow velocity vector, the quantity q  is known as the vorticity of 

flow, which is a mathematical measure of rotationalities in the flow field. 

When  q 0  , then the flow is said to be irrotational. 

 
2.3.3  Derivation of Continuity Equation 
 

 

Figure 2.4 
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Consider a small fluid element of parallelopiped shape in the flow having density  as shown 

in the figure 2.4.  Consider the flow along the y-direction. Let the fluid enter across the face 

ABCD with a velocity v. Therefore, the mass of fluid entering the control volume (CV) along 

through the face ABCD is given by 

( )in ym v x z  
                                                         

(2.6)
 

 The mass of fluid leaving the control volume through face EFGH is given by 

( ) ( ) ( ) higher order term(h.o.t.) of 

= z+ ( ) y z h.o.t.

out y y in y in ym m m y y
y

v x v x
y

 




    




     

 (Using (2.6))

 

 Hence, the rate at which mass accumulates due to flow in the y direction, neglecting 

higher order terms, is 

( ) ( ) ( )in y out y ym m v x y z
y



     

                                         
(2.7)

 

 Similarly, the rate at which mass accumulates due to flow in the xdirection is 

( ) ( ) ( ) ,in x out x xm m u x y z
x



     

                                       

(2.8)

 

and the rate at which mass accumulates due to flow in the z direction is 

( ) ( ) ( ) .in z out z zm m w x y z
z



     

                                        
(2.9)

 

But  

( ) ( ) .in out CVm m m x y z x y z
t t t




  
         

                           
(2.10)

 

 Using equations (2.7), (2.8), (2.9) into (2.10) we obtained, 

( )u x y z
x



   


( )v x y z
y



   


( )w x y z
z



   


= x y z
t


  


 

                 

( ) ( ) ( ) 0.u v w x y z
t x y z


  

    
        

      
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 Taking  limit as , , 0x y z     

            

( ) ( ) ( ) 0,u v w
t x y z


  

   
   

                                     

(2.11)
 

which is valid for any size of control volume. 

 The vector form of this continuity equation is 

ˆ ˆ ˆ( ) 0, where u v w
t





 


q q = i + j+ k

 

 For incompressible fluid,  

0.q =
 

2.3.4  Derivation of Navier-Stokes Equation 

 
Consider an infinitely small parallelepiped of fluid element as shown in figure 2.5 in a fluid 

motion. Let the parallelepiped is having sides , andx y z    along Cartesian coordinate axes 

in x, y and z respectively. 

 

Figure 2.5 

 Then the forces acting on the fluid element are as follows.  
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In the following, the detailed calculation of forces acting in the ydirection is shown. The 

forces acting in the x and zdirections  written  similarly. 

(i) Normal forces due to pressure  

  

p p
p x z p y x z x y z

y y

  
            

  
.

                                 

(2.11) 

(ii) Body forces due to gravity   

The body force per unit mass of the fluid in the y direction is given by    

,y ym g g x y z     
                                                    

(2.12) 

where 
yg  is component of gravitational force or body force g  in the  y  directions. 

 

(iii) Inertia forces  

 The inertia force on the fluid mass along the ydirection is given by      

 
mass acceleration

dv
x y z

dt
    

                                            
(2.13) 

(iv) Shear forces  

Let 
xS , 

yS and 
zS  be the viscous forces in the x, y and zdirections, respectively. Then, the 

shear force acting on the parallelepiped along the y direction is given by      

.yS x y z  
                                                             

(2.14)
 

According to Newton’s second law of the motion, and using (2.11)-(2.14), 

  +    y y

p dv
x y z g ρ x y z S ρ x y z ρ x y z

y dt


              


 

1
  .y y

p dv
g S

ρ y dt


  

                                                

(2.15)

 

Similarly,  
xg  and zg can be obtained as follows.                
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1 1
  ,  .x x z z

p du p dw
g S g S

ρ x dt ρ z dt

 
     

                                 

(2.16)

 

Now, the values of   ,  x yS S and  zS can be obtained as under.  

