Chapter 6. Kernel based ANN classifiers, Radial Basis
Function Networks and Support Vector Machines

6.1. Introduction:

Unlike multilayer perceptrons trained with the back-propagation algorithm, the design
of Radial Basis Function (RBF) and Support Vector Machine (SVM) networks
Vfollows a principled approach. In particular, the construction of regularization theory
in RBF provides sound mathematical formulation while SVM is based on the

~ principle of Structural Risk Minimization [18].

Anothér" principled appr(.)éch' for thé design of RBF and SVM networks is via kernel
vr'egr'ession method. This approach involves the use of density estimation,. for which
the radial basis functions sum to unity exactly. Multivariate Gaussian distribution
provides 'a‘convefﬂént method for sétisﬁdng this requirement. In this chapter, we
study the use of kernel based ANN classifiers for the classiﬁcaﬁon of Gujarati
symbbls. A notion that is central to the construction of the sUppoﬁ vector learning
algo.rithm’ is the inner-product kernel between a “support vector “x” and the vector X

. drawn from the input space.

This chapter is divided in to six sections. In the second section that folloWs this
introductory section, we discuss the computational aspects of Radial Basis Function -
in continuation to the ihtfoductory concepts provided in Chapter 1. The learning rules
for weights, centers and spreads for the Radial Basis Function architecture are
established in this section. The third section demonstrates the appliéation of these
rules for the classification of Gujarati symbols.  We introduce Support Vector
Machines of two-class and multi-class types in the fourth section. A new approach for
multi-class Support Vector Machine classifiers which is uniform in its approach for
two-class and multi-class problems is presented in the fifth section. The chapter ends

with a section providing a summary and discussion of the methods.
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6.2. Radial Basis Function Networks (RBFN)

As we have discussed in chapter 1, Radial Basis Function Networks can be
characterized into two types, viz. Regularization Radial Basis Function and
Generalized Radial Basis Function. As discussed in the section 1.4.2 of chapter 1, the
unknown weights of the output layer of regularization Radial Basis Function networks
can be computed by taking inverse of the Gaussian matrix G. But the drawback of this
_ approach is that it is computatibnally very cbstly to find the inverse of G in the case
" of higher dimensional datasets. This problem can be overcome with the help of

Generalized Radial Basis Functions be considering fewer training patterns as centers

of hidden layer. The following learmng strategles are usually applied for Generalized
Radial Basis Functlons ‘ '

- 621 Leaming.Strategies ‘

The'leafning procéss involved in thevfunctioning of a radiai;basis function network
" 1rrespect1ve of its theoretical background, may be described as follows. The linear -
weights associated with the output units of the network tend to evolve faster
’ compared to the parameters of the nonlinear activation functions of the hidden units.

- The hldden layer’s activation functions evolve slowly in accordance with some
_ nonlinear optimization strategy, while thewexghts of the links of output layer evolve
faster according to some linear Voptimization strategy. The task of the hidden layer is
to map the input patterns in to a high dimenéional feature space while the task _(5f the
linear output layer is to perform the classification. Due to this separation of
responsibilities, it is reasonable to separate the optimization of the hidden and output
layers of the network by using different techniques, and perhaps by operating on

different time scales.

There are different learning strategies that we can follow in the design of an RBF
network, depending on how the centers of the radial-basis function of the network are
specified. In this section we discuss three design strategxes specifying design of RBF
networks using interpolation theory [1 8].
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a. Fixed Centers Selected at Random

The simplest approach is to assume fixed radial-basis functions defining the activation
functions of the hidden units. Thé locations of the centers inay be chosen randomly
from the training data set. For the radial basis functions, we may employ Gaussian
functions whoseA standard deviation is fixed according to the spread of the centers.

Specifically, a normalized radial basis function centered at pattern #; is defined as

G([Ixmtillz)= exp[—— d"z" Ix~t| J - i=12..,m

max

where X is the input vector, m; is the number of centers and dj,. is the maximum of

all distance between the pairs of chosen centers.

. The standard deviation (i.e. width) of all the Gaussian radial basis functions is fixed at

d

O o o | @
This foﬁnula ensures that the indiyiduél radial-basis functions are nét to0 peaked or
too flat; both of these two extreme conditions should be avoided.‘ The only parameters

_ that would need to be learned in this approach are the linéér weights in the output
layer of the network. A straightforwardb procedure for doing this is' to use the
pseudoinverse method discussed in chapter-1. Specifically, we have

o . w=GH |
where d is the vector of desired responses in the training set. The matrix G is the

pseudoinverse of the matrix G, which is itself defined as
G={g}

Where : gjc’ :eXp[“%an _tinz}, j=12.,N;i=12,..,m

where Xj is the 7™ input vector of the training sample. The norm in the above

expression is usually taken as the Euclidean norm.

For the computation of pseudoinverse of a matrix the method of Singular-value

decomposition (SVD) can be employed [18].
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b. Self-Organized Selection of centers

The main problem with the method of fixed centers described in the earlier sub-
section is the fact that it may require a large training set for a satisfactory level of
performance. One way of overcoming this limitation is to use a hybrid learning

precess, consisting of two different stages:

K Self—organized learning stage, the purpose of which is to estimate
appropriate locations for the centers of the radial basis functions in the
hidden layer. - _

e Supervised leaming stage, which completes the design of the network
~ by estimating the linear weights of the output layer.

' VFAo'r the self-organized learning prdé:ess we need a clﬁstering algorithm that partitions
the given set of data points into subgroups. One such algorithm is the k-means
clustering algorithm [18], which places the centers of the radial-basis functions in

only those regions of the ihput' spéce %, where significant data are present. Let m;

‘denote fhe numBer of radial-basis functions. Let {tk (n)}:il denote the centers of the

*radial-basis functions at iteration n of the algorithm. Then, the k-means clustering

algdrithm proceeds as follows:

1. Initialization: Choose random values for the initial centers ti(0); the
only restriction is that these initial values be different. It may ‘also be
desirable to keep the Euclidean norm of the centers small. .

2. Sampling: Draw a sample vector X from the input space y with a
certain probability. The vector X is input into the algorithm at iteration
n.

