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Chapter 6. Kernel based ANN classifiers, Radial Basis 

Function Networks and Support Vector Machines

6.1. Introduction:

Unlike multilayer perceptrons trained with the back-propagation algorithm, the design 

of Radial Basis Function (RBF) and Support Vector Machine (SVM) networks 

follows a principled approach. In particular, the construction of regularization theory 

in RBF provides sound mathematical formulation while SVM is based on the 

principle of Structural Risk Minimization [18].

Another principled approach for the design of RBF and SVM networks is via kernel 

regression method. This approach involves the use of density estimation, for which 

the radial basis functions sum to unity exactly. Multivariate Gaussian distribution 

provides a convenient method for satisfying this requirement. In this chapter, we 

study the use of kernel based ANN classifiers for the classification of Gujarati 

symbols. A notion that is central to the construction of the support vector learning 

algorithm is the inner-product kernel between a “support vector “x,” and the vector X 

drawn from the input space.

This chapter is divided in to six sections. In the second section that follows this 

introductory section, we discuss the computational aspects of Radial Basis Function 

in continuation to the introductory concepts provided in Chapter 1. The learning rules 

for weights, centers and spreads for the Radial Basis Function architecture are 

established in this section. The third section demonstrates the application of these 

rules for the classification of Gujarati symbols. We introduce Support Vector 

Machines of two-class and multi-class types in the fourth section. A new approach for 

multi-class Support Vector Machine classifiers which is uniform in its approach for 

two-class and multi-class problems is presented in the fifth section. The chapter ends 

with a section providing a summary and discussion of the methods.
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6.2. Radial Basis Function Networks (RBFN)

As we have discussed in chapter 1, Radial Basis Function Networks can be 

characterized into two types, viz. Regularization Radial Basis Function and 

Generalized Radial Basis Function. As discussed in the section 1.4.2 of chapter 1, the 

unknown weights of the output layer of regularization Radial Basis Function networks 

can be computed by taking inverse of the Gaussian matrix G. But the drawback of this 

approach is that it is computationally very costly to find the inverse of G in the case 

of higher dimensional datasets. This problem can be overcome with the help of 

Generalized Radial Basis Functions, by considering fewer training patterns as centers 

of hidden layer. The following learning strategies are usually applied for Generalized 

Radial Basis Functions:

6.2.1 Learning Strategies

The learning process involved in the functioning of a radial-basis function network 

irrespective of its theoretical background, may be described as follows. The linear 

weights associated with the output units of the network tend to evolve faster 

compared to the parameters of the nonlinear activation functions of the hidden units. 

The hidden layer’s activation functions evolve slowly in accordance with some 

nonlinear optimization strategy, while the weights of the links of output layer evolve 

faster according to some linear optimization strategy. The task of the hidden layer is 

to map the input patterns in to a high dimensional feature space while the task of the 

linear output layer is to perform the classification. Due to this separation of 

responsibilities, it is reasonable to separate the optimization of the hidden and output 

layers of the network by using different techniques, and perhaps by operating on 

different time scales.

There are different learning strategies that we can follow in the design of an RBF 

network, depending on how the centers of the radial-basis function of the network are 

specified. In this section we discuss three design strategies specifying design of RBF 

networks using interpolation theory [18].
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a. Fixed Centers Selected at Random

The simplest approach is to assume fixed radial-basis functions defining the activation 

functions of the hidden units. The locations of the centers may be chosen randomly 

from the training data set. For the radial basis functions, we may employ Gaussian 

functions whose standard deviation is fixed according to the spread of the centers. 

Specifically, a normalized radial basis function centered at pattern U is defined as

C?(jjX —1,||2 )= exp

V — J

where X is the input vector, mj is the number of centers and dmax is the maximum of 

all distance between the pairs of chosen centers.

m. X~t« i = l,2,...,mi

The standard deviation (i.e. width) of all the Gaussian radial basis functions is fixed at

<r =

This formula ensures that the individual radial-basis functions are not too peaked or 

too flat; both of these two extreme conditions should be avoided. The only parameters 

that would need to be learned in this approach are the linear weights in the output 

layer of file network. A straightforward procedure for doing this is to use the 

pseudoinverse method discussed in chapter-1. Specifically, we have

where d is the vector of desired responses in the training set. The matrix (fi is the 

pseudoinverse of the matrix G, which is itself defined as

G = {gji}

Where g ji ~~ oxpv d211 j , , j = l,2,..,N; i = l,2,...,mi

where Xj is the /" input vector of the training sample. The norm in the above 

expression is usually taken as the Euclidean norm.

For the computation of pseudoinverse of a matrix the method of Singular-value 

decomposition (S VD) can be employed [18].
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b. Self-Organized Selection of centers

The main problem with the method of fixed centers described in the earlier sub

section is the fact that it may require a large training set for a satisfactory level of 

performance. One way of overcoming this limitation is to use a hybrid learning 

process, consisting of two different stages:

• Self-organized learning stage, the purpose of which is to estimate 

appropriate locations for the centers of the radial basis functions in the 

hidden layer.

• Supervised learning stage, which completes the design of the network 

by estimating the linear weights of the output layer.

For the self-organized learning process we need a clustering algorithm that partitions 

the given set of data points into subgroups. One such algorithm is the k-means 

clustering algorithm [18], which places the centers of the radial-basis functions in 

only those regions of the input space % where significant data are present. Let mj

denote die number of radial-basis functions. Let {tk(n)}*=i denote the centers of the 

radial-basis functions at iteration n of the algorithm. Then, the k-means clustering 

algorithm proceeds as follows:

1. Initialization: Choose random values for the initial centers h(0); the 

only restriction is that these initial values be different. It may also be 

desirable to keep the Euclidean norm of the centers small.

2. Sampling: Draw a sample vector X from the input space % with a 

certain probability. The vector X is input into the algorithm at iteration 

n.
3. Similarity matching: Let k(X) denote the index of the best-matching 

(winning) center for input vector X. Find k(X) at iteration n by using 

minimum-distance Euclidean criterion:

k(X) = arg imn||X(n) - tk (n)|| ^ k = 1>2>

where tk(«) is the center of the tfh radial-basis function at iteration n.
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4. Updating: Adjust the centers of the radial-basis functions, using the 

update rule:

tK (« + !) =
tk(/i)+!7[X(«)-tk(n)], k = k(X) 

otherwise

where rj is a learning-rate parameter that lies in the range 0 < r|< 1.