The shear forces acting on the face ABCD and EFGH are given by respectively  

  
v

x z
y




  


 

and 

2

2
  +   

v v v
v y x z y x z.

y y y y
 

    
         

        

Therefore, the resultant force acting along the y direction is given by  

2 2

2 2
  +   z

v v v v
x z y x x y z

y y y y
  

    
           

                              

(2.17) 

Similarly, the ycomponents of resultant shear force acting on the faces CDHG, ABFE and 

BCGF, ADHE are given by respectively  
 
 

 

2

2
 ,

v
x y z

x



  

                                                        

(2.18) 

and
  

 

2

2
.

v
x y z

z



  
                                                        

(2.19) 

Using equations (2.17) - (2.19),  

       

2 2 2 2 2 2

2 2 2 2 2 2

v v v v v v
x y z x y z x y z x y z

x y z x y z
   

      
                 

        

Therefore, the shear force per unit mass is obtained as  

2 2 2

2 2 2
 .y

v v v
S

ρ x y z

    
   

     

Similarly,  
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2 2 2 2 2 2

2 2 2 2 2 2
 and  .x z

u u u w w w
S S

ρ x y z ρ x y z

         
        

          

Putting these values of   ,xS
yS and  

zS  in equations (2.15) and (2.16), we get  

 

2 2 2

2 2 2

1
  ,x

p du u u u
g

ρ x dt ρ x y z

     
     

                                            

(2.20)

 

2 2 2

2 2 2

1
   ,y

p dv v v v
g

ρ y dt ρ x y z

     
     

                                            

(2.21)

 

and  

   
2 2 2

2 2 2

1
  .z

p dw w w w
g

ρ z dt ρ x y z

     
     

                                           

(2.22)

 

Equations (2.20) - (2.22) are called Navier-Stokes Equations for viscous flow. 

  Vector form of the Navier-Stokes Equations is 

 

2ρ ρ
D

p ,
Dt

    
q

g q
                                             

(2.23) 

where 

ˆ ˆ ˆwhere . 
D

u v w
Dt t


  


q q = i + j+ k  
 

In general, 

2D
p

Dt
     

q
F q ,

                                                   
(2.24)

 

where F is the body force in general. 

 

 

2.4   Basic Idea and Types of Bearings 

 

 A bearing is a system of machine elements. It is used to support an applied load by reducing 

friction between the upper and lower surfaces. The moving surfaces (upper or lower) in 

machinery involve relative sliding or rolling motion. Examples of relative motion are linear 
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sliding motion (such as in machine tools) and rotation motion ( such as in motor vehicle 

wheels). Most bearings are used to support rotating shafts in machines. All the forces on the 

shaft must be supported by the bearing  and the forces on the bearing is referred to as bearing 

load.  

The load on the shaft can be divided into radial and axial components. The axial 

component, also known as thrust load, is in the direction of the shaft axis. Whereas radial 

load component is in the direction normal to the shaft axis.  

  If the bearing supports a radial load, it is called radial or journal bearing. If the 

bearing supports a thrust or axial load, it is called thrust bearing and if bearing supports both 

radial and axial load it is called conical bearing.  

2.4.1 Rolling Element Bearings 

 

The main feature of this type of bearing is rolling motion. This bearing involves less friction 

and wear. 

 For examples ball bearings or cylindrical rolling-element bearings.  

2.4.2   Hydrodynamic Bearings  

In these type of bearings, sliding surfaces are completely separated by fluid film. To support 

the bearing load, the fluid film is maintained at high pressure. This mechanism is known as 

thin film of lubrication. The pressure in the lubrication film is generated by hydrodynamic 

action due to the rapid relative motion of the sliding surfaces. The film behaves like a viscous 

wedge and because of this high pressure is generated and hence load-carrying capacity. Also 

wear is prevented because of complete separation of sliding surfaces. 

 

2.4.3   Hydrostatic Bearings 

 

In these type of bearings two sliding surfaces are separated by a film which is maintained by 

very high pressure. The pressure is generated in this film by an external pump.  The fluid 
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under this high pressure carries the high load and preventing the very high friction and wear. 

Because of the pressure generated by external pump this type of bearing is costly compare to 

the other bearing. 

2.4.4   Electromagnetic Bearings  

In these type of bearings, magnetic force is used to support the load. Several electromagnets 

are attached on the two sliding surfaces. The load carrying capacity is generated with the help 

of magnetic field. With the help of active feedback control, two sliding surfaces can be 

separated and wear is completely prevented. These type of bearings are under developmental 

stage. 

2.5 Types of Lubrication 

 

There are different types of lubrication which are as under. 

2.5.1   Hydrodynamic (Fluid Film) Lubrication  

Here, two surfaces in motion are completely separated by thin fluid film of lubricant, that is 

surface to surface contact is completely avoided by lubricant film. In this type of lubrication, 

certain minimum speed of the mating surfaces are required to generate the pressure in the 

lubricant film. 

2.5.2   Boundary Lubrication 

 

In this type of lubrication, thin fluid film between the two surfaces is not sufficient and it 

cannot prevent the surface asperities from striking with each other. Of course, this contacts 

are occasional, for instance during the start or stop of the bearing operation, during short 

supply of lubricant for some unexpected reason.     