" 3. Similarity matching: Let k(X) denote the index of the best-matching
_ (winning) center for input vector X. Find kX) at iteration » by using

minimum-distance Euclidean criterion:
k(X) = argminfX(m) ~t M, k=1,2,..m;

where ti(n) is the center of the & radial-basis function at iteration 7.
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4. Updating: Adjust the centers of the radial-basis functions, using the

update rule:

t, (n)+n[X(m)—-t , k=KX
b (uat) = { BTG =60 )
t, (), otherwise
where 1 is a learning-rate parameter that lies in the range 0 <n< 1.
5. Continuation: Increment » by 1, go back to step 2, and continue. the

procedure until no noticeable changes are observed in the centers t;.

The k-means clustering algorithm just described is, in fact, a special case of a

competitive (winner-take-all) learning process known as the self-organizing map.
¢. Supervised Selecﬁon of Centérs

In the third approach, the centers of the radial-basis functions and all other free
. parameters of the network undergo a supervised learning process, i.e., the RBF

'_ _network takes on its most generahzed form. A natural candidate for such a process is
error—correctlon learning, which is most convemently implemented using a gradient-

- descent procedure that represents a gengrahzatlon of the LMS algorithm.

- The first step in the development of such a learmng procedure is to deﬁne the

mstantaneous value of the cost functmn

14, o ’
§=-2¢ (i)

244 ‘
where N is the size of the training sample used to do the learning, and ¢; is the error
signal defined by

- F*(X,)
Using equation (1.27) for m; number of centers, the equation (ii) takes the form
&y =d,- 3 wofx, -t ) (i)
i=] '

—a,-Sowcllx, ¢ 25, -,)

=1

where Z o is covariance matrix for the center i (as discussed in the chapter 1).
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. . -1 .
The requirement is to find the free parameters w;, t;, and Ef , SO as to minimize &
The results of this minimization are summarized in the table-6.1. The following points

are noteworthy for the adaptation formulas for the linear weights of the output layer,

positions and spreads of centers.

. The cost function £is convex with respect to the linear parameters w;, but non-

. ) -
convex with respect to the centers t; and matrix Z i

' -1 . : .
. The update equations for w;, t;, and 2 i are assigned different learning-rate
parameters 77;, 1z, and 73 respectively.

° Unlike the back-propagation algorithm, the gradient-descent procedure
' descnbed in the table—G 1 for an RBF network .does not involve error back-

' propagatlon

,Adaptatlon Formulas for the Lmear Welghts and the Posmons and Spreads of Centers
' for RBF thworks [1 8]

1. Learning welghts (Output layer)

" In order to update weight vector w;, the gradient. descent rule is applied

- as follows:
d
wi(n+1)=w;(n)-mn, a‘f(?)) , i=12..m
where,
OE(m) _ 9E) De,(n)
ow, (n) aej(n).awi(n)
aa‘f(: )) J}:.:, j(n)Gij -t (H)HC‘) ~ (using equation i)
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2. Positions of centers (hidden layer)

Positions of centers can be taught with the help of gradient descent

rule. The corresponding gradient can be calculated as below:

aé(n) ok e 360%,-a]) offx, el )
ow,(n) Oe;(n) BG(“X -t].)" adX; -, ][ ) at,

_gf?‘)) “w, (n)Zej(n)G ﬁ]x ~t,(n )l] }——C- (iv)

To be precise J—‘z%—tﬂu

a . . ) .
. "a';'{[xg “ti]Tzil[Xj —ti]}
Here, we requlre the derivative with respect a vector quantlty So we may

. ' proceed ina followmg way

Vector quantities X; and & will take the form X;={ X;;, Xz, ..., Xip }ixp  and
t={ ty, tz ..., tip }ixo respectively, where Q is number of inputs to the
network

X a~
' i T X j2 —tz2
Therefore, [X; - " =
XjQ _tiQ Oxl

Let S =1X; -, ' [X;~t,]

=ii("ﬁ =1,)55 (x;, —1,,)

r=l p=l

r=l p=l

g g
Therefore, 5, o, (f (¢ ))”Bt {ZZ(xj, t,,)}_‘."l(xjp .)}
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g
”22( z:“l(xjp xp ) (forp=r)

p=l

In a vector form the above equation can be written as
0 ;
E(f(to) = -2%'(X;~t))
Substituting the above expression in equation (iv), we get

o -1
af((”)) wi(n)Ze WG (ﬂx -t (n)u ) ~25 (X, - 1,))

a .
af((”)) =2w (n)Zej(n)G (ﬂx ~t,(m)|, ) X;~t;)

The updating rule for centers can be described as below:

9g(n) s |
at ( ) : 1= 1,2, Y (3]

t(n+1) t(n) m,

‘3. Spreads of centers (hidden layer)

In the Iﬁdden layer spread of centers can be learned with the similar
approach of Gradignt descent rule. The corresponding gradient term is

computed as follows:

a&(n) _ 9&(m) 9¢;(n) aG()
az'(n) dey(m) 9G() oX;

N , '
- ~-wi(n)zm‘4ej (n)G'QIXj —ti(n)“q )Q}.,. _

 where, ©(0)=[X; ~t,@][X, ~t,()]

Hence, the learning rule can be defined as shown below: |

- - dé(n)
. D=S")-n, —22_
>, D= "(m)-1n, azi_; =

“The term e;(n) is the error signal of outpﬁt unit j at time 7. The term G’(.) is the first
derivative of the Green’s function G(,) with respect to its argument.
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In the following section, we demonstrate the classification accuracies for the symbols
of Gujarati script. Gujarati numerals (middle zone charaéters) and lower zone
characters are classified using Regularization (number of patterns is equal to the
number of centers) and generalized Radial Basis Function networks (number of
centers are fewer than that of number of patterns) respectively. Two different
networks are constructed, one is for numerals and the other is for lower zone

characters. Java is used as a programming language for both the experiments.

6.3.(2) Classification of the symbols of Gujarati numerals:

Along with the paper [3], discussed in the fourth chapter of the thesis, we have made
' simultaneoué attempt of 4identifying Gujarati numerals with Regularization Radial
 Basis Function, discussed in the chapter 1. Here also we have taken compressed
4 image of the size 16x16 (256) using Daubechies D4 wavelets (discussed in the
chapters 4), as an input to the network. Total 440 patterns of these numerals are ‘
cohside:ed for our experiment, out of Wh1ch 200 pé,tterns Vare ‘taken in traini'ng sef and
' the 'rémaining'240 patterns( are kept in the tesﬁng set. Béing the 'fegulaﬁzation
| network, each pattern of the trammg set constitutes a center of the hidden neuron and
~ hence form hidden layer for the network. 10 neuroﬁs (one for each numeral) are taken

_ in the output layer of the network.

