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In this chapter a class of solutions describing the interior of a static spherically 
symmetric compact anisotropic star based on paraboloidal spacetime is reported. 
Based on physical grounds appropriate bounds on the model parameters have been 
obtained and it has been shown that the model admits an equation of state which 
is quadratic in nature.
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Bhaxat S Ratanpal 6.1. INTRODUCTION

6.1 Introduction

A neutron star is assumed to be the final stage of a collapsing star whose gravi­
tational attraction is counter balanced by its constituent degenerate neutron gas. 
However, observational studies in the recent past strongly point towards the exis­
tence of exotic class of compact stars which are more compact than ordinary neu­
tron stars (see for example, [18], [19], [51], [52], [53], [104],. [105]). To have a proper 
understanding of such ultra-compact objects, it is imperative to know the exact com­
position and nature of particle interactions at extremely high density regime. Prom 
general relativistic perspective, if the equation of state of the material composition of 
a compact star is known, one can easily integrate the Tolman-Oppenheimer-Volkoff 
(TOV) equations to analyze the physical features of the star. The problem is that 
we still lack reliable information about physics of particle interactions beyond nu­
clear density. In the class of stars having a density regime exceeding nuclear matter 
density, many exotic phases may exist in the interior, including a possible transition 
from hadronic to quark degrees of free ([1], [2], [11], [24], [101], [103]). However, even 
in the extreme case of a quantum cromo dynamics inspired model based equation 
of state, by and large, remains phenomenological till date.

The objective of this chapter is to construct models of equilibrium configurations 
of relativistic ultra-compact objects when no reliable information about the com­
position and nature of particle interactions are available. This can be achieved 
by generating exact solutions of Einsteins field equations describing the interior of 
a static spherically symmetric relativistic star. However, finding exact solutions 
of Einsteins field equations is extremely difficult due to highly non-linear nature 
of the governing field equations. Consequently, many simplifying assumptions are 
often made to tackle the problem. Since general relativity provides a mutual corre­
spondence between the material composition of a relativistic star and its associated 
spacetime, we will adopt a geometric approach to deal with such a situation. In this 
approach, a suitable ansatz with a clear geometric characterization for one of the 
metric potentials of the associated spacetime metric will be prescribed to determine 
the other. Such a method was initially proposed by Vaidya and Tikekar [99]; subse­
quently the method was utilized by many to generate and analyze physically viable 
models of compact astrophysical objects (see for example, [43], [45], [58], [64], [81], 
[82], [83], [88] and references therein). In present work we consider paraboloidal
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spacetime metric described by Tikekar and Jotania [89].

We have incorporated a general anisotropic term in the stress-energy tensor repre­
senting the material composition of the star. Impact of anisotropy on stellar config­
urations may be found in the pioneering works of Bowers and Liang [7] and Herrera 

and Santos [37]. Local anisotropy at the interior of an extremely dense object may 
occur due various factors such as the existence of type 3A superfluid ([7], [76], [44]), 
phase transition ([84]), presence of electromagnetic field ([41]), etc. Mathemati­
cally, anisotropy provides an extra degree of freedom in our system of equations. 
Therefore, on top of paraboloidal spacetime metric, we shall utilize this freedom to 
assume a particular pressure profile to solve the system. In the past, a large class of 
exact solutions corresponding to spherically symmetric anisotropic matter distribu­
tions have been found and analyzed (see for example, [5], [28], [36], [50], [59], [61], 
[80]). Maharaj and Chaisi [55] have prescribed an algorithm to generate anisotropic 
models from known isotropic solutions. Dev and Gleiser ([14],[15],[17]) have studied 
the effects of anisotropy on the properties of spherically symmetric gravitationally 
bound objects and also investigated stability of such configurations. It has been 
shown that if the tangential pressure p± is greater than the radial pressure pr of 
a stellar configuration, the system becomes more stable. Impact of anisotropy has 
also been investigated by Ivanov [40]. In an anisotropic stellar model for strange 
stars developed by Paul et. al. [71], it has been shown that the value of the bag con­
stant depends on the anisotropic parameter. For a charged anisotropic stellar model 
governed by the Massachusetts Institute of Technology (MIT) bag model equation 
of state, Rahaman et. al. [74] have shown that the bag constant depends on the 
compactness of the star. A core-envelope type model describing a gravitationally 
bound object with an anisotropic fluid distribution has been obtained in [86], [87], 
[95].