 

2.5.3   Elasto-Hydrodynamic Lubrication 

 

In this type of lubrication, due to high pressure distribution in the fluid film there is an elastic 

deformation in the contact area between surfaces. The pressure in this case is much higher 
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than regular hydrodynamic bearings. While machine is in operation, the viscosity of the 

lubricant film increases and elasto-hydrodynamic film is generated between two surfaces 

which are in relative motion, as a result of their deforming elastically against the build up of 

oil pressure. 

2.5.4   Hydrostatic Lubrication  

Hydrostatic lubrication consists in pushing lubricant between two surfaces which are in 

relative motion by an external pressurization system. This can be used when the 

hydrodynamic lubrication is not very effective. Since any contact is prevented between 

surfaces which are in relative motion, hydrostatic lubrication produces some favourable 

effects, especially very low friction when the relative velocity of the surfaces is low.  

2.6 Derivation of Generalized Reynolds Equation  

 
The Reynolds equation is the mathematical statement of the classical theory of lubrication 

and it was formulated by Osborne Reynolds. 

 

Figure 2.6 

Using equations (2.20), (2.21) under the standard assumptions, yields 
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2

2

p u

x z


 


 
 and    

2

2

p v

y z


 


 
 

Solving            

2

2

u p

z x

 


 

 

implies         

2

1 2

1

2

p
u z c z c

x


  


 .                                            (2.25)                     

Also solving                

2

2

v p

z y

 


 

 

implies             

2

3 4

1

2

p
v z c z c

y


  

                                             

(2.26) 

Here 
1c ,

2c ,
3c ,

4c  are either constants or at most, functions of x and y.  

Using  boundary conditions for u and v as 

, 0 at 0
1

, 0 at
2

u U v z

u U v z h

  

  
 

equations (2.25) and (2.26) become, 

2

1 2

1
( ) 1

2

p z z
u z hz U U

x h h

  
     

  
                         (2.27)                                                                             

          

2 1
( )

2

p
v z hz

y


 


                                                                (2.28)                                          

where U1 and U2 represent the velocity of the bearing surfaces. 

Substituting the value of equation (2.27) and (2.28) in the equation of continuity 

w u v

z x y

  
  

  
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and integrating it across the film thickness (0, )h , 

0

0 0

( )

h h

h u v
w dz dz

x y

 
  

    

Using the Leibnitz’s rule for integration, 

3 3

1 2
0 1 2

( )1 1 1
( )

12 12 2 2
h

U Uh p h p h h
w w U U

x x y y x x 

         
        

        
 

3 3

1 2
1 2 0

Represents the
stretch effect

( )
6( ) 6 12( )

Represents the
Represents the

squeeze effect
wedge effect

h

U Uh p h p h
U U h w w

x x y y x x 

         
        

          

(2.29) 

This equation is known as Reynolds equation in which left-hand side represents 

approximately the average curvature of the pressure distribution surface. If it is negative then 

it implies that the pressure distribution is upward convex or in other words pressure generated 

is positive. 

2.7  Ferromagnetic Concepts  

 
 Def. 2.7.1 (Magnetic Dipole) 

The Magnetic dipoles commonly exist in magnetic materials. In magnetic material isolated 

pole does not exist.  A magnetic pole creates a magnetic field around it, which produces a 

force on a second pole. Experiment shows that this force F is directly proportional to the 

product of the pole strength p and its field strength  H ; that is, F=kpH where k is the 

proportionality constant. 
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Def. 2.7.2 (Magnetic Field) 

Charles Coulomb, in 1785, observed that unlike poles experience a force that is proportional 

to the product of their pole strengths p1 and p2 and inversely proportional to the square of the 

distance d  between them.   

1 2

2

p p
F k

d
  

This force is known as magnetic field. It is denoted by H. The magnitude of the magnetic 

field (magnetic fields strength) is denoted by H and its unit of measurement is amp m1.  

Def. 2.7.3 (Magnetic Moment) 

 

Figure 2.7 

Consider a magnet with poles of strength p  located near each end and separated by a 

distance l . Suppose a magnet is placed at an angle θ to a uniform field H. Then the torque 

acts on the magnet, tending to turn it parallel to the field. The moment of this torque which is 

known as magnetic moment is given by sinpH  p H   by assuming magnet of unit 

length. 