In order to compute weight vector w of equation (1.26) of chapter 1, inverse of the
matrix G is to be multiplied with vector desired output d. But the inverse of [G]20px200
is computationally costly therefore the weights are to be learned by gradient descent

(described in the 6.2.1) algorithm as we use in the case of MLP. Results are shown in
table-1: '
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Table-1 Classification of Gujarati numerals

Input of the Hidden Performance on testing set (%)
units
RBFN
(centers)
256 Daubechies 200 93.33
coefficients

6.3(b) Classification of symbols of lower and middie zone symbols:

We have applied generalized Radial Basis Function networks for the classification of
the glyphs of lower and middle zone symbols in the images of the Gujarati script.
Two separate networks have been cons&ucfed for the symbols of both the zones.

Along with the experiments presented using Multilayer ?érc’eptron inthe chapter 4,
‘ ."we have made simultaneous attempts of applying generalized Radial Basis Function

networks for the 1dent1ﬁcat10n of lower and middle zone symbols

In the experiments presented here, we have constructed two networks: the first
* network is for lower zone symbols and the second network is for the middle zone
symbols of Gujarati script (section 2.4). Each of these networks has 256 input neurons

and as many output neurons as the number of classes (types) of the respective zone.

| An implementation of the general RBF architecture that can bé used to realize these
two networks has been developed as a set of java classes. The main class RBF has
three attributes which are objects of three classes 1. InputLayer, 2. HiddenLayer and
3. OutputLayer. Each of the three Layer classes contain an arry of objects of an
appropriate neuron class, ie, 1. InputNeuron, 2. Radbas and 3. QutputNeuron types.
All these neuron classes are sub-classes of a general class Neuron class. The links
among all these layers are generated with the help of a Synapse class. The synaptic
weighs of the links are updated using this class. The InputLayer class has attributes

for an array of input neurons and input patterns etc. and methods like setinputPatterns,
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»setSyﬁapse etc. The coﬁesponding InputNeuron class has attributes for input
patterns, testing patterns etc and methods for setting input and testing patterns and for
computing the outputs. HiddenLayer class has attributes for radbas neurons, input
synapse weight, output synapse weight, distance, centers etc and methods for
computing forward pass, center updation, spread updation etc. The corresponding
hidden neuron class has attributes output synapse, distance, spread etc and methods
for computing distance, center updation etc. While the OutputLayer class has
attributes computed output, desired output, weights etc and the methods for getting '
computed output for each neuron, updation of weight etc. The corresponding output
neuron class has attributes computed output, desired output etc and methods for

computing computed output, updation of weights etc.

In the first experiment, the lower zone characters are classified. There are four lower
modifiers which are used very frequently in the Gujarati script as shown in the chapter
2. We have constructed a network with 256 input neurons at input to the network and
4 neurons (one for each symbol) in the output layer. The 256 input neurons stand for
the extracted features of the images usiﬁg Daubechieds D4 wavelets as discussed in
the "_chapters 4 and 5. The java prografn of the experiment is implemented using
general network of Radial basis functions. The experimental detéil_s can be given as

below:

Out of total 336 patterns of all the four symbols of lower modifiers of Gujarati script,
we have considered randomly selected 136 patterns for testing and the remaining 200
patterns for the fraining purpose. There are 40 patterns considered as the centers to the
Generalized RBF network. The weights are updated by using the 1st learning rule
among those described in the previous section. The distance used during the
computation of the updated weights is the | Mahalanobis distance which was discuséed
in the chapter 1( section 1.5°). Initially, the spread (width) is chosen using the formula
(i) in the previous section 6.2, which gave a starting value of 6 for the spread. Then,
by evaluating the classification performance with various values of the spread, the

~ optimal value of 10 was arrived at.
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We have updated only synaptic weights using the first updation rule of the previous
section. The network is allowed to train until the SSE (Sum squared error) goes under
0.07. The network has taken 2500 iterations to achieve that goal. The experimental

results for the classification on test patterns are shown in the table-2:

Table 2. Classification of lower zone characters

Input of the Hidden Total Performance on testing set
’ units number of %y
RBFN
patterns
(centers)
256 Daubechies 40 200 95.58
boefﬁciénts ‘ ' »

Out of 136 .testing patterns 130 are identified correctly and hence achieved good-
recognition accuracy of 95.58%. This accuracy is slightly less than the accuracy

achieved by multilayer pefcéptron as discussed in the chapter 4.

| In the next experiment we have >t1.’ied to recognize middle zone | symbbls of the |

Gujarati séript. Middle zone dataset, to be recogluiied by the network, is made up ‘6f _ |
'images of 10 numerals, 34 consonants, 3 frequently used conjuncts and 5 independent
vowels (totaling-52 glyphs). A total of 2986 printed Gujarati characters scanned in
. various fonts and sizes as described in the second section are collected. Each image is
normalized to a matrix of 32 x 32 (1024) binary values representing the black and
white pixels. 2011 of these images are taken as the training set and the remaining 975
are used for the testing set. The normalized images are subjected to the D4 wavelet
transformation, as described in the section 3. 256 low-low coefficients of each image

are used as feature vector for the glyph .

Several experiments with various numbers of hidden units were carried out to
determine the optimal number of neurons in the hidden layer of the network. The
- network has 256 neurons in its input layer and the output layer was made up of 52

neurons (each neuron corresponding to one of the 52 symbols to be recognized).
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We have made several experiments by updating weights and centers using the update
rules mentioned in the previous section of the above section. But we could manage to
get an accuracy of 58.71% only in this case. It is felt that new strategies for center and

spread selection may have to be adopted to improve the accuracy.

In the next section we introduce another Artificial Neural Network architecture

namely support vector machine.

6.4. Introduction to Support Vector Machine

The MLP networks described in chapter 4 and the RBF networks described above are
universal approximators in their own ways. In this chépte’r and the next, we discuss
anothe: category of feedforward networks, which are also universal 'approx}mator's,

| known as support vector machines (SVM), pioneered by Vapvnik'(Boser, Guyon, and .
Vapnik, 1992; "Cortes and \{apnik,1995;Vdpnik 1995,1998). Like multilayer
'percei)trons and radial-basis function networks, support vector machines can be used -
for pattern classiﬁcét’ion and nonlinear regression. Thé formulation embodies the
Strﬁctural Risk vMinimization (SRM) prixmible (defined in the later part of this
section), which has been éden to be sﬁpérior, (Gunn et. al., 1997), to traditional
Empirical Risk Minimizatibn» (Minimizing the érror generated at the time of training
in the output layer of the networks). This Structural Risk Minimization can broadly be
introduced with the help of Vapnik-Chervonenkis (VC) dimension as below:

Vapnik-Chervonenkis dimension

classificatior
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........................
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[Fig.6.1 VC Dimension illustration]

Figure (6.1) illustrates how three points in the plane ca'.n‘ bevshattered by the set.of
linear indicator functions whereas four points cannot be. In this case the VC
dimension is equal to the number of free parameters, but in general that is not the

- casé; e.g. the function Asin(bx) has an infinite VC diniensioﬁ (Vapnik, 1995). The set.
' : of linear indicator funcﬁons in n dimensional space has a Ve ’dimension equal to n +
1.