5. Continuation: Increment n by 1, go back to step 2, and continue the 

procedure until no noticeable changes are observed in the centers t*.

The k-means clustering algorithm just described is, in fact, a special case of a 

competitive (winner-take-all) learning process known as the self-organizing map.

c. Supervised Selection of Centers

In the third approach, the centers of the. radial-basis functions and all other free 

parameters of the network undergo a supervised learning process, i.e., the RBF 

network takes on its most generalized form. A natural candidate for such a process is 

error-correction learning, which is most conveniently implemented using a gradient- 

descent procedure that represents a generalization of the LMS algorithm.

Ihe first step in the development of such a learning procedure is to define the 

instantaneous value of the cost function.

#4f>? («)
A M

where N is the size of the training sample used to do the learning, and ej is the error 

signal defined by
ej = dj- F* (Xj)

Using equation (1.27) for mj number of centers, the equation (ii) takes the form

ei = dj-£w1G|x.-tj||cJ (Hi)

ej =di-|>«g((xj-t,))

M

where X -' is covariance matrix for the center i (as discussed in the chapter 1).
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The requirement is to find the free parameters Wi, ti5 and X<1, so as to minimize £ 

The results of this minimization are summarized in the table-6.1. The following points 

are noteworthy for the adaptation formulas for the linear weights of the output layer, 

positions and spreads of centers.

• The cost function £ is convex with respect to the linear parameters wi, but non- 

convex with respect to the centers tj and matrix X >' •
• The update equations for w}, ti, and X«* are assigned different learning-rate 

parameters rfr, rj2, and ifc respectively.

• Unlike the back-propagation algorithm, the gradient-descent procedure 

described in the table-6.1 for an RBF network does not involve error back- 

propagation.

Adaptation Formulas for the Linear Weights and the Positions and Spreads of Centers 
for RBF Networks*[ 18]

1. Learning weights (Output layer)

In order to update weight vector Wj, the gradient descent rule is applied 

as follows:

..... 9£(«)Wj (n+1) = w, (n) -77, ■ ■ - 7=1? m,,v ' ’dWiCn)’ z

where,

dg(n) _ d£(n) dey(n)
3Wj(n) 9ej(n) 3w;(n)

dw^(n) = Gj ^llc,) («sing equation iii)
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2. Positions of centers (hidden layer)

Positions of centers can be taught with the help of gradient descent 

rule. The corresponding gradient can be calculated as below:

9|(»)
dw^n)

9 £(fi) de^n)

de,(n) dG(\ a(|[xj-ti|c ) ' at,

9|(») 
9t ,(«)

-wi(«)2ej(n)(?’|XJ.-ti(»)||
M at,

(iv)

To be precise {[X^ tJ^X.-t,]}

Here, we require the derivative with respect a vector quantity. So we may 

proceed in a following way:

Vector quantities Xj and t; will take the form Xj={Xji, Xj2,.... Xjq}ixq and

tf={ tu , ta tiQ }ixQ respectively, where Q is number of inputs to the 

network

Therefore,/X/ - tiJT=

Letm) = [Xj-tifE7,[XJ-ti]

r-1 p~l

Therefore, = -tip)

Xj\ tn 
Xji — ta

Xjq tiQ
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= 2
£ (-s? (**-<»>)

(for p = r)

In a vector form the above equation can be written as
•

^-(/(ti»=-2S71(XJ-ti)

Substituting the above expression in equation (iv), we get

|M = _WiW|ej(„)(J'(|x, -t,{„)[J(-2S7‘(X1-«1))

|a=2Wi(„)|ei(„)G'(|Xj .ti(B)|cJs-'tx,-.,)

The updating rule for centers can be described as below:

a m
t,(n+l) = ti(n)-^2

at|(n) i = 1,2,

3. Spreads of centers (hidden layer)

In the hidden layer spread of centers can be learned with the similar 

approach of Gradient descent rule. The corresponding gradient term is 

computed as follows:

9£(») = ag(#Q 3ej(«) dGQ 
dZ?{n) 3ej (n)' dG{.) ' 3S71

= ~ w, (n)]£ e, (»)<?'jx, -tt(»)| )qjiM '

where, Qji (n)~ [X j— *i (n)] [^j— (n)Y 

Hence, the learning rule can be defined as shown below:

i;Vi

*The term e-}(n) is the error signal of output unit j at time n. The term G (.) is the first

derivative of the Green’s function G() with respect to its argument.
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In the following section, we demonstrate the classification accuracies for the symbols 

of Gujarati script. Gujarati numerals (middle zone characters) and lower zone 

characters are classified using Regularization (number of patterns is equal to the 

number of centers) and generalized Radial Basis Function networks (number of 

centers are fewer than that of number of patterns) respectively. Two different 

networks are constructed, one is for numerals and the other is for lower zone 

characters. Java is used as a programming language for both the experiments.

6.3.(a) Classification of the symbols of Gujarati numerals:

Along with the paper [3], discussed in the fourth chapter of the thesis, we have made 

simultaneous attempt of identifying Gujarati numerals with Regularization Radial 

Basis Function, discussed in the chapter 1. Here also we have taken compressed 

image of the size 16x16 (256) using Daubeehies D4 wavelets (discussed in the 

chapters 4), as an input to the network. Total 440 patterns of these numerals are 

considered for our experiment, out of which 200 patterns are taken in training set and 

the remaining 240 patterns are kept in the testing set. Being the regularization 

network, each pattern of the training set constitutes a center of the hidden neuron and 

hence form hidden layer for the network. 10 neurons (one for each numeral) are taken 

in the output layer of the network.

In order to compute weight vector w of equation (1.26) of chapter 1, inverse of the 

matrix G is to be multiplied with vector desired output d. But the inverse of [G\2omoo 

is computationally costly therefore the weights are to be learned by gradient descent 

(described in the 6.2.1) algorithm as we use in the case of MLP. Results are shown in 

table-1:
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Table-1 Classification of Gujarati numerals

Input of the Hidden Performance on testing set (%)

RBFN
units

(centers)

256 Daubechies 200 93.33

coefficients

6.3(b) Classification of symbols of lower and middle zone symbols:

We have applied generalized Radial Basis Function networks for the classification of 

the glyphs of lower and middle zone symbols in the images of the Gujarati script. 