In this chapter, we have constructed a non-singular anisotropic stellar model on 
paraboloidal spacetime, satisfying all the necessary conditions of a realistic compact 
star. Based on physical grounds, bounds on the model parameters are prescribed 
and the relevant equation of state for the system is worked out. An interesting 
feature of this model is that the solution admits a quadratic equation of state. Due 
to complexity, it is often very difficult to generate an equation of state (p = p (p)) 
from known solutions of Einsteins field equations. In fact, in most of the models 
involving an equation of state, the equation of state is prescribed a priori to gener-
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ate the solutions. For example, Sharma and Maharaj [80] have obtained an analytic 
solution for compact anisotropic stars where a linear equation of state was assumed. 
Thirukkanesh and Maharaj [85] have assumed a linear equation of state to obtain 
solutions of an anisotropic fluid distribution. Feroze and Siddiqui [25] and Maharaj 
and Takisa [60] have separately utilized a quadratic equation of state to generate 
solutions for static anisotropic spherically symmetric charged distributions. A gen­
eral approach to deal with anisotropic charged fluid systems admitting a linear or 
non-linear equation of state have been discussed by Varela et. al. [100]. In present 
model, we do not prescribe the equation of state; rather the solution imposes a con­
straint on the equation of state corresponding to the material composition of the 
highly dense system.

In section 6.2, the relevant field equations describing a gravitationally bound spheri­
cally symmetric anisotropic stellar configuration in equilibrium have been laid down. 
Solution to the system of equations is obtained in section 6.3 and analyzed bounds 
on the model parameters based on physical grounds are analyzed. Physical features 
of the model have been discussed in section 6.4. We have also generated an approx­
imated equation of state in this section which has been found to be quadratic in 
nature. In section 6.5, we have concluded by pointing out some interesting features 
of our model.

6.2 Field Equations

We write the interior spacetime of a static spherically symmetric stellar configuration 
in the standard form

ds2 = ev^dt2 — e^dr2 — r2 (dQ2 + sin2 8d<j>2) , (6.2.1)

where u(r) and A(r) are yet to be determined. We assume that the material com­
position of the configuration is anisotropic in nature and accordingly we write the 
energy-momentum tensor in the form

Tij = (p + p) UiUj - pgVJ + Try, (6.2.2)

76



Bharat S Ratanpal 6.2. FIELD EQUATIONS

where p and p represent energy-density and isotropic pressure of the system and ul 
is the 4-velocity of fluid. The anisotropic stress-tensor is assumed to be of the 
form _

V3S QCj (UjUj 9ij) (6.2.3)

where S = S(r) denotes the magnitude of anisotropy and Cl = (0, — e_A/2,0,0) is 
a radially directed vector. We Calculate non-vanishing components of the energy- 
momentum tensor as

n=p, T\ P +
25
\/3

= - P~
S_

V5.
(6.2.4)

This implies that the radial presure and the tangential pressure can be obtained in 
the following forms

Pr = P +

P± =P-

2S_

S_
V3’

(6.2.5)

(6.2.6)

respectively. Therefore, magnitude of the anisotroy is obtained as

Pr ~ P± = VT5’. (6.2.7)

The Einstein’s field equations corresponding to the spacetime metric (6.2,1) and the 
energy-momentum tensor (6.2.3) are obtained as

8 vp =

8tt;pr = e

e-M

+

A
2u" + (v' - A') v' +

• (6.2.8)

(6.2.9)

(6.2.10)

Defining the mass within a radius r as

1 frm(r) = - / f2p{f)df.
2 Jo

(6.2.11)
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We rewrite the field equations (6.2.8) - (6.2.10) in the form

e_A = 1 _ 2m (6.2.12)
r

r (r — 2m) vl = 8irprr3 -fi 2m, (6.2.13)

(87Tp + 87rpr) v' + 2(87rp') = — ^ |W\/3S^ . (6.2.14)

6.3 Interior Solution

To solve the system of equations (6.2.12) - (6.2.14), we make 
metric potential eA^ as

use of the ansatz for

eA(r) = ! + ll
(6.3.1)

where R is the curvature parameter. The t = constant sections of (6.2.1) for ansatz 
(6.3.1) represent paraboloidal spacetimes immersed in 4-Euclidean spacetime.