For example, consid_er-a straight line as the classification rhodel: the model used by a”
perceptron. The line should separate positive data points from négative data points.
When there are 3 points that are not collinear, the line.can shatter them. However, the
line cannot shatter four points. Thus, the VC dimension of this particular classiﬁer is
3. It is important to remember that one can choose the arrangement of points, but then

cannot change it as the labels on the points are permuted.
Structural Risk Minimisation

The challenge in solving a supervised learning problems is to realize the best
generalization performance by matching the machine capacity to the available amouﬁt
of training data for the problem at hand. The method of structural risk minimization
provides an inductive procedure for achieving this goal by making the VC dimension

of the learning machine a control variable (Vapnik, 1992, 1998). To be specific,
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consider an ensemble of pattern classifiers { F(X,W); We W } and define a nested
structure of # such machines |
Fy = { FX\W), WeWk}, k=12,..,n

such that we have '

}';c:;fzc WCFn
where < signifies “is contained in”. Correspondingly, the VC dimensions of the
individual pattern classifiers satisfy the condition

hiSshy<..<hy
which implies that the VC dimension of each pattern classifier is finite. Then, the

method of structural risk minimization may proceed as follows:

. The empirical nsk (i-e. training error) for each battem classifier .is minimized.
. The pattern classifier ¥ with thé smallest guaranteed risk[18] is ideﬁtiﬁedi
this particular machine provides the best compromise between the training -
error (i.e., Quality of approximation of the training data) and the confidence
interval, (i.e., complexity of the ‘aﬁproxirhating function) which compete with

each other.

Our goal is to find a network structure such that decreasmg the VC dimension occurs

at the expense of the smallest possible increase in trammg €rTor.

The principle of structural risk minimization may be implemented in a variety of
ways. For example, we may vary the. VC dimension % by varying the number of
hidden neurons,

Basically, the support vector machine is a linear machine with some very nice
properties. To explain how it works, it is perhaps easiest to start with the case of
separable patterns that could arise in the context of pattern classification. In this
context, the main idea of a support vector machine is to construct a hyperplane as the
decision surface (chapter 1 section 1.4.2) in such a way that the margin of separation
(discussed in the later part of this section) between positive and negative examples is
maximized. The machine achieves this desirable property by following a principled

approach rooted in the statistical learning theory that is discussed in Chapter 1. More
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precisely, the support vector machine is an approximate implementation of the
method of structural risk minimization. This induction principle is based on the fact
that the error rate of a learning machine on test data (i.e., the generalization error rate)
is bounded by the sum of the training-error rate and a term that depends on the
Vapnik-Chervonenkis (VC) dimension; in the case of separable patterns, a support
vector machine produces a value of zero for the first term and minimizes the second
term. Accordingly, the support vector machine can provide a good generalization
performance on pattern classification problems despite the fact that it does not

incorporate problem-domain knowledge. This attribute is unique to support vector

machines.
6.4.1. Two-class problems

Initially, the theory of support vector machines is developed for two class problems
and then the theory of multiclass problem is developed using the same concept of two
class problem of support vector machine. Here we discuss the basic theory of two

class problems which are considered to be linearly separable.

6.4.1.1. Optimal hyperplane for linearly separable patterns

Consider the training sample {(X; .4, )}l. , where x; is the input pattern for the i
example and d; is the corresponding desired response (target output). To begin with,
we assume that the patterns (class) represented by the subset d; = +1 and the patterns
represented by the subset d; = -1 are “linearly separable.” The equation of a decision

surface in the form of a hyperplane that does the separation is

wix +b =0 6.1)
where x is an input vector, w is an adjustable weight vector, and b is a bias. We may
thus write

wa,v +b20 ford;=-+1 (6.2)

wix;+b<0 ford,=-1
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The assumption of linearly separable patterns is made here to explain the basis idea
behind a support vector machine in a rather simple setting; this assumption will be

relaxed in Section 6.3.

For a given weight vector w and bias b, the separation between the hyperplane
defined in Eq. (6.1) and the closest data point is called the margih of separation,
denoted by p. The goal of a support vector machine is to find the particular
hyperplane for which the margin of separation p is maximized. Under this condition,

the decision surface is referred to as the optimal hyperplane.

Let wy and by denotes the optimum values of the weight vector and bias, respectively.
Correspondingly, the optimal hyperplané, representing a multidimensional linear

decision surface in the input space, is defined by

WIx+b, =0
: : - (6.3)
which is a rewrite of Eq.(6.1) .The discrirrﬁhant function ,
g®)=wlx+b, - . o 64)

givés an algebraic measure of the distance from x to the optimal hyperplane (Duda

and Hart, 1973). Perhaps the easiest way to see this is to express x as
—x 4T |
X=X

where x, is the normal projection of x onto the optimal hyperplane , and r is the
desired algebraic distance; # is positive if x is on the positive side of the optimal

hyperplane and negative side. Since, by definition , g(x,)=0, it follows that

g(x)=wq +b, =r|w, or
Therefore r= ifg(xﬁ 6.5)
Wy

In particular ,the distance from the origin (i.e.,, x = 0) to the optimal hyperplane is

given by b/ uwﬁ“ If * bp>0, the origin is on the positive side of the 6ptima1
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hyperplane; if bp<0, it is on the negative side. If b;=0, the optimal hyperplane passes
through the origin. '

The issue at hand is to find the parameters wq and by for the optimal hyperplane, given

the training set . The pair (wq, bp) must satisfy the constraint:

wox;, +by 21 ford, =+1 66)
WoX, +b, <-1 ford; =-1 '
Note that if equation (6.2) holds, that is, the patterns are linearly separable, we can
always rescale wy and by such that equation (6.6) holds; this scaling operation leaves
equation (6.3) unaffected. |

The particular data points (x;d;) for which the first or second line of Eq.(6.6) is .
~ satisfied with the‘equality sign are called support vectors, hence the name “support
" vector for machine”. These vectors play a prominent fole in the operation of this class
of ‘lear‘ning machines. In c.oncep,tuall terms, the support vectors are those data points
that lie closest to the decisioh surface and are therefore the most difficult to classify.

