
)

Chapter 6. Kernel based ANN classifiers, Radial Basis

Function Networks and Support Vector Machines

6.1. Introduction:

Unlike multilayer perceptrons trained with the back-propagation algorithm, the design

of Radial Basis Function (RBF) and Support Vector Machine (SVM) networks

follows a principled approach. In particular, the construction of regularization theory

in RBF provides sound mathematical formulation while SVM is based on the

principle of Structural Risk Minimization [18].

Another principled approach for the design of RBF and SVM networks is via kernel

regression method. This approach involves the use of density estimation, for which

the radial basis functions sum to unity exactly. Multivariate Gaussian distribution

provides a convenient method for satisfying this requirement. In this chapter, we

study the use of kernel based ANN classifiers for the classification of Gujarati

symbols. A notion that is central to the construction of the support vector learning

algorithm is the inner-product kernel between a “support vector “x,” and the vector X

drawn from the input space.

This chapter is divided in to six sections. In the second section that follows this

introductory section, we discuss the computational aspects of Radial Basis Function

in continuation to the introductory concepts provided in Chapter 1. The learning rules

for weights, centers and spreads for the Radial Basis Function architecture are

established in this section. The third section demonstrates the application of these

rules for the classification of Gujarati symbols. We introduce Support Vector

Machines of two-class and multi-class types in the fourth section. A new approach for

multi-class Support Vector Machine classifiers which is uniform in its approach for

two-class and multi-class problems is presented in the fifth section. The chapter ends

with a section providing a summary and discussion of the methods.

106

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

6.2. Radial Basis Function Networks (RBFN)

As we have discussed in chapter 1, Radial Basis Function Networks can be

characterized into two types, viz. Regularization Radial Basis Function and

Generalized Radial Basis Function. As discussed in the section 1.4.2 of chapter 1, the

unknown weights of the output layer of regularization Radial Basis Function networks

can be computed by taking inverse of the Gaussian matrix G. But the drawback of this

approach is that it is computationally very costly to find the inverse of G in the case

of higher dimensional datasets. This problem can be overcome with the help of

Generalized Radial Basis Functions, by considering fewer training patterns as centers

of hidden layer. The following learning strategies are usually applied for Generalized

Radial Basis Functions:

6.2.1 Learning Strategies

The learning process involved in the functioning of a radial-basis function network

irrespective of its theoretical background, may be described as follows. The linear

weights associated with the output units of the network tend to evolve faster

compared to the parameters of the nonlinear activation functions of the hidden units.

The hidden layer’s activation functions evolve slowly in accordance with some

nonlinear optimization strategy, while the weights of the links of output layer evolve

faster according to some linear optimization strategy. The task of the hidden layer is

to map the input patterns in to a high dimensional feature space while the task of the

linear output layer is to perform the classification. Due to this separation of

responsibilities, it is reasonable to separate the optimization of the hidden and output

layers of the network by using different techniques, and perhaps by operating on

different time scales.

There are different learning strategies that we can follow in the design of an RBF

network, depending on how the centers of the radial-basis function of the network are

specified. In this section we discuss three design strategies specifying design of RBF

networks using interpolation theory [18].

107

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

a. Fixed Centers Selected at Random

The simplest approach is to assume fixed radial-basis functions defining the activation

functions of the hidden units. The locations of the centers may be chosen randomly

from the training data set. For the radial basis functions, we may employ Gaussian

functions whose standard deviation is fixed according to the spread of the centers.

Specifically, a normalized radial basis function centered at pattern U is defined as

C?(jjX —1,||2)= exp

V — J

where X is the input vector, mj is the number of centers and dmax is the maximum of

all distance between the pairs of chosen centers.

m. X~t« i = l,2,...,mi

The standard deviation (i.e. width) of all the Gaussian radial basis functions is fixed at

<r =

This formula ensures that the individual radial-basis functions are not too peaked or

too flat; both of these two extreme conditions should be avoided. The only parameters

that would need to be learned in this approach are the linear weights in the output

layer of file network. A straightforward procedure for doing this is to use the

pseudoinverse method discussed in chapter-1. Specifically, we have

where d is the vector of desired responses in the training set. The matrix (fi is the

pseudoinverse of the matrix G, which is itself defined as

G = {gji}

Where g ji ~~ oxpv d211 j , , j = l,2,..,N; i = l,2,...,mi

where Xj is the /" input vector of the training sample. The norm in the above

expression is usually taken as the Euclidean norm.

For the computation of pseudoinverse of a matrix the method of Singular-value

decomposition (S VD) can be employed [18].

108

b. Self-Organized Selection of centers

The main problem with the method of fixed centers described in the earlier sub

section is the fact that it may require a large training set for a satisfactory level of

performance. One way of overcoming this limitation is to use a hybrid learning

process, consisting of two different stages:

• Self-organized learning stage, the purpose of which is to estimate

appropriate locations for the centers of the radial basis functions in the

hidden layer.

• Supervised learning stage, which completes the design of the network

by estimating the linear weights of the output layer.

For the self-organized learning process we need a clustering algorithm that partitions

the given set of data points into subgroups. One such algorithm is the k-means

clustering algorithm [18], which places the centers of the radial-basis functions in

only those regions of the input space % where significant data are present. Let mj

denote die number of radial-basis functions. Let {tk(n)}*=i denote the centers of the

radial-basis functions at iteration n of the algorithm. Then, the k-means clustering

algorithm proceeds as follows:

1. Initialization: Choose random values for the initial centers h(0); the

only restriction is that these initial values be different. It may also be

desirable to keep the Euclidean norm of the centers small.

2. Sampling: Draw a sample vector X from the input space % with a

certain probability. The vector X is input into the algorithm at iteration

n.
3. Similarity matching: Let k(X) denote the index of the best-matching

(winning) center for input vector X. Find k(X) at iteration n by using

minimum-distance Euclidean criterion:

k(X) = arg imn||X(n) - tk (n)|| ^ k = 1>2>

where tk(«) is the center of the tfh radial-basis function at iteration n.