The energy density and mass function are then obtained as

o 3 + 48 irp =---------Z-r-o,
R?( 1 + f)2

(6.3.2)

r3
m(r) =------;-------jt.W 2R?(l + §) (6.3.3)

Combining equations (6.2.13) and (6.3.3), we get

i/ - (87rpr) r(l + ^)+-^. (6.3.4)

To integrate equation (6.3.4), we assume 8irpr in the form

8npr
PO (l - w)

RHi+^r
(6.3.5)

where p0> 0 is a parameter such that || denotes the central pressure. The particu­
lar form of the radial pressure profile assumed here is reasonable due to the following 
facts:
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1. Differentiation of equation (6.3.5) yields

dpT ~2rPo (3 “ h)
OTT—— = ------------------------------------------—5—

dr R4 (1 + ft)
(6.3.6)

For po > 0, equation (6.3.6) implies that < 0, i.e., the radial pressure is a 
decreasing function of radial parameter r. At a finite radial distance r = R 
the radial pressure vanishes which is an essential criterion for the construction 
of a realistic compact star. The curvature parameter R is then identified as 
the radius of the star.

2. The particular choice (6.3.5) makes equation (6.3.4) integrable.

Substituting equation (6.3.5) in equation (6.3.4), we obtain

(6'3'7)

which is integrable and yields

ev = c( 1 + ^J e^-po>2/2R2, (6.3.8)

where C is a constant of integration. Thus the interior spacetime of the configuration 
takes the form

(2 \ PO / 2 \
1 + W) e(1"w)r2/2*2*2 - f1 + jp) dr2 '

—r2 [d92 + sin2 9d(f>2) , (6.3.9)

which is non-singular at r = 0.

Making use of equations (6.2.14), (6.3.2), (6.3.5) and (6.3.7), the anisotropy can be 
determined as follows

87rV3S = r*iJ2
4^2(1 +#

(3 +po) + (1 Po)R2

X ( 2p0 + (1 — po)
2 \

1 + — J ^ R?) 4p0 r* 
1? (6.3.10)
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Note that the anisotropy vanishes at the centre (r = 0) as expected. The tangential 

pressure takes the form

Wl-&)+fi/<r,Pb,a)
8ttPi = 87rpr — 87rv3 S =--------------------------------------—5-----------

4^(l + f)3
(6.3.11)

where,

f(r,Po,R)
3 + Po + (1 — Po) ^2p0 + (1 — Po) ^1 +

This model has three independent parameters, namely, p0, C and R. The require­
ment that the interior metric (6.3.9) should be matched to the Schwarzschild exterior 

spacetime metric

ds2 = ^1 — — \ dt2 — f 1 — dr2 — r2 (dd2 + sin2 9d<p2) , (6.3.12)

across the boundary r = R of the star together with the condition that the radial 
pressure should vanish at the surface (pr (r = R) = 0) help us to determine these 
constants. Note that the form of the radial pressure profile is such that the condition 
(Pr (r = R) = 0) itself becomes the definition of the radius R of the star in this 
construction. Matching the relevant metric coefficients across the boundary R then 
yields

R = 4m, (6.3.13)

—(l-P0)/2
Q = _ 2po+i ’ (6.3.14)

where m is the total mass enclosed within the radius R from the centre of the star. 
If the radius of the star R is known, equation (6.3.13) can be utilized to determine 
the total mass m of the star and vice-versa. For a given value of p0) equation (6.3.14) 
determines C. In this model || corresponds to the central pressure. Therefore, for 
a given mass (m) or radius (R), if the central pressure is specified, the system is 
completely determined.

Following Delgaty and Lake [13], we impose the following conditions on our system 
so that it becomes a realistic and physical acceptable model.
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(i) p(r), pr(r), p±(r) > 0, for 0 <r<R.

(ii) p — pr — 2px, > 0, for 0 < r < R.

(in) % ^ < 0, for 0 < r < R.