As subh, they have a direct,bearing on the optimum location of the decision surface.

~ Consider a support vector x® for which @ = +1. Then by definition, we have

gEN=wyx® —by=~1  for @9=—1

(6.7
g =wix®+b, =+l  for d®¥=+1 :

From equation (6.5) the algebraic distance from the support vector x to the optimal

hyperplane is

_gx®)

el

¥

therefore », can be written as
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_ m if d¥=+1
10 6.8)
B I A

where the plus sign indicates that x®¥ lies on the positives side of the optimal
hyperplane and the minus sign indicates that x® lies on the negative side of the
optimal hyperplane. Let P denote the optimum value of the margin of separation
between the two classes that constitute the training set '¥'. Then, from equation (6.8) it
follows that
p=2r
- 2 69)
Il

Equation (6.9) states that maximizing the margin of separation between classes is

equivalent to minimizing the Euclidean norm of the weight vector w.

‘In summary, the optimal hyperplane defined by équation (6.3) is unique in the sense
* that the optimum weight vector wo provides the maximum possible separation
between positive and negative examples. This optimum condition is attained by

minimizing the Euclidean norm of the weight vector w
Quadratic optimization for Finding the optimal Hyperplane

- Our goal is to develop a computationally efficient procedure. for using the training
sample set ¥ = {(x;,4,)} 5 to find the optimal hyperplane, subject to the constraint

d.i(WTXi+b)_—>-1 fori = 1,2,....N (6.10)

This constraint combines the two lines of Eq.(6.6) with w used in place of wy. The

constrained optimization problem that we have to solve may now be stated as:

Given the training sample {(X;.d,)} il , find the optimum values of the weight vector

w and bias b such that they satisfy the constraints
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d,(w'x, +b)21  for i=1.2...N

' 1
and the weight vector w minimizes the cost function: @(W) = “Z‘WTW : ™

: 1
The scaling factor "Z‘is included here for convenience of presentation. This

constrained optimization problems is called the primal problem. It is characterized as

follows:

—> The cost function (W) is a convex function of w

—> The constraints are linear in w.

Accordingly, we may solve the constrained optimization problems using the method

of Lagrange rhultipliers (Bértsekas, 1995).

First, we construct the Lagrangian function:
Iwbo) = ww-Tald X D)1 (61D

where the auxiliary nonnegative variables @ are called Lagrange multipliers. The’
~ solution to the constrained optimization problem is determined by the saddle point of

the Lagrangian function J (W,b,a) , which has to be minimized with respect to w and

- b; it also has to be maximized with respect to e . Thus, differentiating (w,b,®) with

respect to w and b setting the results equal to zero, we get the following two

conditions of optimality:

oJ(w,b,a)
it . PR AR A ey |
Condition 1: T
oJ(w,b,a.
Condition 2: ""’(‘é”l;”“')": 0

Application of optimality condition 1 to the Lagrangian function of equation (6.11)

yields (after rearrangement of terms ).

R ,
W= ,Ea"dixi (6.12)
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Application of optimality condition 2 to the Lagrangian function of eq.(6.11) yields

R .
Tad, =0 | (6.13)

The solution vector w is defined in terms of an expansion that involves the N training
examples. Note, however, that although this solution is unique by virtue of the.
convexity of the Lagrangian, the same cannot be said about the Lagrange

coefficients,cr;, We may use the inner product kernel to construct the optimal

hyperplane in the feature space without having to consider the feature space itself in

explicit form. The inner product kernel can be described as below:
~ Inner Product Kernel:
Let X be a vector drawn from input space with dimension my and thecorresponding

set of nonhnear transformatxons from input space to feature space is {qoj (X)}’”‘ It is

. assumed that C"; (X) is defined a priori for all j.

We define a hyper plane acting as the decision surface as follows:
zm@mnbo - o (6.14)
= .

where {w } denotes a set of lmear weights connecting the feature space to the

output space, and b is the blas.

For the sake of convenience, we take ¢, (X) =1 for all X, so that wy denotes the bias b.
Equation (6.14) will take the form of |

; %@)0 (615)

Equation (6.15) defines the decision surface computed in the feature space in terms of
~ the linear weights of the machine.

Deﬁne the vector point function go(X) [goo X)) 20X ... o, (X)J ” where due to
‘ btas an(X) lfor all X.

126



Chapter 6: Kernel based ANN claésiﬁers, RBF Networks and Support Vector Machines

In vector form the above equation can be written as W @(X) =0 (6.16)

N
Therefore equation (6.12) can be written as W = Z&,d,¢(x;) 6.17)

where the feature vector ¢(X,;) corresponds to the input X; in the i example.

Using equations (6.17) in (6.16), we get
N r . )
Zod, e (x)p(x,)=0 o (6.18)

The term @79 represents the inner product of two vectors induced in the feature
~ space by the input vector X and the input pattern X; pertaining to the i" example.
_Tﬂe inner product kernel K(X,X;) defined by
| KX X)) =9 (X)eX))
K(X,Xi)=§:¢,-(X)¢,-(Xi) fori =1,2,...,N (6.19)
‘ =L _ S ‘ ’
- Using equation (6.19) in equation (6.18), we get

o d,K(X,X,)=0.