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

109

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

4. Updating: Adjust the centers of the radial-basis functions, using the

update rule:

tK (« + !) =
tk(/i)+!7[X(«)-tk(n)], k = k(X)

otherwise

where rj is a learning-rate parameter that lies in the range 0 < r|< 1.

5. Continuation: Increment n by 1, go back to step 2, and continue the

procedure until no noticeable changes are observed in the centers t*.

The k-means clustering algorithm just described is, in fact, a special case of a

competitive (winner-take-all) learning process known as the self-organizing map.

c. Supervised Selection of Centers

In the third approach, the centers of the. radial-basis functions and all other free

parameters of the network undergo a supervised learning process, i.e., the RBF

network takes on its most generalized form. A natural candidate for such a process is

error-correction learning, which is most conveniently implemented using a gradient-

descent procedure that represents a generalization of the LMS algorithm.

Ihe first step in the development of such a learning procedure is to define the

instantaneous value of the cost function.

#4f>? («)
A M

where N is the size of the training sample used to do the learning, and ej is the error

signal defined by
ej = dj- F* (Xj)

Using equation (1.27) for mj number of centers, the equation (ii) takes the form

ei = dj-£w1G|x.-tj||cJ (Hi)

ej =di-|>«g((xj-t,))

M

where X -' is covariance matrix for the center i (as discussed in the chapter 1).

110

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

The requirement is to find the free parameters Wi, ti5 and X<1, so as to minimize £

The results of this minimization are summarized in the table-6.1. The following points

are noteworthy for the adaptation formulas for the linear weights of the output layer,

positions and spreads of centers.

• The cost function £ is convex with respect to the linear parameters wi, but non-

convex with respect to the centers tj and matrix X >' •
• The update equations for w}, ti, and X«* are assigned different learning-rate

parameters rfr, rj2, and ifc respectively.

• Unlike the back-propagation algorithm, the gradient-descent procedure

described in the table-6.1 for an RBF network does not involve error back-

propagation.

Adaptation Formulas for the Linear Weights and the Positions and Spreads of Centers
for RBF Networks*[18]

1. Learning weights (Output layer)

In order to update weight vector Wj, the gradient descent rule is applied

as follows:

..... 9£(«)Wj (n+1) = w, (n) -77, ■ ■ - 7=1? m,,v ' ’dWiCn)’ z

where,

dg(n) _ d£(n) dey(n)
3Wj(n) 9ej(n) 3w;(n)

dw^(n) = Gj ^llc,) («sing equation iii)

111

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

2. Positions of centers (hidden layer)

Positions of centers can be taught with the help of gradient descent

rule. The corresponding gradient can be calculated as below:

9|(»)
dw^n)

9 £(fi) de^n)

de,(n) dG(\ a(|[xj-ti|c) ' at,

9|(»)
9t ,(«)

-wi(«)2ej(n)(?’|XJ.-ti(»)||
M at,

(iv)

To be precise {[X^ tJ^X.-t,]}

Here, we require the derivative with respect a vector quantity. So we may

proceed in a following way:

Vector quantities Xj and t; will take the form Xj={Xji, Xj2,.... Xjq}ixq and

tf={ tu , ta tiQ }ixQ respectively, where Q is number of inputs to the

network

Therefore,/X/ - tiJT=

Letm) = [Xj-tifE7,[XJ-ti]

r-1 p~l

Therefore, = -tip)

Xj\ tn
Xji — ta

Xjq tiQ

112

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

= 2
£ (-s? (**-<»>)

(for p = r)

In a vector form the above equation can be written as
•

^-(/(ti»=-2S71(XJ-ti)

Substituting the above expression in equation (iv), we get

|M = _WiW|ej(„)(J'(|x, -t,{„)[J(-2S7‘(X1-«1))

|a=2Wi(„)|ei(„)G'(|Xj .ti(B)|cJs-'tx,-.,)

The updating rule for centers can be described as below:

a m
t,(n+l) = ti(n)-^2

at|(n) i = 1,2,

3. Spreads of centers (hidden layer)

In the hidden layer spread of centers can be learned with the similar

approach of Gradient descent rule. The corresponding gradient term is

computed as follows:

9£(») = ag(#Q 3ej(«) dGQ
dZ?{n) 3ej (n)' dG{.) ' 3S71

= ~ w, (n)]£ e, (»)<?'jx, -tt(»)|)qjiM '

where, Qji (n)~ [X j— *i (n)] [^j— (n)Y

Hence, the learning rule can be defined as shown below:

i;Vi

*The term e-}(n) is the error signal of output unit j at time n. The term G (.) is the first

derivative of the Green’s function G() with respect to its argument.

113

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

In the following section, we demonstrate the classification accuracies for the symbols

of Gujarati script. Gujarati numerals (middle zone characters) and lower zone

characters are classified using Regularization (number of patterns is equal to the

number of centers) and generalized Radial Basis Function networks (number of

centers are fewer than that of number of patterns) respectively. Two different

networks are constructed, one is for numerals and the other is for lower zone

characters. Java is used as a programming language for both the experiments.

6.3.(a) Classification of the symbols of Gujarati numerals:

Along with the paper [3], discussed in the fourth chapter of the thesis, we have made

simultaneous attempt of identifying Gujarati numerals with Regularization Radial

Basis Function, discussed in the chapter 1. Here also we have taken compressed

image of the size 16x16 (256) using Daubeehies D4 wavelets (discussed in the

chapters 4), as an input to the network. Total 440 patterns of these numerals are

considered for our experiment, out of which 200 patterns are taken in training set and

the remaining 240 patterns are kept in the testing set. Being the regularization

network, each pattern of the training set constitutes a center of the hidden neuron and

hence form hidden layer for the network. 10 neurons (one for each numeral) are taken

in the output layer of the network.

In order to compute weight vector w of equation (1.26) of chapter 1, inverse of the

matrix G is to be multiplied with vector desired output d. But the inverse of [G\2omoo

is computationally costly therefore the weights are to be learned by gradient descent

(described in the 6.2.1) algorithm as we use in the case of MLP. Results are shown in

table-1:

114

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Table-1 Classification of Gujarati numerals

Input of the Hidden Performance on testing set (%)

RBFN
units

(centers)

256 Daubechies 200 93.33

coefficients

6.3(b) Classification of symbols of lower and middle zone symbols:

We have applied generalized Radial Basis Function networks for the classification of

the glyphs of lower and middle zone symbols in the images of the Gujarati script.