(iv) 0 < < 1, 0 < ^ < 1, for 0 <r<R,

The requirements (i) and (ii) imply that the weak and dominant energy conditions 
are satisfied. Condition (iii) ensures regular behaviour of the energy density and 
the two pressures (pT; p±). The condition (iv) is invoked to ensure that the sound 
speed does not exceed speed of light. In addition, for regularity, we demand that the 
anisotropy should vanish at the centre, i.e., pr — p± at r = 0. From equation (6.3.10), 
we observe that the anisotropy vanishes at r = 0 and S(r) > 0 for 0 < r < R. 
Interestingly, for the particular choice po — 1, the anisotropy also vanishes at the 
boundary r = R in this construction. From equation (6.3.2), it is obvious that 
p > 0, and

o dp + f

dr W(l + §y
which estabilishes that p decreases in the radially outward direction. We have al­
ready stated that Jp- corresponds to the central pressure which implies that po > 0. 
It can be shown that for p± > 0, we must have po < 1. Thus the bounds on po can 
be obtained as

0 < po < 1. (6.3.16)

To obtain a more stringent bound on p0, we evaluate

(6.3.15)

87T dp±
dr

(3 - 20p0 + Po) + (2 + 12p0 - 6p§) £ + (-1 - 4p0 + 5p§) ^

2R4 (1 + 7»^ >

W>
(6.3.17)

at two different points. At the centre of the star (r = 0) it takes the following form

f 8tt =0, (6.3.18)

V dr){ r=0)
and at the boundary of the star (r = R), it takes the form

(r (!e±\ i-Spp
\dr){r=R) m* 1
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which will be negative if po > | • 

po is obtained as

Therefore, a more stringent bound on the parameter 

| < Po < 1- (6-3.20)

To verify whether the bound on p0 satisfies the causality condition 0 < ^ < 1, we 

combine equations (6.3.6) and (6.3.15), to yield

dpr Pofyg)

dp 5 + jp-
(6.3.21)

Now, at the centre of the star (r = 0), ^ < 1 if the condition po < 1.6667 is satisfied 
and at the boundary of the star (r = R), ^ < 1 if the condition po < 3 is satisfied. 

Both these restrictions are consistent with the requirement given in (6.3.20).

Similarly, we can obtain as

dp± _ (—3 + 20p0 - p§) + (—2 — 12p0 + 6pg) jp + (1 + 4p0 — 5pi) ^
if ~ 4(l + f)(5 + iJ) ’

At the centre (r = 0), the requirement ^ < 1 puts a constraint on po such that 

Po < 1-2250. At the boundary of the star the corresponding requirement is given by 
Po < 4.3333. Both these requirements are also consistent with the bound | < Po < 1.

We now investigate the bound on the model parameters based on stability. To check 
stability of our model, we shall use Herrera’s [35] overtuning technique which states 
that the region for which radial speed of sound is greater than the tangential speed 
of sound, is a potentially stable region. The radial and tangential sound speeds in 
our model are obtained as

dpr
dp

P0 (3 - £)

5+f
(6.3.23)

dpx. _ (-3 + 20po - pg) 4- (-2 - 12p0 + 6pg) ^ + (1 + 4p0 - 5pg) ^
ust dp “(! + £) (5+g)

(6.3.24)
Herrera’s [35] prescription demands that we must have v2st — v2sr < 0 throughout the
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star. Now, at the centre of the star

(4-",2r),„o)=~3 + 3o°~?>°. (M'25)

for (vlt — vlr)(r=Q^ < 0, it is required that —3 + 8po — Po < 0 i.e. po < 0.3944. At 

the boundary of the star, we have

= (6-3-26)

which is negative for | < p0 < 0.3944. Therefore, our model is physically reasonable 
and stable if the following bound is imposed: § < Po < 0.3944.

6.4 Physical Analysis

To check whether our model can accommodate realistic ultra-compact stars, let us 
first analyze the gross behaviour of the physical parameters such as energy density 
and pressure. For a particular choice po = 0.36 (consistent with the bound), plugging 
in c and G at appropriate places, we have calculated the mass m (in terms of MG), 
central density pc (in MeV fm“3), surface density Pr in (MeV fm 3) of a star of 
radius R (in kilometers). This have been shown in Table 6.1.

Table 6.1: Values of physical parameters for different radii with p0 = 0.36.