Consider the following 2-class problem in which our aim is to find the e(iuation of the
optimal hyper plane which discriminates the given pattern. The optimal hyper plane is
obtained by using two different kernels. '

XOR problem:
' | Input Vector (X) Desired response (d)
LD -1
(-1,1) . +1
(1,-1) : +1
11 -1
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[a] Polynomial kernel:
Considering the kernel K(X,X,)=(1+X"X,)

| Xa i
= 1+[x, x,]
X
= (1 +Xx, XX, )2

Therefore, K (X, Xi Y=14x2x2 + x2x2 + 2x,x, + 2%,%,, + 2X,X, X, %,

The image of the inpuﬁ vector X induced in feature space is thefefore df;duced to be
o(X) = [1, xZ, ﬁx1x2 g x;, «Ex,, \Exz]r

Si@lmly o(X,)= [1, X V2x,x,,, .x"22 2%, \/_2,%2]? fori= 1,_2,3,4

~ Now, kernel K= {K (Xi;Xj)}j:A

i=1 =l j=1

o111
1 9
k= 9.1 1
1191
IB 119
‘The objective function
N 1 N N ’ ) )
O(o) = Zai "‘izzaiajdide(Xi:Xj) ‘ (6.20)

g@@)=o,+a,+a;,+0o,

-—%(90:12 — 20402, — 204,00, + 204,01, + 9062 + 200,0t; — 206,00, + 90t — 200,01, + 902 )

Differentiating above objective function with respéct to a4, 0p, 03 and o4 respectively,

we get following simultaneous equations:

o, -a, o, +a, =1
-0y +90, +o, ~ 0 =1
—-a,+a2+9a3'-a4 =1
o ~a, —0;+%, =1
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Solving the above simultaneous linear equations, we get a; = a; = a3 = a4=1/8

In order to obtain the optimum value of the objective function Qfa) , we denote the

above obtained solution as
Go1 = 002 = Qo3 = Gos=1/8
\ .

All 0,4’s are equal that indicates that in this example all four input vectors {Xi }; are

support vectors.

Therefore, from equation (6.20) the optimal value of the objective function Q(a) is
Oof@)=1/4. | -
Ffom equation (6.17), the dptimal weight vector can be writtén as

N .
Wo = Ela 4, p(X;)

w, =<l 00X,)+ 0(X,) + (%) - p(X)]

I I O B S I U T R

1 1 1|
o E | g |-
wazg—— +l +1 —

1l |- |
V2] [V2 | |2,

SR

1 T
wo.—.[o 0 ——= 0.0 o]

7

From equation (6.16), the Support Vector Machine can be constructed as follows:

[o 0 ”{/1"2: 0 0 o} b 2 VZxx, 2 2x 2% =0

= “xlxz =0 ' ’ (6.21)
Using equation (6.21), the computed output for each input pattern becomes identical

as the desired output.

129



Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

y=-x1x2

[Fig. 6.3 Feature map of Suppbrt Vector Machine]
Figures 6.2 and 6.3 demonstrate the support vector machine and feature map of :

‘support vector machine respectively of the XOR problem.

Now we try to construct Support Vector Machine of the same problem by applying

Gaussian kernel and observe the difference.

[b] Gaussian kernel:

1
Consider K(X,X;)= exp[- Py Ix-X, "2 ) with
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X = [X1, Xo]” and X;=[xs, %]
The image of the input vector X induced in feature space is therefore deduced to be
P(X) = [G(X,X,),G(X,X,), G(X,X,), G(X,X,)]”

Taking spread, o = I, we get the Gaussian matrix as follows:

1 0.0183 0.0183 0.0183
_10.0183 1 0.0183 0.0183
~10.0183 0.0183 1 0.0183

0.0183 0.0183 0.0183 1

Solving equation (6.20) for N = 4 patterns using Gaussian kerriel, we get the optimal
. value of Lagrangian coefficients as '
. p1 = Qo3 = do3 = ao4=1.038

All the four poin’cs are support vectors.
- Now using equation (6.17), we get theWeight vector as follows: _
- wo=[-111 17
- Using equation (6.16), the Supporf Vector Machine can be constructed as f6110ws:

(DOE Xy + (NGEXy) + (NGKX) + (DGXKXy)=0

Using equation (6.21), the computed output for each input pattern can be expressed as

follows:
Input Vector (X) Desired response (d) Computed response
(-1,-1) -1 -0.9634
-1, +1 ' 0.9634
(1-1) | +1 0.9634
(L, -1 -0.9634

By taking appropriate value of o, we may get more accuracy.

6.4.2. Multi-class SVM problem
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. There is more than one way to device multi-class problem classifiers employing linear
discriminant function. For example, we might reduce the problem to ¢ two-class
problems, where the i problem is solved by a linear discriminant function that
separates points assigned to w; from those not assigned to w; This approach is called
one to one approach. A more extravagant approach would be to use c(c-1)/2 linear-
discriminants, one for every pair of class. This technique is known as one to all

approach. But both of these approaches can lead to regions in which the classification
is undefined [39].

The new approach of dbtaining the hyper planes of multiclass problems can be

introduced using Maxnet network as shown below:
6.5. Multiclass Support Vector Machine using MAXNET

The new approach of classifying multiclass problems is divided in to two layers viz.
* Support Vector Machine network and second is MAXNET network Both the layers

can be charactenzed as below

The Support Vector Machme is of feed ferward type and constltutes the 1st layer of
the 013351ﬁer The p-class SVM network has p output neurons. The strongest response

of a neuron is indicative of the distance value between the input and the category this

neuron represents.

The second layer of the classifier is called MAXNET and it operates as a recurrent
recall network in an auxiliary mode. Its only function is to suppress value at
MAXNET output nodes d’rhg:r than the initially maximum- output node of the first
layer. The block diagram of the MAXNET SVM classifier is depicted Below: |
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ﬁxl ] +1 —
o Support | % " v £
Vector — = ¥"

> €c . P MAXNET p >

Machine — :

n .
|- ] . : yk+l

’ L r

[Fig. 6.4. Block diagram of the MAXNET SVM classifier ]

Censider the training saﬁ1p1e {(X Z, )},_1 , Where x, is the mput pattem for the i

example out of total N patterns and Z;= { i },_l is the correspondmg desired response

. (target output) out of total K classes.

To begm with one verses all’ approach we assume that if the ;o output of the i
pattern (class) is represented by the z; = +1 then the i™ pattern is said to be correctly
.ldentlﬁed and all other patterns for which zj = -1 are said to be incorrectly identified.
We assume that the correct pattern is “linearly separable” than the incorrect patterns.
* The equation of a decision surface for &” class in the form of a hyperplane that does
the separation is ‘

Wy p(x)+b, =0 | (6.22)
where X is an input vector, w, is an adjustable weight vector, and bk is a bias for K*

class. We may thus write

W p(x,)+b, 20 for zy=-+1 ' (6.23)
W p(x;)+b, <0 for zy=-1

The discriminant function, as defined in the equation (6.4) for a two class problem,

can be written for a multiclass problem as follows:

g(x)=wy +b, (6.24)
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[Fig. 6.4a Separation of the three classes by three hyperplanes]

As shown in the Fig. 6.4a, for each class one hyperplane may be obtained which

discriminate one class from the other classes.