Two separate networks have been constructed for the symbols of both the zones.

Along with the experiments presented using Multilayer Perceptron in the chapter 4,

we have made simultaneous attempts of applying generalized Radial Basis Function

networks for the identification of lower and middle zone symbols.

In the experiments presented here, we have constructed two networks: the first

network is for lower zone symbols and the second network is for the middle zone

symbols of Gujarati script (section 2.4). Each of these networks has 256 input neurons

and as many output neurons as the number of classes (types) of the respective zone.

An implementation of the general RBF architecture that can be used to realize these

two networks has been developed as a set of java classes. The main class RBF has

three attributes which are objects of three classes 1. InputLayer, 2. HiddenLayer and

3. OutputLayer. Each of the three Layer classes contain an arry of objects of an

appropriate neuron class, ie, 1. InputNeuron, 2. Radbas and 3. OutputNeuron types.

All these neuron classes are sub-classes of a general class Neuron class. The links

among all these layers are generated with the help of a Synapse class. The synaptic

weighs of the links are updated using this class. The InputLayer class has attributes

for an array of input neurons and input patterns etc. and methods like setlnputPattems,

115

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

setSynapse etc. The corresponding InputNeuron class has attributes for input

patterns, testing patterns etc and methods for setting input and testing patterns and for

computing the outputs. HiddenLayer class has attributes for radbas neurons, input

synapse weight, output synapse weight, distance, centers etc and methods for

computing forward pass, center updation, spread updation etc. The corresponding

hidden neuron class has attributes output synapse, distance, spread etc and methods

for computing distance, center updation etc. While the OutputLayer class has

attributes computed output, desired output, weights etc and the methods for getting

computed output for each neuron, updation of weight etc. The corresponding output

neuron class has attributes computed output, desired output etc and methods for

computing computed output, updation of weights etc.

In the first experiment, the lower zone characters are classified. There are four lower

modifiers which are used very frequently in the Gujarati script as shown in the chapter

2. We have constructed a network with 256 input neurons at input to the network and

4 neurons (one for each symbol) in the output layer. The 256 input neurons stand for

the extracted features of the images using Daubechieds D4 wavelets as discussed in

the chapters 4 and 5. The java program of the experiment is implemented using

general network of Radial basis functions. The experimental details can be given as

below:

Out of total 336 patterns of all the four symbols of lower modifiers of Gujarati script,

we have considered randomly selected 136 patterns for testing and the remaining 200

patterns for the training purpose. There are 40 patterns considered as the centers to the

Generalized RBF network. The weights are updated by using the 1st learning rule

among those described in the previous section. The distance used during the

computation of the updated weights is the Mahalanobis distance which was discussed

in the chapter 1(section 1.5). Initially, the spread (width) is chosen using the formula

(i) in the previous section 6.2, which gave a starting value of 6 for the spread. Then,

by evaluating the classification performance with various values of the spread, the

optimal value of 10 was arrived at.

116

Chapter 6: Kernel based ANN classifiers, REF Networks and Support Vector Machines

We have updated only synaptic weights using the first updation rule of the previous

section. The network is allowed to train until the SSE (Sum squared error) goes under

0.07. The network has taken 2500 iterations to achieve that goal. The experimental

results for the classification on test patterns are shown in the table-2:

Table 2. Classification of lower zone characters

Input of the

RBFN

Hidden
units

(centers)

Total
number of

patterns

Performance on testing set
(%) '

256 Daubechies
coefficients

40 200 95.58

Out of 136 testing patterns 130 are identified correctly and hence achieved good

recognition accuracy of 95.58%. This accuracy is slightly less than the accuracy

achieved by multilayer perception as discussed in the chapter 4.

In the next experiment we have tried to recognize middle zone symbols of the

Gujarati script. Middle zone dataset, to be recognized by the network, is made up of

images of 10 numerals, 34 consonants, 3 frequently used conjuncts and 5 independent

vowels (totaling-52 glyphs). A total of 2986 printed Gujarati characters scanned in

various fonts and sizes as described in the second section are collected. Each image is

normalized to a matrix of 32 x 32 (1024) binary values representing the black and

white pixels. 2011 of these images are taken as the training set and the remaining 975

are used for the testing set. The normalized images are subjected to the D4 wavelet

transformation, as described in the section 3. 256 low-low coefficients of each image

are used as feature vector for the glyph.

Several experiments with various numbers of hidden units were carried out to

determine the optimal number of neurons in the hidden layer of the network. The

network has 256 neurons in its input layer and the output layer was made up of 52

neurons (each neuron corresponding to one of the 52 symbols to be recognized).

117

Chapter 6: Kernel based ANN classifiers, RBP Networks and Support Vector Machines

We have made several experiments by updating weights and centers using the update

rules mentioned in the previous section of the above section. But we could manage to

get an accuracy of 58.71% only in this case. It is felt that new strategies for center and

spread selection may have to be adopted to improve the accuracy.

In the next section we introduce another Artificial Neural Network architecture

namely support vector machine.

6.4. Introduction to Support Vector Machine

The MLP networks described in chapter 4 and the RBF networks described above are

universal approximators in their own ways. In this chapter and the next, we discuss

another category of feedforward networks, which are also universal approximators,

known as support vector machines (SVM), pioneered by Vapnik (Boser, Guyon, and

Vapnik, 1992; Cortes and Vapnik,1995;Vapnik 1995,1998). Like multilayer

perceptrons and radial-basis function networks, support vector machines can be used

for pattern classification and nonlinear regression. The formulation embodies the

Structural Risk Minimization (SRM) principle (defined in the later part of this

section), which has been shown to be superior, (Gunn et. al., 1997), to traditional

Empirical Risk Minimization (Minimizing the error generated at the time of training

in the output layer of the networks). This Structural Risk Minimization can broadly be

introduced with the help of Vapnik-Chervonenkis (VC) dimension as below:

Vapnik-ChervonenMs dimension

In computational learning theory, the VC dimension (for Vapnik-Chervonenkis

dimension) is a measure of the capacity of a statistical classification algorithm,

defined as can shatter. A

classification model / with some parameter vector 0 is said to shatter a set of data

points (xi, JC2, ... , xn) if, for all assignments of labels to those points, there exists a 0

such that the model /makes no errors when evaluating that set of data points.