 

 

 



24 | P a g e  

 

Def. 2.7.4 (Magnetization / Intensity of Magnetization) 

A quantity that describes the degree to which magnets are magnetized is called the 

magnetization (or intensity of magnetization) M. It can be considered as   
m

M
v

   where m is 

the magnetic moment per unit volume v.  Its unit is amp m1.  

Def. 2.7.5 (Magnetic Induction / Flux Density)  

 

Figure 2.8 

A permanent magnet with magnetization M is placed in an applied field H oriented at an 

angle to M. Then each square meter of the surface there are 0 M lines passing through it. 

These are known as lines of magnetization. These lines add to the force 0 H due to the 

applied field H and the combined group of lines crossing the gap are called lines of magnetic 

flux or magnetic induction B. Therefore B= 0  (H + M). The unit of magnetic induction is 

weber  m2 which is known as tesla (T)  

Def. 2.7.6  (Magnetic Susceptibility)  

It is used to explain the magnetization of material, and is defined as the ratio of 

magnetization M   to the magnetic field strength H   . 

 Mathematically,   

,
M

H
   

 which is a dimensionless quantity.  
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The susceptibility describes the magnitude of magnetic response shown by a magnetic 

material at low field strengths. A large value of   corresponds to strongly magnetic material, 

while a small value corresponds to a weak magnetic material. Free space has a value of  = 0. 

Def. 2.7.7 (Magnetic Permeability)  

It is defined as the ratio of amount of magnetic flux density B to the applied magnetic field 

intensity H.  

Mathematically, 

B

H
  . 

2.8    Historical Development of Ferrofluids 

In 1779, Gown knight attempted to produce Magnetic Fluid (MF) or Ferrofluid (FF) by 

suspending fine iron fillings in water which was not successful. Next in 1940, Bitter prepared 

a magnetic colloid which was stable under gravity but unstable in the presence of magnetic 

field. With the help of this behavior, he observed the domain boundaries on the surface of 

ferromagnetic material. Later, Bitter colloid was refined by Elmore who studied its physical 

properties. In this improved colloids the magnetic particles concentration was very low and 

hence the magnetization was also very low.  

In 1963, Papell who was working with NASA established a method of stabilizing 

MFs against aggregation.  He was interested to mix this MF with rocket fuel so that it can be 

used in very low gravitational field with the help of externally applied magnetic field. 

Papell’s MF achieved very high saturation magnetization and low viscosity in the presence of 

magnetic field. His fluid consisted of finely divided particles of magnetite in kerosene. He 

used oleic acid as dispersing agent to avoid the particles from clumping together. During this 

time R. E. Rosensweig and his associates were  synthesized  the magnetic fluids that was 

stronger than Papell’s magnetic fluid. Even in the strong magnetic field these fluids did not 
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solidify and it remained as a fluid. It also achieved very high magnetization. A mathematical 

model based on this fluid was first proposed by Rosensweig and Neuringer. Because of this, a 

new branch of fluid mechanics had been established which is known as ferrohydrodynamics. 

Rosensweig and his colleagues established very first Ferrofluid (FF) industry.  

In India too, an increasing trend of research interest in magnetic fluid has been 

evident through the pioneering contribution by Mehta et.al. [20]. Recent contributions from 

diversified viewpoints are due to Pursi et. al. [21] and Vaidyanathan et. al. [22]. 

 2.8.1 Brief Idea about Ferrofluids  

Ferrofluids (FFs) or Magnetic fluids (MFs) are stable colloidal suspensions containing fine 

ferromagnetic particles dispersing in a non-conducting liquid. In the case of application of 

external magnetic field H, FFs experiences a force (M) H. Moreover, due to no 

coincidence of two rotation namely liquid and magnetic particles, the state of stress is not 

always symmetric, means magnetization vector M is not always parallel to magnetic field 

vector H, which arise magnetic body-torque density µM×H.   

Ferrofluids are not found in nature, but it can be synthesized as per requirement. The 

most important advantage of FFs over the conventional is that the FFs can be retained at the 

desired location with the help of a magnetic field. Due to this reason FFs gained widespread 

popularity among the researchers working on lubrication theory of bearings. Moreover, the 

use of FF lubrication also adds an additional importance from nano science point of view. 

2.8.2  Forces Used in the Equation of Motion for  Ferrofluids 

In classical fluid dynamics mainly pressure, gravity and viscous forces are considered. 

Whereas in ferrohydrodynamics, additional magnetic body force and magnetic body torque 

density are also considered.  
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Our research problems are mainly concentrated on the use of Shliomis [14, 16] FF 

flow model with uniform and variable magnetic fields. The detailed discussion of the model 

is presented in the corresponding chapter. 
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