Perhaps the easiest way to see this is to express X es

X=X, +7 ]r“’ﬂ‘—T
where X, is a normal projection of x on to the optlmal hyperplane and r is the

algebraic distance as deﬁned for the 2-class problem

: The issue at hand is to find the parameters w(;k and bo for the: optlmal hyperplane The

. pair (Weybo) must sansfy the constraint:

ok¢(xi) +by 2 1 for = +1

| | (6.25)
W 0(x,)#+ b, <1 - for  zy=-1

Note that if Eq.(6.2) holds, that is, the patterns ate linearly separable, we can always
rescale woand by such that Eq. (6.6) holds; this scaling operation leaves equation (6.3)

unaffected. -
* Quadratic optimization for Finding the optimal Hyperplane for k™ class

The constrained optimization problem, as discussed in the subsection (6.3.1), that we

have to solve may now be stated as:

Given the trainiﬁg sample {(X;, Zu)}im , find the optimum values of the Weig}xt vector

wy and bias by such that they satisfy the constraints

Zk:(w:q)(xi)'{“bk) 21 fori=1,2,...N
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_ 1
and the weight vector w minimizes the cost function: p(w, )= 5 WeW, (6.26)

1 .
The scaling factor Eis included here for convenience of presentation. This

constrained optimization problems is called the primal problem. It is characterized as

follows: _
— The cost function #(Wy) is a convex function of wy.
- The'constraints are linear m Wi
Accordingly, we may solve the constrained optimization problems using the method
of Lagrange multipliers (Bertsekas, 1995).
* First, we construct the Lagrangian function:

J(Wi, b, 0, ) = szwk - ‘Elaki[zki (W o(x,)+b,)-1] (6.27)

] ~where the aﬁxiliary nonnegative variables ®u are called Lagrange mulﬁpliers for the
K" class. Thus, differentiating equation (6.27) with respect to wy and by setting the

- results equal to zero, we get the following two conditions of optimality:

aJ(w,;b,,a,) _

o 1 0
| Condlnog L ow,
| (W ba)
. Condition 2: _““‘__—gbk =0,
- OO

Application of optimality condition-1 to the Lagrangian function of eq.(6.27) yields
(after rearrangement of terms )
N :
Wy = 20z, P(x,) (6.28)

Applicant of optimality condition-2 to the Lagrangian function of eq.(6.28) yields

N

Tz, =0 (6.29)

As discussed in the subsection (6.3.1), the dual problem of equation (6.27) can be
obtained by expénding it term by term
From equation(6.24),

| & T, <& il
J(W gy b 00 ) = “é‘wkwk “Eaikzikwk("(xi)_bkzaikzik + Elaik
i1 pe) :
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Using the constraints 1 and 2 of this section, we get

N 1
Therefore, J(W 50,00 ) = Elaik “522‘1&“@252@99("5)99("1;‘)
[

N 1 & .
J(W s by 0, ) = i{':laik ”“‘2" Xakfakaldzig'K(xi’xk)

i:j:

We may now state the dual problem as follows:
, N 1 & '
I (Wb o) = B0ty = N 04, 0,7,2,K(%;,%,) (6.30)
. = ==l
subject to the constraints
, . |
() Tz =0
(@) % 20
Having determined the optimum Lagrange multipliers, denoted by @i, we may
compute the optimum weight vector w, using the formula (6.28), we get
. N o
. V Wok = i_{:;aakfzkiqa(xi)

Fc{r.insfcaﬁce,' suppbse we:hav'e a k class "problvén‘ls for instance &=3.
Then the dual problem may be written from equation (6.30) as

. Son 1& v : ’
Lo, ) = Zak,i - ’é‘zak,kak,jzk,kzk,jK(Xk »X)
i k.J . : .

Subject to szlkaklk =0, 0,20

k=1
Where n = number of patterns =3
k=12 ..,n

k; = output neuron =9

Zie= k;™ output neuron of ¥* pattern
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Consider input yéctors of three characters C, 4 and T
C=[1,1,1,1,-1,-1,1,1,1T7 |
A=[-1,1,-1,1,-1,-1,1,-1,1]"
T=[1,1»,1,—1,1,-1;-1,1,;1}"‘ '

The corresponding butpﬁt vectors are

C,=[-1,-1,1T%, 4,~[-1,1,-11%, Ta?{l',-l,-l]T respectively.
In this example k;={1,2,3}- :
_Take k1=l : »
. 0 1 ’ n . )
Lioy) =, ----2-2‘,051,605I 2z K (XL X))
i=1 k,j v

Subject to szlkavuc =0 o, 20
=

Let K(X,Y)= exp‘(“ = X-y ) | (6.31)

For o = 1, the Gaussian matrix X is given by

100
KX, Y)=[0 1 0
0 0 1

L{a,) = oy +ay, + oy,

—%[afl(ml)(—l)l + 0,0, (<D(=10 +0+0+ oA (-1)(=1) +0+0+0+0+a]
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oL ,
5&::1““11:0 : :}anzl'
oL '

aau =1—-a12 =0 :>0‘x2=1
oL

for the class &;=1 all the three patterns are Support Vectors. Proceedmg in the same

way for the remalmng classes k=2 & kr=3, we get
Oy =0y, =0 =1
= a32 - a33 - 1

Thus for all the classes aII the three patterns are support vectors Using these support

_ vectors for each class we calculate optimized weight vector as follows:

 N=3

Eahzlt(o(x)
1 0 0
=1{-{o] - |1]| + |o
0 0 1
~1
=|-1
1

Proceeding in the same way for the rest of the patterns, we get the optimized weight

- vectors for second the third class as follows:

N=3
Wy = :§1 0,,2,,90(X;)

1 0 0
=1|-{0} + |1} - |0
0 0 1
-1
=|1
=1]
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% 00,25,0(X)
1 0 0

=110 - |11 - {0
0 0 1
1

=]-1

Now for class &;=1 , the support vector méchiﬁe can be given by using the equation
(6.16) - P o |

ol gﬂ(X) 0 .
1 ‘_From the definition of (X)), discussed in the section 6. 4, we can write

DGXX)) + (DGEKXy) + (DGXX) =0 (632

Prdceed«iﬁg in the same for other two classes k;=2 and k;=3, we get the support vector
machmes given as follows: - | '
(-DEXXy) + (NGX.Xq) + (= l)G(X Xl) =0 (6.33)
(DGXXp) + (-DGX Xy + (1GXXy) =0 ‘ (6.34)