118

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

The VC dimension has utility in statistical leaning theory, because it can predict a
probabilistic upper bound on the test error of a classification model. The VC

[Fig.6.1 VC Dimension illustration]

Figure (6.1) illustrates how three points in the plane can be shattered by the set of

linear indicator functions whereas four points cannot be. In this case the VC

dimension is equal to the number of free parameters, but in general that is not the

case; e.g. the function Asin(bx) has an infinite VC dimension (Vapnik, 1995). The set

of linear indicator functions in n dimensional space has a VC dimension equal to n +

1.

For example, consider a straight line as the classification model: the model used by a

perceptron. The line should separate positive data points from negative data points.

When there are 3 points that are not collinear, the line can shatter them. However, the

line cannot shatter four points. Thus, the VC dimension of this particular classifier is

3. It is important to remember that one can choose the arrangement of points, but then

cannot change it as the labels on the points are permuted.

Structural Risk Minimisation

The challenge in solving a supervised learning problems is to realize the best

generalization performance by matching the machine capacity to the available amount

of training data for the problem at hand. The method of structural risk minimization

provides an inductive procedure for achieving this goal by making the VC dimension

of the learning machine a control variable (Vapnik, 1992, 1998). To be specific,

119

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

consider an ensemble of pattern classifiers { F(X,W); Welf} and define a nested

structure of n such machines

fk = { F(X,W); We Wt), k=l,2,...,n

such that we have

fi cjic,..cfn

where c signifies “is contained in”. Correspondingly, the VC dimensions of the

individual pattern classifiers satisfy the condition

hi<h.i< ...< hn

which implies that the VC dimension of each pattern classifier is finite. Then, the

method of structural risk minimization may proceed as follows:

® The empirical risk (i.e. training error) for each pattern classifier is minimized.

• The pattern classifier ‘f with the smallest guaranteed risk[18] is identified;

this particular machine provides the best compromise between the training

error (i.e., quality of approximation of the training data) and the confidence

interval, (i.e., complexity of the approximating function) which compete with

each other.

Our goal is to find a network structure such that decreasing the VC dimension occurs

at the expense of the smallest possible increase in training error.

The principle of structural risk minimization may be implemented in a variety of

ways. For example, we may vary the. VC dimension h by varying the number of

hidden neurons.

Basically, the support vector machine is a linear machine with some very nice

properties. To explain how it works, it is perhaps easiest to start with the case of

separable patterns that could arise in the context of pattern classification. In this

context, the main idea of a support vector machine is to construct a hyperplane as the

decision surface (chapter 1 section 1.4.2) in such a way that the margin of separation

(discussed in the later part of this section) between positive and negative examples is

maximized. The machine achieves this desirable property by following a principled

approach rooted in the statistical learning theory that is discussed in Chapter 1. More

120

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

precisely, the support vector machine is an approximate implementation of the

method of structural risk minimization. This induction principle is based on the fact

that the error rate of a learning machine on test data (i.e., the generalization error rate)

is bounded by the sum of the training-error rate and a term that depends on the

Vapnik-Chervonenkis (VC) dimension; in the case of separable patterns, a support

vector machine produces a value of zero for the first term and minimizes the second

term. Accordingly, the support vector machine can provide a good generalization

performance on pattern classification problems despite the fact that it does not

incorporate problem-domain knowledge. This attribute is unique to support vector

machines.

6.4.1. Two-class problems

Initially, the theory of support vector machines is developed for two class problems

and then the theory of multiclass problem is developed using the same concept of two

class problem of support vector machine. Here we discuss the basic theory of two

class problems which are considered to be linearly separable.

6.4.1.1. Optimal hyperplane for linearly separable patterns

Consider the training sample)fli, where x; is the input pattern for the i,h

example and dj is the corresponding desired response (target output). To begin with,

we assume that the patterns (class) represented by the subset dt = +1 and the patterns

represented by the subset d(= -1 are “linearly separable.” The equation of a decision

surface in the form of a hyperplane that does the separation is
wTx + b=0 (6.1)

where x is an input vector, w is an adjustable weight vector, and b is a bias. We may

thus write

wTx,- + b & 0 for di = +1 (6-2)
wTx,- + b < 0 for dj = -1

121

The assumption of linearly separable patterns is made here to explain the basis idea

behind a support vector machine in a rather simple setting; this assumption will be

relaxed in Section 6.3.

For a given weight vector w and bias b, the separation between the hyperplane

defined in Eq. (6.1) and the closest data point is called the margin of separation,

denoted by p. The goal of a support vector machine is to find the particular

hyperplane for which the margin of separation p is maximized. Under this condition,

the decision surface is referred to as the optimal hyperplane.

Let w® and bo denotes the optimum values of the weight vector and bias, respectively.

Correspondingly, the optimal hyperplane, representing a multidimensional linear

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

(6.3)

(6.4)

gives an algebraic measure of the distance from x to the optimal hyperplane (Duda

and Hart, 1973). Perhaps the easiest way to see this is to express x as

x=xp+''R

where xp is the normal projection of x onto the optimal hyperplane , and r is the

desired algebraic distance; r is positive if x is on the positive side of the optimal

hyperplane and negative side. Since, by definition, g(xp)=0, it follows that

g(x) = wj + b0 = r|wQ j|

Therefore r = f^

IK1

In particular ,the distance from the origin (i.e., x = 0) to the optimal hyperplane is

given by h ^||wo| If bo>0, the origin is on the positive side of the optimal

or

(6.5)

decision surface in the input space, is defined by

WjX+60 = 0

which is a rewrite of Eq.(6.1) .The discriminant function

g(x) = wJx+60

122

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

hyperplane; if bo<0, it is on the negative side. If bo=0, the optimal hyperplane passes

through the origin.