Two separate networks have been constructed for the symbols of both the zones. 

Along with the experiments presented using Multilayer Perceptron in the chapter 4, 

we have made simultaneous attempts of applying generalized Radial Basis Function 

networks for the identification of lower and middle zone symbols.

In the experiments presented here, we have constructed two networks: the first 

network is for lower zone symbols and the second network is for the middle zone 

symbols of Gujarati script (section 2.4). Each of these networks has 256 input neurons 

and as many output neurons as the number of classes (types) of the respective zone.

An implementation of the general RBF architecture that can be used to realize these 

two networks has been developed as a set of java classes. The main class RBF has 

three attributes which are objects of three classes 1. InputLayer, 2. HiddenLayer and 

3. OutputLayer. Each of the three Layer classes contain an arry of objects of an 

appropriate neuron class, ie, 1. InputNeuron, 2. Radbas and 3. OutputNeuron types. 

All these neuron classes are sub-classes of a general class Neuron class. The links 

among all these layers are generated with the help of a Synapse class. The synaptic 

weighs of the links are updated using this class. The InputLayer class has attributes 

for an array of input neurons and input patterns etc. and methods like setlnputPattems,
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setSynapse etc. The corresponding InputNeuron class has attributes for input 

patterns, testing patterns etc and methods for setting input and testing patterns and for 

computing the outputs. HiddenLayer class has attributes for radbas neurons, input 

synapse weight, output synapse weight, distance, centers etc and methods for 

computing forward pass, center updation, spread updation etc. The corresponding 

hidden neuron class has attributes output synapse, distance, spread etc and methods 

for computing distance, center updation etc. While the OutputLayer class has 

attributes computed output, desired output, weights etc and the methods for getting 

computed output for each neuron, updation of weight etc. The corresponding output 

neuron class has attributes computed output, desired output etc and methods for 

computing computed output, updation of weights etc.

In the first experiment, the lower zone characters are classified. There are four lower 

modifiers which are used very frequently in the Gujarati script as shown in the chapter 

2. We have constructed a network with 256 input neurons at input to the network and 

4 neurons (one for each symbol) in the output layer. The 256 input neurons stand for 

the extracted features of the images using Daubechieds D4 wavelets as discussed in 

the chapters 4 and 5. The java program of the experiment is implemented using 

general network of Radial basis functions. The experimental details can be given as 

below:

Out of total 336 patterns of all the four symbols of lower modifiers of Gujarati script, 

we have considered randomly selected 136 patterns for testing and the remaining 200 

patterns for the training purpose. There are 40 patterns considered as the centers to the 

Generalized RBF network. The weights are updated by using the 1st learning rule 

among those described in the previous section. The distance used during the 

computation of the updated weights is the Mahalanobis distance which was discussed 

in the chapter 1( section 1.5 ). Initially, the spread (width) is chosen using the formula 

(i) in the previous section 6.2, which gave a starting value of 6 for the spread. Then, 

by evaluating the classification performance with various values of the spread, the 

optimal value of 10 was arrived at.
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We have updated only synaptic weights using the first updation rule of the previous 

section. The network is allowed to train until the SSE (Sum squared error) goes under 

0.07. The network has taken 2500 iterations to achieve that goal. The experimental 

results for the classification on test patterns are shown in the table-2:

Table 2. Classification of lower zone characters

Input of the

RBFN

Hidden
units

(centers)

Total
number of

patterns

Performance on testing set
(%) '

256 Daubechies
coefficients

40 200 95.58

Out of 136 testing patterns 130 are identified correctly and hence achieved good 

recognition accuracy of 95.58%. This accuracy is slightly less than the accuracy 

achieved by multilayer perception as discussed in the chapter 4.

In the next experiment we have tried to recognize middle zone symbols of the 

Gujarati script. Middle zone dataset, to be recognized by the network, is made up of 

images of 10 numerals, 34 consonants, 3 frequently used conjuncts and 5 independent 

vowels (totaling-52 glyphs). A total of 2986 printed Gujarati characters scanned in 

various fonts and sizes as described in the second section are collected. Each image is 

normalized to a matrix of 32 x 32 (1024) binary values representing the black and 

white pixels. 2011 of these images are taken as the training set and the remaining 975 

are used for the testing set. The normalized images are subjected to the D4 wavelet 

transformation, as described in the section 3. 256 low-low coefficients of each image 

are used as feature vector for the glyph.

Several experiments with various numbers of hidden units were carried out to 

determine the optimal number of neurons in the hidden layer of the network. The 

network has 256 neurons in its input layer and the output layer was made up of 52 

neurons (each neuron corresponding to one of the 52 symbols to be recognized).
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We have made several experiments by updating weights and centers using the update 

rules mentioned in the previous section of the above section. But we could manage to 

get an accuracy of 58.71% only in this case. It is felt that new strategies for center and 

spread selection may have to be adopted to improve the accuracy.

In the next section we introduce another Artificial Neural Network architecture 

namely support vector machine.

6.4. Introduction to Support Vector Machine

The MLP networks described in chapter 4 and the RBF networks described above are 

universal approximators in their own ways. In this chapter and the next, we discuss 

another category of feedforward networks, which are also universal approximators, 

known as support vector machines (SVM), pioneered by Vapnik (Boser, Guyon, and 

Vapnik, 1992; Cortes and Vapnik,1995;Vapnik 1995,1998). Like multilayer 

perceptrons and radial-basis function networks, support vector machines can be used 

for pattern classification and nonlinear regression. The formulation embodies the 

Structural Risk Minimization (SRM) principle (defined in the later part of this 

section), which has been shown to be superior, (Gunn et. al., 1997), to traditional 

Empirical Risk Minimization (Minimizing the error generated at the time of training 

in the output layer of the networks). This Structural Risk Minimization can broadly be 

introduced with the help of Vapnik-Chervonenkis (VC) dimension as below:

Vapnik-ChervonenMs dimension

In computational learning theory, the VC dimension (for Vapnik-Chervonenkis 

dimension) is a measure of the capacity of a statistical classification algorithm, 

defined as can shatter. A

classification model / with some parameter vector 0 is said to shatter a set of data 

points (xi, JC2, ... , xn) if, for all assignments of labels to those points, there exists a 0

such that the model /makes no errors when evaluating that set of data points.
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The VC dimension has utility in statistical leaning theory, because it can predict a
probabilistic upper bound on the test error of a classification model. The VC

[Fig.6.1 VC Dimension illustration]

Figure (6.1) illustrates how three points in the plane can be shattered by the set of 

linear indicator functions whereas four points cannot be. In this case the VC 

dimension is equal to the number of free parameters, but in general that is not the 

case; e.g. the function Asin(bx) has an infinite VC dimension (Vapnik, 1995). The set 

of linear indicator functions in n dimensional space has a VC dimension equal to n + 

1.