‘For the validation purpose, we take a new pattern as shown below:
Cr=[1,1-L1-1,-LL L1
- The corresponding values of the Gaussian kernel defined in the equation (6.31) are as

under:

G(C],Xl) =(,0183, G(CI»XZ) = 0.0’ G(C],X3) =0.0

Using the values mentioned above the support vector machines (6.32), (6.33) and
(6.34) yleld the following output vector:

- 0 0183
-0.0183
0.0183
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Applying MAXNET network, we can get the solution. The MAXNET network can be

introduced as shown below [19]:
MAXNET mnetwork:

MAXNET needs to be employed as a second layer only for cases in which an
enhancement of the iniﬁal dominant response of the '™ node responds positively, as
opposed to all remaining nodes whose responses should have decayéd to zero. As
shown in figure (below), MAXNET is a recurrent network involving both excitatory
and inhibitory connections. The excitatory connection within the network is
implemented in the form of a single positive self-feedback loop with a weighting
coefficient of 1. All the remaihing connections of this fully coﬁpled feedback network
are inhibitory. They are represérited as M-1 cross-feedback synapses with coefficients

-g from each output. The second layer wéight matrix Wy of size p x p is thus of the

form
A 1 -& —E —€
. Wﬁ“—‘ —& 1 - ~&
| |-& —¢ —ev L. |

‘where € must be bounded 0 < £ < 1/p. The quantity € can be called the lateral
interaction coefficient. Input to the network should fulfil the initializing inputs
condition

0=y =<1 fori=12,...p

The MAXNET network gradually suppresses all but the largest initial network:
excitation. When initialized with the input vector y, , the network starts processing it
by adding positive self-feedback and negative cross-feedback. As a result of a

number of recurrences, the only unsuppressed node will be the one with the largest

initializing entry ¥,. This means that the only nonzero output response node is the
‘node closest to input vector argument. The recurrent processing by MAXNET leading
to this respbnse is | '

¥ =TIW,y*] C(635)

where T is a nonlinear diagonal matrix operator with entries f{.) given below:
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-1 net=<Q

S (net) = {net net20 ‘ (6.37)

Each entry of the updated vector ¥ decreases at the ™ recursion step of equation
(6.35) under the MAXNET update algorithm, with the largest entry decreasing
slowest. This is due to the conditions on the entries of matrix Wy, specifically, due to

“the condition 0 <e<1/p.

Assume that ¥,.>¥/, i= 1,2,3...,p and i # m. During the first recurrence, all entries
of y* are computed on the linear portion of f{net). The smallest of all y° entries will
first reach the level f{net) = 0, assumed at the K™ step. The clipping of one output entry

slows down the decrease of ¥ in all forthcoming steps. Then, fhe second smallest

entry of y° reaches f(net) 0.The process, repeats itself until all values except for one,

at the output of the m™ node, remain at nonzero values.

AT
o A |«
. . ' Sl
: _ N
A g ) ‘
. . ;
: Y1 ' g
¢ 1
Ya ; AUV NNV P
yé’ v P Y1
£
-E )
yﬂ % 1 yi‘
¥ yr
A e

[Fig. 6.5. MAXNET architecture for p class]

Consequently, our problem is of 3-class.Therefore the synaptic weight matrix can be |

given by
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1 - ~¢
"W, =|l-¢ 1 ~¢
~& —& 1

where gis the delay which is normally taken as a smaller value less than 1.

By considering € = 1/3, the above matrix becomes

1 -1/3 ~1/3
W, =|-1/3 1 -1/3
~1/3 -1/3 1

and the initial output vector obtained from the first layer, i.e. support vector machine

% | [-00183
s oy = yE =] -0.0183
' yt 0.0183

Now using the formula (6.35), the weighted input can be given by

| -3 -] [
net*=-1/3 -1 ~1/3| {y¥| ’ © (636)
-1/3 =1/3 1] | yf '
for iteration k=0, Aapplying' the formula (6.36), wé get '

1 ~1/3 —=1/3] [-0.0183] [-0.0183
net® =|-1/3 1 -1/3| . |-0.0183|-|-0.0183
~1/3 -1/3 1] (00183 | |0.02562

The corresponding computed output can be given by the transfer function defined in
the equation (6.37). ’

Using above transfer function, we get the first updated output as shown below:

n| [-1
Y=l = -1
y | | 0.02562

Applying the formulas (6.36) and (6.37) recursively 5 times, wet get the desired

output as follows:
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vil| [-1]
¥y =|y |=|-1
il L1

Hence the above output response concludes that the new pattern given out here is of is

ofclass3ie. C.

'Figure 6.6 shows the feature map of the support vector machines for multi-class

problem.

X;

X

X
X

X
. X

. Xy

[Fig. 6.6 Feature map of Supiport Vector Machines for 3-class problem]

: Advantages for the method:
e Easy to implement
¢ Same technique is used to classify 2-class and multi-class problems

¢ For each class separate decision surface will be obtained

6.6. Summary and Discussion

This chapter deals with the various learning strategies and the experimental details for
the classification of Gujarati glyphs using Radial Basis functions. The first attempt of
fecognition of the symbols for Gujarati numerals with two ANN architectures viz.
MLP and RBF is presented in [3]. As discussed in section 3 of this chapter, the
regularized RBF provides significantly good recognition accuracy of 93%. This can

further be improved by selecting proper spread using learning strategies discussed

earlier.
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Some times Support Vector. Machine can be characterized as the procedure of
interpolation rather than the architecture of ANN because the feature map generated
from the training set can be straight away used for the classification of the new pattern
without any kind of training. Section 6.5 of this chapter introduces the new approach
of classifying multiclass problems. using MAXNET network. All the approaches
quoted in the literatures like one-against-all, one-against-one, and DAGSVM are

lacking unifbrmity of classifyiﬁg two class problems and multiclass problems. The
| apéroach presented here is capable of handling multiclass problems as well as two.

class problems. We have solved the dual problem mentioned in the equation (6.30) for
 each category. Each solution of the dual problem yields the unique optimal
hyperplanes for each Categbry which separates the current class w1th 'thé remaining
classes and thus adopts the one agaiﬁst all approach. This new aﬁproach provides
same number of optimal hyperplanes as the number of classes. Therefore this

- api)rqach remains uniform for two class as well as multiclass problems.

: l Ihesje:kemel based ANN architectures are based on sound mathematical background
and can be us'edk for complex classification problems like ‘speech recognition,

 character recognition etc.
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