The issue at hand is to find the parameters wo and bo for the optimal hyperplane, given

the training set. The pair (wo, bo) must satisfy the constraint:

wjx; +b0 >1

wjx, +b0 < -1

Note that if equation (6.2) holds, that is, the patterns are linearly separable, we can

always rescale wo and bo such that equation (6.6) holds; this scaling operation leaves

equation (6.3) unaffected.

The particular data points fadi) for which the first or second line of Eq.(6.6) is

satisfied with the equality sign are called support vectors, hence the name “support

vector for machine”. These vectors play a prominent role in the operation of this class

of learning machines. In conceptual terms, the support vectors are those data points

that lie closest to the decision surface and are therefore the most difficult to classify.

As such, they have a direct bearing on the optimum location of the decision surface.

Consider a support vector x^ for which d^= +1. Then by definition, we have

for dj = + l

for d, = —1
(6.6)

g(x(s)) = wji(,) - b0 = -1 for d(s)= -1

g(x(s)) = WjX(s) + b0 =+l for d(s)=+1
(6-7)

From equation (6.5) the algebraic distance from the support vector x^ to the optimal

hyperplane is

r =
g(xW)

therefore r, can be written as

123

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

1 if d(s)=+1

if dls)=-1
(6.8)

where the plus sign indicates that x(s) lies on the positives side of the optimal

hyperplane and the minus sign indicates that x(s) lies on the negative side of the

optimal hyperplane. Let P denote the optimum value of the margin of separation

between the two classes that constitute the training set 'F. Then, from equation (6.8) it

follows that

p = 2r
.... 2 (6.9)

INI

Equation (6.9) states that maximizing the margin of separation between classes is

equivalent to minimizing the Euclidean norm of the weight vector w.

In summary, the optimal hyperplane defined by equation (6.3) is unique in the sense

that the optimum weight vector Wo provides the maximum possible separation

between positive and negative examples. This optimum condition is attained by

minimizing the Euclidean norm of the weight vector w

Quadratic optimization for Finding the optimal Hyperplane

Our goal is to develop a computationally efficient procedure for using the training

sample set T = {(xi >^/))m to find the optimal hypetplane, subject to the constraint

d4 (wTXj + b) > 1 for i = it2,... JV (6.10)

This constraint combines the two lines of Eq.(6.6) with w used in place of wq. The

constrained optimization problem that we have to solve may now be stated as:

Given the training sample {(Xi>^i))/Ii, find the optimum values of the weight vector

w and bias b such that they satisfy the constraints

124

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

d^x.+b)^! for i=l,2,...,N

and the weight vector w minimizes the cost function: ^(w) = — wTw (*)

1
The scaling factor ~is included here for convenience of presentation. This

constrained optimization problems is called the primal problem. It is characterized as

follows:

—> The cost function ^(w) is a convex function of w

—> The constraints are linear in w.

Accordingly, we may solve the constrained optimization problems using the method

of Lagrange multipliers (Bertsekas, 1995).

First, we construct the Lagrangian function:

J(w,b,a) ■ 1 T
—w w- 2

■Ia,[rf)(wTxl+i)-l] (6.11)

where the auxiliary nonnegative variables ai are called Lagrange multipliers. The

solution to the constrained optimization problem is determined by the saddle point of

the Lagrangian function/(w, 5, a), which has to be minimized with respect to w and

b; it also has to be maximized with respect to a. Thus, differentiating </(w,b,ra) with

respect to w and b setting the results equal to zero, we get the following two

conditions of optimality:

dJ(w,b,a)
Condition 1: 3w

0

„ .. . _ dJ(w,b,a) A
Condition 2: ----- zr--------0

ab
Application of optimality condition 1 to the Lagrangian function of equation (6.11)

yields (after rearrangement of terms)
N

w = Saiilxi (6.12)

125

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Application of optimality condition 2 to the Lagrangian function of eq.(6.11) yields

%a,dt=Q (6.13)

The solution vector w is defined in terms of an expansion that involves the N training

examples. Note, however, that although this solution is unique by virtue of the

convexity of the Lagrangian, the same cannot be said about the Lagrange

coefficients, We may use the inner product kernel to construct the optimal

hyperplane in the feature space without having to consider the feature space itself in

explicit form. The inner product kernel can be described as below:

Inner Product Kernel:

Let X be a vector drawn from input space with dimension mg and the corresponding
set of nonlinear transformations from input space to feature space is {^.(X)}*1^. It is

assumed that Vj (X) is defined a priori for all j.

We define a hyper plane acting as the decision surface as follows:

f4wJ<pJ(X) + b = 0 (6.14)

M

where {wy}^0 denotes a set of linear weights connecting the feature space to the

output space, and b is the bias.

For the sake of convenience, we take <p0 (X) = 1 for all X, so that wg denotes the bias b.

Equation (6.14) will take the form of

y=o
(6.15)

Equation (6.15) defines the decision surface computed in the feature space in terms of

the linear weights of the machine.

Define the vector point function <p(X) - [<p0 (X) q>x (X) ... <pmt (X)JT where due to

bias %(X) = 1 for all X.

126

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

In vector form the above equation can be written as wT<p(X) - 0. (6.16)

N
Therefore equation (6.12) can be written as w = 'Laidi(p{xi) (6.17)

where the feature vector <p(X{) corresponds to the input Xi in the iih example.

Using equations (6.17) in (6.16), we get

vl,aidi(pT(xl)(p(x.) = 0 (6.18)

TThe term <P 9 represents the inner product of two vectors induced in the feature
space by the input vector X and the input pattern Xi pertaining to the Ith example.

The inner product kernel K(X,Xj) defined by

K(X,Xi) = (pT(X)tp(Xi)

TO = ^^(X,) fori = 1,2,...,N (6.19)
y=l. ■■

Using equation (6.19) in equation (6.18), we get

£aldiK(X,X.) = 0.

Consider the following 2-class problem in which our aim is to find the equation of the

optimal hyper plane which discriminates the given pattern. The optimal hyper plane is

obtained by using two different kernels.