For example, consider a straight line as the classification model: the model used by a 

perceptron. The line should separate positive data points from negative data points. 

When there are 3 points that are not collinear, the line can shatter them. However, the 

line cannot shatter four points. Thus, the VC dimension of this particular classifier is 

3. It is important to remember that one can choose the arrangement of points, but then 

cannot change it as the labels on the points are permuted.

Structural Risk Minimisation

The challenge in solving a supervised learning problems is to realize the best 

generalization performance by matching the machine capacity to the available amount 

of training data for the problem at hand. The method of structural risk minimization 

provides an inductive procedure for achieving this goal by making the VC dimension 

of the learning machine a control variable (Vapnik, 1992, 1998). To be specific,
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consider an ensemble of pattern classifiers { F(X,W); Welf} and define a nested 

structure of n such machines

fk = { F(X,W); We Wt), k=l,2,...,n

such that we have

fi cjic,..cfn

where c signifies “is contained in”. Correspondingly, the VC dimensions of the 

individual pattern classifiers satisfy the condition

hi<h.i< ...< hn

which implies that the VC dimension of each pattern classifier is finite. Then, the 

method of structural risk minimization may proceed as follows:

® The empirical risk (i.e. training error) for each pattern classifier is minimized.

• The pattern classifier ‘f with the smallest guaranteed risk[18] is identified;

this particular machine provides the best compromise between the training 

error (i.e., quality of approximation of the training data) and the confidence 

interval, (i.e., complexity of the approximating function) which compete with 

each other.

Our goal is to find a network structure such that decreasing the VC dimension occurs 

at the expense of the smallest possible increase in training error.

The principle of structural risk minimization may be implemented in a variety of 

ways. For example, we may vary the. VC dimension h by varying the number of 

hidden neurons.

Basically, the support vector machine is a linear machine with some very nice 

properties. To explain how it works, it is perhaps easiest to start with the case of 

separable patterns that could arise in the context of pattern classification. In this 

context, the main idea of a support vector machine is to construct a hyperplane as the 

decision surface (chapter 1 section 1.4.2) in such a way that the margin of separation 

(discussed in the later part of this section) between positive and negative examples is 

maximized. The machine achieves this desirable property by following a principled 

approach rooted in the statistical learning theory that is discussed in Chapter 1. More
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precisely, the support vector machine is an approximate implementation of the 

method of structural risk minimization. This induction principle is based on the fact 

that the error rate of a learning machine on test data (i.e., the generalization error rate) 

is bounded by the sum of the training-error rate and a term that depends on the 

Vapnik-Chervonenkis (VC) dimension; in the case of separable patterns, a support 

vector machine produces a value of zero for the first term and minimizes the second 

term. Accordingly, the support vector machine can provide a good generalization 

performance on pattern classification problems despite the fact that it does not 

incorporate problem-domain knowledge. This attribute is unique to support vector 

machines.

6.4.1. Two-class problems

Initially, the theory of support vector machines is developed for two class problems 

and then the theory of multiclass problem is developed using the same concept of two 

class problem of support vector machine. Here we discuss the basic theory of two 

class problems which are considered to be linearly separable.

6.4.1.1. Optimal hyperplane for linearly separable patterns

Consider the training sample )fli, where x; is the input pattern for the i,h

example and dj is the corresponding desired response (target output). To begin with, 

we assume that the patterns (class) represented by the subset dt = +1 and the patterns 

represented by the subset d( = -1 are “linearly separable.” The equation of a decision 

surface in the form of a hyperplane that does the separation is
wTx + b=0 (6.1)

where x is an input vector, w is an adjustable weight vector, and b is a bias. We may 

thus write

wTx,- + b & 0 for di = +1 (6-2)
wTx,- + b < 0 for dj = -1
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The assumption of linearly separable patterns is made here to explain the basis idea 

behind a support vector machine in a rather simple setting; this assumption will be 

relaxed in Section 6.3.

For a given weight vector w and bias b, the separation between the hyperplane 

defined in Eq. (6.1) and the closest data point is called the margin of separation, 

denoted by p. The goal of a support vector machine is to find the particular 

hyperplane for which the margin of separation p is maximized. Under this condition, 

the decision surface is referred to as the optimal hyperplane.

Let w® and bo denotes the optimum values of the weight vector and bias, respectively. 

Correspondingly, the optimal hyperplane, representing a multidimensional linear
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(6.3)

(6.4)

gives an algebraic measure of the distance from x to the optimal hyperplane (Duda 

and Hart, 1973). Perhaps the easiest way to see this is to express x as

x=xp+''R

where xp is the normal projection of x onto the optimal hyperplane , and r is the 

desired algebraic distance; r is positive if x is on the positive side of the optimal 

hyperplane and negative side. Since, by definition, g(xp)=0, it follows that

g(x) = wj + b0 = r|wQ j|

Therefore r = f^

IK1

In particular ,the distance from the origin (i.e., x = 0) to the optimal hyperplane is 

given by h ^||wo| If bo>0, the origin is on the positive side of the optimal

or

(6.5)

decision surface in the input space, is defined by

WjX+60 = 0

which is a rewrite of Eq.(6.1) .The discriminant function 

g(x) = wJx+60
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hyperplane; if bo<0, it is on the negative side. If bo=0, the optimal hyperplane passes 

through the origin.

The issue at hand is to find the parameters wo and bo for the optimal hyperplane, given 

the training set. The pair (wo, bo) must satisfy the constraint:

wjx; +b0 >1 

wjx, +b0 < -1

Note that if equation (6.2) holds, that is, the patterns are linearly separable, we can 

always rescale wo and bo such that equation (6.6) holds; this scaling operation leaves 

equation (6.3) unaffected.