Case R M Pc Pr

I 6.55 1.11 2108.46 702.82

II 6.7 1.14 2015.11 671.70

III 7.07 1.20 1809.71 603.24

IV 8 1.36 1413.41 471.14

V 9 1.53 1116.77 372.26

VI 10 1.69 904.58 301.53

VII 11 1.86 747.59 249.20

VIII 12 2.03 628.18 209.39
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We note that the central density in each case (except VIII, where we have assumed a 
comparatively larger radius which in turn has generated a bigger mass) lies above the 
deconfinement density [34] ~ 700 MeV fm"3 which implies that quark phases may 
exist at the interiors of such configurations. Variations of the physical parameters 
in (MeV fm"3) for a particular case VI have been shown in Figures 6.1 - 6.5.

Figure 6.1: Variation of density (p) against the radial parameter r.
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Figure 6.2: Variation of pressure (pr and px) against the radial parameter r.
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Figure 6.3: Variation of ^ against the radial parameter r.
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Figure 6.4: Variation of anisotropic parameter S(r) against the radial parameter r.

Figure 6.5: Variation of p — pr — 2p± against the radial parameter r.
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The figures clearly indicate that the physical parameters are well-behaved and all 
the regularity conditions discussed above are satisfied at all interior points of the 
star. Moreover, the assumed parameters generate a stable configuration as shown 
in Figure 6.6.

Figure 6.6: Variation of v2r — v2 against the radial parameter r.

Having derived a physically acceptable model, question to be asked is, what kind of 
material composition can be predicted for the stellar configuration admissible in this 
model? In other words, what would be the equation of state corresponding to the 
material compositions of the configurations constructed from the model? Though 
construction of equation of state is essentially governed by the physical laws of the 
system, one can parametrically relate energy-density and the radial pressure from 
the mathematical model which may be useful in predicting the composition of the 
system. Making use of equations (6.3.2) and (6.3.5), we have plotted variation of 
the radial pressure against the energy-density as shown by the solid curve in Figure 
6.7. Our intention now is to prescribe an approximate equation of state which can 
produce similar kind of curve. Though, in principle, a barotropic equation of state 
(pr = pr (p)) can be generated from equations (6.3.2) and (6.3.5) by eliminating r, 
however we have tried curve fitting approach to find equation of state, we have 
tried linear equation of state pr — p0 + ap and quadratic equation of state pr = 
Po + ap + ftp2, where po, oc and 0 are constants. We found that linear equation of



Bharat S Ratanpal 6.5. DISCUSSION

state has norm of residuals 0.021983 and quadratic equation of state has norm of 
residuals 0.0027629. Hence we consider that the relevant equation of state has the 
form

pr = po + ap + 0 p'. (6.4.1)

where po, a and 0 are constants. We make use of this equation of state to plot 
p Vs pr (dashed curve) in Figure 6.7, which turns out to be almost identical to the 
curve generated from the analytic model if we set p0 = —0.36. a = 9.6 x 10~° and 
0 = 7.2 x 10~8. Though this has been shown to be true for a particular choice (case 
VI), it can be shown that the model admits the quadratic equation of state (6.4.1) 
for different choices of the parameters as well.

• ■ Analytic Modal j 
- Approximated EOS [

Figure 6.7: Variation of radial pressure against density.

6.5 Discussion

Making use of paraboloidal spacetime metric, we have generated exact solution of 
Einstein’s field equations representing a static spherically symmetric anisotropic stel­
lar configuration. Bounds on the model parameters have been obtained on physical 
grounds and it has been shown that model is stable for | < Po < 0.3944. In this 
model || denotes the central density and, therefore, the bound indicates that for a 
given radius or mass arbitrary choice of the central density is not permissible in this
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model. We have shown that the model admits an equation of state which is quadratic 
in nature. Mathematically, this may be understood in the following manner. The 
ansatz (6.3.1), together with the assumption (6.3.5), generates an anisotropic stellar 
model whose composition may be described by the equation of state of the form 
(6.4.1). In [25], [60], quadratic equation of state have been assumed a priori to 
obtain exact solutions of Einstein’s field equations. We have shown that such an 
assumption is consistent with an analytical model which has been constructed by 
making use of paraboloidal spacetime metric. In cosmology, a non-linear quadratic 
equation of state has been shown to be relevant for the descreption of dark energy 
and dark matter [3]. What type of matter can generate such an equation of state in 
the ultra-high density regime of an astrophysics! object is an open question.
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