XOR problem:

Input Vector (X) Desired response (d)

(-1,-1) -1

(-1,1) +1

(1,-1) +1

(1,1) -1

127

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

[a] Polynomial kernel:
Considering the kernel K(X, X,) = (l + XTXf)2

l+[*i *2] xa

(l + xlxn+x2xnf

Y

J

Therefore, X(X, X.) — 1 + x, x;, + x2 xi2 + 2x,x(.] + 2x2xi2 + 2x1X2XI-2X[.2

The image of the input vector X induced in feature space is therefore deduced to be

(p{X) = [l, x,2, V2x, x2 , x2, ~j2xx, 4lx2]

Similarly <p(Xi) = [l, x,2,4lxn xi2, xf2, 4lxn, 4lxn]T for i = 1,2,3,4

Now, kernel « = fcx,,XJ)t4

K:

9 111
19 11

119 1
1119

The objective function

N , | N N

B(a) = ~IX<VjW(X..X,)'
4 (-1 j=1<=l

Q(a) = al+a2+a3+a4
1

(6.20)

(9af - 2a,a2 - 2a, a3 + 2a,a4 + 9a\ + 2a2a3 - 2a2a4 + 9a2 - 2a3a4 + 9a2)

Differentiating above objective function with respect to ai, a?., as and 04 respectively,

we get following simultaneous equations:

9a,-a2 ~a3 +(xa = 1
-a, +9a2 +a3 -a4 =1
-a, +a2 +9a3 -a4 =1
a, -a2 -a3 +9a4 =1

128

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Solving the above simultaneous linear equations, we get a? = a2 = as = 014=1/8

In order to obtain the optimum value of the objective function Q(a) , we denote the

above obtained solution as

a0i = a02 ~ a03 = ao4=l/8
\

All otoi’s are equal that indicates that in this example all four input vectors are

support vectors.

Therefore, from equation (6.20) the optimal value of the objective function Q(a) is

Q0(a)=l/4.

From equation (6.17), the optimal weight vector can be written as
N

w0 = Zaol.^(Xi)

=-[- <p(x,)+(p(x2)+<p(x3)-<p(x4)]

w„ =■

1 1 1 1
1 1 1 1
42

+
-42

+
-42 42

1 1 1 1
-42 -42 42 42
-V2 S''_ [-S_ [s[

W„
0 0 —]= 0 0 0

V2

From equation (6.16), the Support Vector Machine can be constructed as follows:

0 0 —~ 0 0 0 V2
[l xf ~JlxxX2 x2 4lxx =0

—^^2=0 (6.21)

Using equation (6.21), the computed output for each input pattern becomes identical

as the desired output.

129

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

[Fig. 6.2 Support Vector Machine]

i

Figures 6.2 and 6.3 demonstrate the support vector machine and feature map of

support vector machine respectively of the XOR problem.

Now we try to construct Support Vector Machine of the same problem by applying

Gaussian kernel and observe the difference.

[b] Gaussian kernel:

Consider
(iC(X,Xj) = exp ■
V

-S-IX-X, 2<7211
\

with

130

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

X = [X1; X2f and Xrfxu, xi2f

The image of the input vector X induced in feature space is therefore deduced to be

<P(X) = [G(X, Xj), G(X, X2), G(X, X3), G(X, X4)]f

Taking spread, (7=1, we get the Gaussian matrix as follows:

1 0.0183 0.0183 0.0183
0.0183 1 0.0183 0.0183
0.0183 0.0183 1 0.0183
0.0183 0.0183 0.0183 1

Solving equation (6.20) for N = 4 patterns using Gaussian kernel, we get the optimal

value of Lagrangian coefficients as

a0i = a02-ao3 = ao4=1.038

All the four points are support vectors.

Now using equation (6.17), we get the weight vector as follows:

w0=[-l 1 1 -l]r

Using equation (6.16), the Support Vector Machine can be constructed as follows:

(-l)G(X,Xi) + (l)G(X,Xi) + (l)G(X,Xi) + (-l)G(X,Xi) = 0

Using equation (6.21), the computed output for each input pattern can be expressed as

follows:

Input Vector (X) Desired response (d) Computed response

(-1,-1) -1 -0.9634

(-1,1) +1 0.9634

(1,-1) +1 0.9634

(1,1) -1 -0.9634

By taking appropriate value of a, we may get more accuracy.

6.4.2. Multi-class SVM problem

131

There is more than one way to device multi-class problem classifiers employing linear

discriminant function. For example, we might reduce the problem to c two-class
problems, where the iih problem is solved by a linear discriminant function that

separates points assigned to w(* from those not assigned to w,-. This approach is called

one to one approach. A more extravagant approach would be to use c(c-l)/2 linear

discriminants, one for every pair of class. This technique is known as one to all

approach. But both of these approaches can lead to regions in which the classification

is undefined [39].

The new approach of obtaining the hyper planes of multiclass problems can be

introduced using Maxnet network as shown below:

6.5. Multiclass Support Vector Machine using MAXNET

The new approach of classifying multiclass problems is divided in to two layers viz.

Support Vector Machine network and second is MAXNET network. Both the layers

can be characterized as below:

The Support Vector Machine is of feed forward type and constitutes the 1st layer of

the classifier. The p-class SVM network has p output neurons. The strongest response

of a neuron is indicative of the distance value between the input and the category this

neuron represents.

The second layer of the classifier is called MAXNET and it operates as a recurrent

recall network in an auxiliary mode. Its only function is to suppress value at

MAXNET output nodes other than the initially maximum output node of the first

layer. The block diagram of the MAXNET SVM classifier is depicted below:

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

132

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

/-

Consider the training sample {(xi ?)3>Ii, where x,- is the input pattern for the ith

example out of total N patterns and Z,= izn }i=1 is the corresponding desired response

(target output) out of total K classes.

To begin with ‘one verses all’ approach, we assume that if the f' output of the Ith

pattern (class) is represented by the zp = +1 then the z'th pattern is said to be correctly

identified and all other patterns for which zp = -1 are said to be incorrectly identified.