The particular data points fadi) for which the first or second line of Eq.(6.6) is 

satisfied with the equality sign are called support vectors, hence the name “support 

vector for machine”. These vectors play a prominent role in the operation of this class 

of learning machines. In conceptual terms, the support vectors are those data points 

that lie closest to the decision surface and are therefore the most difficult to classify. 

As such, they have a direct bearing on the optimum location of the decision surface.

Consider a support vector x^ for which d^= +1. Then by definition, we have

for dj = + l 

for d, = —1
(6.6)

g(x(s)) = wji(,) - b0 = -1 for d(s)= -1

g(x(s)) = WjX(s) + b0 =+l for d(s)=+1
(6-7)

From equation (6.5) the algebraic distance from the support vector x^ to the optimal 

hyperplane is

r =
g(xW)

therefore r, can be written as
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1 if d(s)=+1 

if dls)=-1
(6.8)

where the plus sign indicates that x(s) lies on the positives side of the optimal 

hyperplane and the minus sign indicates that x(s) lies on the negative side of the 

optimal hyperplane. Let P denote the optimum value of the margin of separation 

between the two classes that constitute the training set 'F. Then, from equation (6.8) it 

follows that

p = 2r
.... 2 (6.9)

INI

Equation (6.9) states that maximizing the margin of separation between classes is 

equivalent to minimizing the Euclidean norm of the weight vector w.

In summary, the optimal hyperplane defined by equation (6.3) is unique in the sense 

that the optimum weight vector Wo provides the maximum possible separation 

between positive and negative examples. This optimum condition is attained by 

minimizing the Euclidean norm of the weight vector w

Quadratic optimization for Finding the optimal Hyperplane

Our goal is to develop a computationally efficient procedure for using the training 

sample set T = {(xi >^/))m to find the optimal hypetplane, subject to the constraint 

d4 (wTXj + b) > 1 for i = it2,... JV (6.10)

This constraint combines the two lines of Eq.(6.6) with w used in place of wq. The 

constrained optimization problem that we have to solve may now be stated as:

Given the training sample {(Xi>^i))/Ii, find the optimum values of the weight vector 

w and bias b such that they satisfy the constraints
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d^x.+b)^! for i=l,2,...,N 

and the weight vector w minimizes the cost function: ^(w) = — wTw (*)

1
The scaling factor ~is included here for convenience of presentation. This

constrained optimization problems is called the primal problem. It is characterized as 

follows:

—> The cost function ^(w) is a convex function of w 

—> The constraints are linear in w.

Accordingly, we may solve the constrained optimization problems using the method 

of Lagrange multipliers (Bertsekas, 1995).

First, we construct the Lagrangian function:

J(w,b,a) ■ 1 T 
—w w- 2

■Ia,[rf)(wTxl+i)-l] (6.11)

where the auxiliary nonnegative variables ai are called Lagrange multipliers. The 

solution to the constrained optimization problem is determined by the saddle point of 

the Lagrangian function/(w, 5, a), which has to be minimized with respect to w and

b; it also has to be maximized with respect to a. Thus, differentiating </(w,b,ra) with 

respect to w and b setting the results equal to zero, we get the following two 

conditions of optimality:

dJ(w,b,a)
Condition 1: 3w

0

„ .. . _ dJ(w,b,a) A
Condition 2: ----- zr--------0

ab
Application of optimality condition 1 to the Lagrangian function of equation (6.11) 

yields (after rearrangement of terms )
N

w = Saiilxi (6.12)
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Application of optimality condition 2 to the Lagrangian function of eq.(6.11) yields 

%a,dt=Q (6.13)

The solution vector w is defined in terms of an expansion that involves the N training 

examples. Note, however, that although this solution is unique by virtue of the 

convexity of the Lagrangian, the same cannot be said about the Lagrange 

coefficients, We may use the inner product kernel to construct the optimal 

hyperplane in the feature space without having to consider the feature space itself in 

explicit form. The inner product kernel can be described as below:

Inner Product Kernel:

Let X be a vector drawn from input space with dimension mg and the corresponding 
set of nonlinear transformations from input space to feature space is {^.(X)}*1^. It is

assumed that Vj (X) is defined a priori for all j.

We define a hyper plane acting as the decision surface as follows:

f4wJ<pJ(X) + b = 0 (6.14)

M

where {wy}^0 denotes a set of linear weights connecting the feature space to the 

output space, and b is the bias.

For the sake of convenience, we take <p0 (X) = 1 for all X, so that wg denotes the bias b. 

Equation (6.14) will take the form of

y=o
(6.15)

Equation (6.15) defines the decision surface computed in the feature space in terms of 

the linear weights of the machine.

Define the vector point function <p(X) - [<p0 (X) q>x (X) ... <pmt (X)JT where due to 

bias %(X) = 1 for all X.
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In vector form the above equation can be written as wT<p(X) - 0. (6.16)

N
Therefore equation (6.12) can be written as w = 'Laidi(p{xi) (6.17)

where the feature vector <p(X{) corresponds to the input Xi in the iih example.

Using equations (6.17) in (6.16), we get

vl,aidi(pT(xl)(p(x.) = 0 (6.18)

TThe term <P 9 represents the inner product of two vectors induced in the feature 
space by the input vector X and the input pattern Xi pertaining to the Ith example.

The inner product kernel K(X,Xj) defined by

K(X,Xi) = (pT(X)tp(Xi)

TO = ^^(X,) fori = 1,2,...,N (6.19)
y=l. ■■

Using equation (6.19) in equation (6.18), we get

£aldiK(X,X.) = 0.

Consider the following 2-class problem in which our aim is to find the equation of the 

optimal hyper plane which discriminates the given pattern. The optimal hyper plane is 

obtained by using two different kernels.

XOR problem:

Input Vector (X) Desired response (d)

(-1,-1) -1

(-1,1) +1

(1,-1) +1

(1,1) -1
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[a] Polynomial kernel:
Considering the kernel K(X, X,) = (l + XTXf)2

l+[*i *2] xa

(l + xlxn+x2xnf

Y

J

Therefore, X(X, X.) — 1 + x, x;, + x2 xi2 + 2x,x(.] + 2x2xi2 + 2x1X2XI-2X[.2

The image of the input vector X induced in feature space is therefore deduced to be

(p{X) = [l, x,2, V2x, x2 , x2, ~j2xx, 4lx2 ]

Similarly <p(Xi) = [l, x,2,4lxn xi2, xf2, 4lxn, 4lxn ]T for i = 1,2,3,4

Now, kernel « = fcx,,XJ)t4

K:

9 111 
19 11 

119 1 
1119

The objective function

N , | N N

B(a) = ~IX<VjW(X..X,)'
4 (-1 j=1<=l

Q(a) = al+a2+a3+a4 
1

(6.20)

(9af - 2a,a2 - 2a, a3 + 2a,a4 + 9a\ + 2a2a3 - 2a2a4 + 9a2 - 2a3a4 + 9a2)

Differentiating above objective function with respect to ai, a?., as and 04 respectively, 

we get following simultaneous equations:

9a,-a2 ~a3 +(xa = 1 
-a, +9a2 +a3 -a4 =1 
-a, +a2 +9a3 -a4 =1 
a, -a2 -a3 +9a4 =1
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Solving the above simultaneous linear equations, we get a? = a2 = as = 014=1/8

In order to obtain the optimum value of the objective function Q(a) , we denote the 

above obtained solution as

a0i = a02 ~ a03 = ao4=l/8
\

All otoi’s are equal that indicates that in this example all four input vectors are 

support vectors.

Therefore, from equation (6.20) the optimal value of the objective function Q(a) is 

Q0(a)=l/4.

From equation (6.17), the optimal weight vector can be written as
N

w0 = Zaol.^(Xi)

=-[- <p(x, )+(p(x2)+<p(x3)-<p(x4)]

w„ =■

1 1 1 1
1 1 1 1
42

+
-42

+
-42 42

1 1 1 1
-42 -42 42 42
-V2 S''_ [-S_ [s[

W„
0 0 —]= 0 0 0

V2

From equation (6.16), the Support Vector Machine can be constructed as follows:

0 0 —~ 0 0 0 V2
[l xf ~JlxxX2 x2 4lxx =0

—^^2=0 (6.21) 

Using equation (6.21), the computed output for each input pattern becomes identical 

as the desired output.
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[Fig. 6.2 Support Vector Machine]

i

Figures 6.2 and 6.3 demonstrate the support vector machine and feature map of 

support vector machine respectively of the XOR problem.

Now we try to construct Support Vector Machine of the same problem by applying 

Gaussian kernel and observe the difference.

[b] Gaussian kernel:

Consider
(iC(X,Xj) = exp ■ 
V

-S-IX-X, 2<7211
\

with
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X = [X1; X2f and Xrfxu, xi2f

The image of the input vector X induced in feature space is therefore deduced to be 

<P(X) = [G(X, Xj ), G(X, X2), G(X, X3 ), G(X, X4)]f 

Taking spread, (7=1, we get the Gaussian matrix as follows:

1 0.0183 0.0183 0.0183 
0.0183 1 0.0183 0.0183 
0.0183 0.0183 1 0.0183 
0.0183 0.0183 0.0183 1

Solving equation (6.20) for N = 4 patterns using Gaussian kernel, we get the optimal 

value of Lagrangian coefficients as

a0i = a02-ao3 = ao4=1.038 

All the four points are support vectors.

Now using equation (6.17), we get the weight vector as follows: 

w0=[-l 1 1 -l]r

Using equation (6.16), the Support Vector Machine can be constructed as follows:

(-l)G(X,Xi) + (l)G(X,Xi) + (l)G(X,Xi) + (-l)G(X,Xi) = 0

Using equation (6.21), the computed output for each input pattern can be expressed as 

follows:

Input Vector (X) Desired response (d) Computed response

(-1,-1) -1 -0.9634

(-1,1) +1 0.9634

(1,-1) +1 0.9634

(1,1) -1 -0.9634

By taking appropriate value of a, we may get more accuracy.

6.4.2. Multi-class SVM problem
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There is more than one way to device multi-class problem classifiers employing linear 

discriminant function. For example, we might reduce the problem to c two-class 
problems, where the iih problem is solved by a linear discriminant function that 

separates points assigned to w(* from those not assigned to w,-. This approach is called 

one to one approach. A more extravagant approach would be to use c(c-l)/2 linear 

discriminants, one for every pair of class. This technique is known as one to all 

approach. But both of these approaches can lead to regions in which the classification 

is undefined [39].

The new approach of obtaining the hyper planes of multiclass problems can be 

introduced using Maxnet network as shown below:

6.5. Multiclass Support Vector Machine using MAXNET

The new approach of classifying multiclass problems is divided in to two layers viz. 

Support Vector Machine network and second is MAXNET network. Both the layers 

can be characterized as below:

The Support Vector Machine is of feed forward type and constitutes the 1st layer of 

the classifier. The p-class SVM network has p output neurons. The strongest response 

of a neuron is indicative of the distance value between the input and the category this 

neuron represents.

The second layer of the classifier is called MAXNET and it operates as a recurrent 

recall network in an auxiliary mode. Its only function is to suppress value at 

MAXNET output nodes other than the initially maximum output node of the first 

layer. The block diagram of the MAXNET SVM classifier is depicted below:

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

132



Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

/-

Consider the training sample {(xi ? )3>Ii, where x,- is the input pattern for the ith

example out of total N patterns and Z,= izn }i=1 is the corresponding desired response 

(target output) out of total K classes.

To begin with ‘one verses all’ approach, we assume that if the f' output of the Ith 

pattern (class) is represented by the zp = +1 then the z'th pattern is said to be correctly 

identified and all other patterns for which zp = -1 are said to be incorrectly identified. 

We assume that the correct pattern is “linearly separable” than the incorrect patterns. 
The equation of a decision surface for A* class in the form of a hyperplane that does 

the separation is

wlq>(x) + bk =0 (6.22)

where x is an input vector, wk is an adjustable weight vector, and bk is a bias for kth 

class. We may thus write

wl<P(Xi) + bk>0 for Zki = +1
™l<P(*i) + bk <0 for Zfa- = -l

(6,23)

The discriminant function, as defined in the equation (6.4) for a two class problem, 

can be written for a multiclass problem as follows:

g(x) = w^k +bok (6.24)
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[Fig. 6.4a Separation of the three classes by three hyperplanes]

As shown in the Fig. 6.4a, for each class one hyperplane may be obtained which 

discriminate one class from the other classes.

Perhaps the easiest way to see this is to express x as

where xp is a normal projection of x on to the optimal hyperplane, and r is the 

algebraic distance as defined for the 2-class problem.

The issue at hand is to find the parameters wo* and bok for the optimal hyperplane. The 

pair (w0k,bok) must satisfy the constraint:

w^CxJ + b^l for Zkl=+1 (625)

wJk<Kxi) + &0*<-l for

Note that if Eq.(6.2) holds, that is, the patterns ate linearly separable, we can always 

rescale w0 and bo such that Eq. (6.6) holds; this scaling operation leaves equation (6.3) 

unaffected.

Quadratic optimization for Finding the optimal Hyperplane for k,h class

The constrained optimization problem, as discussed in the subsection (6.3.1), that we 

have to solve may now be stated as:

Given the training sample ((xi > z«)}«, find the optimum values of the weight vector 

Wk and bias fy such that they satisfy the constraints

zi/(wk'P(xi) + ^)^1 for i=l,2,...,N
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and the weight vector w minimizes the cost function: 0(w k)~Twkwk (6.26)

1
The scaling factor “is included here for convenience of presentation. This

constrained optimization problems is called the primal problem. It is characterized as 

follows:

—> The cost function 0(wk) is a convex function of Wk.

--> The constraints are linear in Wk-

Accordingly, we may solve the constrained optimization problems using the method 

of Lagrange multipliers (Bertsekas, 1995).

First, we construct the Lagrangian function:

l xJ(wk,6i!ak)=-w^wk-EaJz4i(w^(xl) + h,)-l] (627)

where the auxiliary nonnegative variables au are called Lagrange multipliers for the 

Uh class. Thus, differentiating equation (6.27) with respect to w* and bk setting the 

results equal to zero, we get the following two conditions of optimality:

Condition 1:
dJ(wk,bk,ak)

dwk

Condition 2:
dJ(wk,bk,ak)

dbt
0

Application of optimality condition-1 to the Lagrangian function of eq.(6.27) yields 

(after rearrangement of terms )

N
(6.28)

Applicant of optimality condition-2 to the Lagrangian function of eq.(6.28) yields

X
£«***= 0 (6.29)

As discussed in the subsection (6.3.1), the dual problem of equation (6.27) can be 

obtained by expanding it term by term

From equation(6.24),

j X N X
J(wok,^,«k) = -w^wk -XaikZ,1 w'krp(x,)-hk^aikzik + Eaik

JL |_.j
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Using the constraints 1 and 2 of this section, we get

N 1Therefore, ^(wok,hft,ak) = Zaik --X2X^z«z^x]MxO
1 t j 

N l N

«k) = -t Z^Ajz¥z^K(~xi’x^
!=j~\

We may now state the dual problem as follows:
N l «

J(yvok,bk,ak) = -- ZjCCuavZyZvK (Xj,xk) (6.30)
' •“ i=j~\

subject to the constraints
N

0) ^ ^kiZkl = ®

(ii) akt - 0

Having determined the optimum Lagrange multipliers, denoted by aou, we may 

compute the optimum weight vector w0* using the formula (6,28), we get

N
ff.k = Sw(^)

For instance, suppose we.have a k class problems for instance k= 3.

Then the dual problem may be written from equation (6.30) as

n i n
^(ak. ) = ~ ~z'5'jak,k(Xk,iZ k,kZ k, jK(Xk jX;)

i-l £ k,J

it
Subject to SZM«M = 0 # otkfk > 0

w ■ ■

Where n = number of patterns = 3

k — 1, 2, n

kj - output neuron =9

zk,k = k/h output neuron of kth pattern

136



Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Consider input vectors of three characters C, A and T 
C= [1,1,1,1,-1,-1,1,1,if 

A = [-1,1,-1,1,-1,-1,1,-1, If 

T= [1,1,1,-1,1,-1,-1,1, -If 

The corresponding output vectors are
C0 = [-l,-l,lfri0=[-l,l,-lf 2>[1,-1,-if respectively.

In this example £/={!,2,3}

Take kj=l

Uad = -\'LallalJzllzlJK(Xl,TL,)
i-l & kj

nSubject to '^izikaik = <f a\k -0
k=\

Let ^(X,Y) = exp •
v

1
2cr2

||X—y||2 ^

y
(6.31)

For a - 1, the Gaussian matrix K is given by

K(X, Y) =
1 0 0 
0 1 0 
0 0 1

X(ttj) — &\ I + (TC\2 + ®13

-|k(-l)(-l)l + «„«12(-1)(-1)0 +0 + 0+ (-l)C-l) + 0 + 0 + 0 + 0 + «i2 ]
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dL
dan

dL
dal2

dL
dan

= 1 -an =0 

=1-a12=0 

= 1—ocl3 — 0

=>«,,= 1

^ ®12 = ^ 

=> (Xl3 = 1

for the class kj-1 all the three patterns are Support Vectors. Proceeding in the same 

way for the remaining classes kj-2 Sc kj=3, we get

oc2i — cc22 — oc2i =1 

cc31 — cx32 = (X33 ~ 1

Thus for all the classes all the three patterns are support vectors. Using these support 

vectors for each class we calculate optimized weight vector as follows:

AMS
w01 = I OuZu^X,)

Proceeding in the same way for the rest of the' patterns, we get the optimized weight 

vectors for second the third class as follows:

N=i
W02 = £ OCuZ2j<p{X{)

V "o' 'o'
=1 - 0 1 - 0

o_ _0 1_
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w=3

W83 = 2 a^zu(p{X.) 
1=1

T

i01 _ ioL I

11 0 - 1 - 0

O
i

o_
I

____
1

------
1

-1 
-1

Now for class k3=l, the support vector machine can be given by using the equation 

(6.1b)

w>(X) = 0

From the definition of ^00} discussed in the section 6.4, we can write

+ (-l)G(XA) + (l)G(X,Xa) = 0 (6.32)

Proceeding in the same for other two classes kj=2 and ki=3, we get the support vector 

machines given as follows:

(-l)G(X,Xi) + (l)G(X,Xi) + (rl)G(X,Xi) =0 (6.33)

(l)G(X,Xi) + (-l)G(X,Xj) + (-l)G(X,Xi) =0 (6.34)

For the validation purpose, we take a new pattern as shown below:
C;= [1,1,-1,1,-1,-1,1,1, if

The corresponding values of the Gaussian kernel defined in the equation (6.31) are as 

under:

G(ChXi) = 0.0183, G(ChXi) = 0.0, G(ChX3) = 0.0

Using the values mentioned above the support vector machines (6.32), (6.33) and 

(6.34) yield the following output vector:

-0.0183'

-0.0183
0.0183
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Applying MAXNET network, we can get the solution. The MAXNET network can be 

introduced as shown below [19]:

MAXNET network:

MAXNET needs to be employed as a second layer only for cases in which an 

enhancement of the initial dominant response of the mtb node responds positively, as 

opposed to all remaining nodes whose responses should have decayed to zero. As 

shown in figure (below), MAXNET is a recurrent network involving both excitatory 

and inhibitory connections. The excitatory connection within the network is 

implemented in the form of a single positive self-feedback loop with a weighting 

coefficient of 1. All the remaining connections of this fully coupled feedback network 

are inhibitory. They are represented as M-l cross-feedback synapses with coefficients 

-8 from each output. The second layer weight matrix Wm of size p x p is thus of the 

form

1 -e -e ■■■ -e 
-£ 1-8 ••• -e

-e -e -e ••• 1

where e must be bounded 0 < e < 1/p. The quantity e can be called the lateral 

interaction coefficient. Input to the network should fulfil the initializing inputs 

condition

W;M

fori-1,2,

The MAXNET network gradually suppresses all but the largest initial network 

excitation. When initialized with the input vector y0, the network starts processing it 

by adding positive self-feedback and negative cross-feedback. As a result of a 

number of recurrences, the only unsuppressed node will be the one with the largest

initializing entry Y°m. This means that the only nonzero output response node is the 

node closest to input vector argument. The recurrent processing by MAXNET leading 

to this response is

Yk+i =?’[Wmy*] (6.35)

where T is a nonlinear diagonal matrix operator with entries/(.) given below:
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N f-1 net<0
f(net) = \ (6.37)

[net net >0 v J

Each entry of the updated vector decreases at the kth recursion step of equation 

(6.35) under the MAXNET update algorithm, with the largest entry decreasing 

slowest. This is due to the conditions on the entries of matrix Wm, specifically, due to 

the condition 0 < s < 1/p.

Assume that >C>y°, i = l,2,3...,p and i ^ m. During the first recurrence, all entries 

of y1 are computed on the linear portion of/(net). The smallest of all y° entries will 

first reach the level/(net) = 0, assumed at the kih step. The clipping of one output entry

slows down the decrease of ym in all forthcoming steps. Then, the second smallest 
entry of y° reaches /(net) = O.The process, repeats itself until all values except for one, 

at the output of the mth node, remain at nonzero values.

7a

[Fig. 6.5. MAXNET architecture for p class]

Consequently, our problem is of 3-class.Therefore the synaptic weight matrix can be 

given by
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1 -S -S'

~e 1 -e 
-s -e 1

where eis the delay which is normally taken as a smaller value less than 1.

By considering s = 1/3, the above matrix becomes

W„
1 -1/3 —1/3 
-1/3 1 -1/3 
-1/3 -1/3 1

and the initial output vector obtained from the first layer, i.e. support vector machine

'yf '-0.0183'

is y° = yk2 = -0.0183
yk> _ 0.0183

Now using the formula (6.35), the weighted input can be given by

'1—1/3 -1/3'

l
‘S

i
__

__
j

netk = -1/3 1 -1/3 yk

-1/3 -1/3 1

--------
1

*** m
_____

1

for iteration k=0, applying the formula (6.36), we get

‘1 —1/3 -1/3' '-0.0183' -0.0183"

-1/3 1 -1/3 -0.0183 -0.0183
-1/3 -1/3 1 0.0183 0.02562

(6.36)

The corresponding computed output can be given by the transfer function defined in 

the equation (6.37).

Using above transfer function, we get the first updated output as shown below:

'yl' '-i
yl _
yl 0.02562

Applying the formulas (6.36) and (6.37) recursively 5 times, wet get the desired 

output as follows:
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Ii_________

-f

II
V

Jfs yl =
-l

yl i

Hence the above output response concludes that the new pattern given out here is of is 

of class 3 i.e. C.

Figure 6.6 shows the feature map of the support vector machines for multi-class 

problem.

Oi

02

03

[Fig. 6.6 Feature map of Support Vector Machines for 3-class problem]

Advantages for the method:

• Easy to implement

• Same technique is used to classify 2-class and multi-class problems

• For each class separate decision surface will be obtained

6.6. Summary and Discussion

This chapter deals with the various learning strategies and the experimental details for 

the classification of Gujarati glyphs using Radial Basis functions. The first attempt of 

recognition of the symbols for Gujarati numerals with two ANN architectures viz. 

MLP and RBF is presented in [3]. As discussed in section 3 of this chapter, the 

regularized RBF provides significantly good recognition accuracy of 93%. This can 

further be improved by selecting proper spread using learning strategies discussed 

earlier.
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Some times Support Vector Machine can be characterized as the procedure of 

interpolation rather than the architecture of ANN because the feature map generated 

from the training set can be straight away used for the classification of the new pattern 

without any kind of training. Section 6.5 of this chapter introduces the new approach 

of classifying multiclass problems using MAXNET network. All the approaches 

quoted in the literatures like one-against-all, one-against-one, and DAGSVM are 

lacking uniformity of classifying two class problems and multiclass problems. The 

approach presented here is capable of handling multiclass problems as well as two 

class problems. We have solved the dual problem mentioned in the equation (6.30) for 

each category. Each solution of the dual problem yields the unique optimal 

hyperplanes for each category which separates the current class with the remaining 

classes and thus adopts the one against all approach. This new approach provides 

same number of optimal hyperplanes as the number of classes. Therefore this 

approach remains uniform for two class as well as multiclass problems.

These kernel based ANN architectures are based on sound mathematical background 

and can be used for complex classification problems like speech recognition, 

character recognition etc.
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