We assume that the correct pattern is “linearly separable” than the incorrect patterns.
The equation of a decision surface for A* class in the form of a hyperplane that does

the separation is

wlq>(x) + bk =0 (6.22)

where x is an input vector, wk is an adjustable weight vector, and bk is a bias for kth

class. We may thus write

wl<P(Xi) + bk>0 for Zki = +1
™l<P(*i) + bk <0 for Zfa- = -l

(6,23)

The discriminant function, as defined in the equation (6.4) for a two class problem,

can be written for a multiclass problem as follows:

g(x) = w^k +bok (6.24)

133

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

[Fig. 6.4a Separation of the three classes by three hyperplanes]

As shown in the Fig. 6.4a, for each class one hyperplane may be obtained which

discriminate one class from the other classes.

Perhaps the easiest way to see this is to express x as

where xp is a normal projection of x on to the optimal hyperplane, and r is the

algebraic distance as defined for the 2-class problem.

The issue at hand is to find the parameters wo* and bok for the optimal hyperplane. The

pair (w0k,bok) must satisfy the constraint:

w^CxJ + b^l for Zkl=+1 (625)

wJk<Kxi) + &0*<-l for

Note that if Eq.(6.2) holds, that is, the patterns ate linearly separable, we can always

rescale w0 and bo such that Eq. (6.6) holds; this scaling operation leaves equation (6.3)

unaffected.

Quadratic optimization for Finding the optimal Hyperplane for k,h class

The constrained optimization problem, as discussed in the subsection (6.3.1), that we

have to solve may now be stated as:

Given the training sample ((xi > z«)}«, find the optimum values of the weight vector

Wk and bias fy such that they satisfy the constraints

zi/(wk'P(xi) + ^)^1 for i=l,2,...,N

134

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

and the weight vector w minimizes the cost function: 0(w k)~Twkwk (6.26)

1
The scaling factor “is included here for convenience of presentation. This

constrained optimization problems is called the primal problem. It is characterized as

follows:

—> The cost function 0(wk) is a convex function of Wk.

--> The constraints are linear in Wk-

Accordingly, we may solve the constrained optimization problems using the method

of Lagrange multipliers (Bertsekas, 1995).

First, we construct the Lagrangian function:

l xJ(wk,6i!ak)=-w^wk-EaJz4i(w^(xl) + h,)-l] (627)

where the auxiliary nonnegative variables au are called Lagrange multipliers for the

Uh class. Thus, differentiating equation (6.27) with respect to w* and bk setting the

results equal to zero, we get the following two conditions of optimality:

Condition 1:
dJ(wk,bk,ak)

dwk

Condition 2:
dJ(wk,bk,ak)

dbt
0

Application of optimality condition-1 to the Lagrangian function of eq.(6.27) yields

(after rearrangement of terms)

N
(6.28)

Applicant of optimality condition-2 to the Lagrangian function of eq.(6.28) yields

X
£«***= 0 (6.29)

As discussed in the subsection (6.3.1), the dual problem of equation (6.27) can be

obtained by expanding it term by term

From equation(6.24),

j X N X
J(wok,^,«k) = -w^wk -XaikZ,1 w'krp(x,)-hk^aikzik + Eaik

JL |_.j

135

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Using the constraints 1 and 2 of this section, we get

N 1Therefore, ^(wok,hft,ak) = Zaik --X2X^z«z^x]MxO
1 t j

N l N

«k) = -t Z^Ajz¥z^K(~xi’x^
!=j~\

We may now state the dual problem as follows:
N l «

J(yvok,bk,ak) = -- ZjCCuavZyZvK (Xj,xk) (6.30)
' •“ i=j~\

subject to the constraints
N

0) ^ ^kiZkl = ®

(ii) akt - 0

Having determined the optimum Lagrange multipliers, denoted by aou, we may

compute the optimum weight vector w0* using the formula (6,28), we get

N
ff.k = Sw(^)

For instance, suppose we.have a k class problems for instance k= 3.

Then the dual problem may be written from equation (6.30) as

n i n
^(ak.) = ~ ~z'5'jak,k(Xk,iZ k,kZ k, jK(Xk jX;)

i-l £ k,J

it
Subject to SZM«M = 0 # otkfk > 0

w ■ ■

Where n = number of patterns = 3

k — 1, 2, n

kj - output neuron =9

zk,k = k/h output neuron of kth pattern

136

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Consider input vectors of three characters C, A and T
C= [1,1,1,1,-1,-1,1,1,if

A = [-1,1,-1,1,-1,-1,1,-1, If

T= [1,1,1,-1,1,-1,-1,1, -If

The corresponding output vectors are
C0 = [-l,-l,lfri0=[-l,l,-lf 2>[1,-1,-if respectively.

In this example £/={!,2,3}

Take kj=l

Uad = -\'LallalJzllzlJK(Xl,TL,)
i-l & kj

nSubject to '^izikaik = <f a\k -0
k=\

Let ^(X,Y) = exp •
v

1
2cr2

||X—y||2 ^

y
(6.31)

For a - 1, the Gaussian matrix K is given by

K(X, Y) =
1 0 0
0 1 0
0 0 1

X(ttj) — &\ I + (TC\2 + ®13

-|k(-l)(-l)l + «„«12(-1)(-1)0 +0 + 0+ (-l)C-l) + 0 + 0 + 0 + 0 + «i2]

137

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

dL
dan

dL
dal2

dL
dan

= 1 -an =0

=1-a12=0

= 1—ocl3 — 0

=>«,,= 1

^ ®12 = ^

=> (Xl3 = 1

for the class kj-1 all the three patterns are Support Vectors. Proceeding in the same

way for the remaining classes kj-2 Sc kj=3, we get

oc2i — cc22 — oc2i =1

cc31 — cx32 = (X33 ~ 1

Thus for all the classes all the three patterns are support vectors. Using these support

vectors for each class we calculate optimized weight vector as follows:

AMS
w01 = I OuZu^X,)

Proceeding in the same way for the rest of the' patterns, we get the optimized weight

vectors for second the third class as follows:

N=i
W02 = £ OCuZ2j<p{X{)

V "o' 'o'
=1 - 0 1 - 0

o_ _0 1_

138

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

w=3

W83 = 2 a^zu(p{X.)
1=1

T

i01 _ ioL I

11 0 - 1 - 0

O
i

o_
I

1

1

-1
-1

Now for class k3=l, the support vector machine can be given by using the equation

(6.1b)

w>(X) = 0

From the definition of ^00} discussed in the section 6.4, we can write

+ (-l)G(XA) + (l)G(X,Xa) = 0 (6.32)

Proceeding in the same for other two classes kj=2 and ki=3, we get the support vector

machines given as follows:

(-l)G(X,Xi) + (l)G(X,Xi) + (rl)G(X,Xi) =0 (6.33)

(l)G(X,Xi) + (-l)G(X,Xj) + (-l)G(X,Xi) =0 (6.34)

For the validation purpose, we take a new pattern as shown below:
C;= [1,1,-1,1,-1,-1,1,1, if

The corresponding values of the Gaussian kernel defined in the equation (6.31) are as

under:

G(ChXi) = 0.0183, G(ChXi) = 0.0, G(ChX3) = 0.0

Using the values mentioned above the support vector machines (6.32), (6.33) and

(6.34) yield the following output vector:

-0.0183'

-0.0183
0.0183

139

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Applying MAXNET network, we can get the solution. The MAXNET network can be

introduced as shown below [19]:

MAXNET network:

MAXNET needs to be employed as a second layer only for cases in which an

enhancement of the initial dominant response of the mtb node responds positively, as

opposed to all remaining nodes whose responses should have decayed to zero. As

shown in figure (below), MAXNET is a recurrent network involving both excitatory

and inhibitory connections. The excitatory connection within the network is

implemented in the form of a single positive self-feedback loop with a weighting

coefficient of 1. All the remaining connections of this fully coupled feedback network

are inhibitory. They are represented as M-l cross-feedback synapses with coefficients

-8 from each output. The second layer weight matrix Wm of size p x p is thus of the

form

1 -e -e ■■■ -e
-£ 1-8 ••• -e

-e -e -e ••• 1

where e must be bounded 0 < e < 1/p. The quantity e can be called the lateral

interaction coefficient. Input to the network should fulfil the initializing inputs

condition

W;M

fori-1,2,

The MAXNET network gradually suppresses all but the largest initial network

excitation. When initialized with the input vector y0, the network starts processing it

by adding positive self-feedback and negative cross-feedback. As a result of a

number of recurrences, the only unsuppressed node will be the one with the largest

initializing entry Y°m. This means that the only nonzero output response node is the

node closest to input vector argument. The recurrent processing by MAXNET leading

to this response is

Yk+i =?’[Wmy*] (6.35)

where T is a nonlinear diagonal matrix operator with entries/(.) given below:

140

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

N f-1 net<0
f(net) = \ (6.37)

[net net >0 v J

Each entry of the updated vector decreases at the kth recursion step of equation

(6.35) under the MAXNET update algorithm, with the largest entry decreasing

slowest. This is due to the conditions on the entries of matrix Wm, specifically, due to

the condition 0 < s < 1/p.

Assume that >C>y°, i = l,2,3...,p and i ^ m. During the first recurrence, all entries

of y1 are computed on the linear portion of/(net). The smallest of all y° entries will

first reach the level/(net) = 0, assumed at the kih step. The clipping of one output entry

slows down the decrease of ym in all forthcoming steps. Then, the second smallest
entry of y° reaches /(net) = O.The process, repeats itself until all values except for one,

at the output of the mth node, remain at nonzero values.

7a

[Fig. 6.5. MAXNET architecture for p class]

Consequently, our problem is of 3-class.Therefore the synaptic weight matrix can be

given by

141

Chapter 6: Kernel based ANN classifiers, RBP Networks and Support Vector Machines

1 -S -S'

~e 1 -e
-s -e 1

where eis the delay which is normally taken as a smaller value less than 1.

By considering s = 1/3, the above matrix becomes

W„
1 -1/3 —1/3
-1/3 1 -1/3
-1/3 -1/3 1

and the initial output vector obtained from the first layer, i.e. support vector machine

'yf '-0.0183'

is y° = yk2 = -0.0183
yk> _ 0.0183

Now using the formula (6.35), the weighted input can be given by

'1—1/3 -1/3'

l
‘S

i
__

__
j

netk = -1/3 1 -1/3 yk

-1/3 -1/3 1

1

*** m

1

for iteration k=0, applying the formula (6.36), we get

‘1 —1/3 -1/3' '-0.0183' -0.0183"

-1/3 1 -1/3 -0.0183 -0.0183
-1/3 -1/3 1 0.0183 0.02562

(6.36)

The corresponding computed output can be given by the transfer function defined in

the equation (6.37).

Using above transfer function, we get the first updated output as shown below:

'yl' '-i
yl _
yl 0.02562

Applying the formulas (6.36) and (6.37) recursively 5 times, wet get the desired

output as follows:

142

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Ii_________

-f

II
V

Jfs yl =
-l

yl i

Hence the above output response concludes that the new pattern given out here is of is

of class 3 i.e. C.

Figure 6.6 shows the feature map of the support vector machines for multi-class

problem.

Oi

02

03

[Fig. 6.6 Feature map of Support Vector Machines for 3-class problem]

Advantages for the method:

• Easy to implement

• Same technique is used to classify 2-class and multi-class problems

• For each class separate decision surface will be obtained

6.6. Summary and Discussion

This chapter deals with the various learning strategies and the experimental details for

the classification of Gujarati glyphs using Radial Basis functions. The first attempt of

recognition of the symbols for Gujarati numerals with two ANN architectures viz.

MLP and RBF is presented in [3]. As discussed in section 3 of this chapter, the

regularized RBF provides significantly good recognition accuracy of 93%. This can

further be improved by selecting proper spread using learning strategies discussed

earlier.

143

Chapter 6: Kernel based ANN classifiers, RBF Networks and Support Vector Machines

Some times Support Vector Machine can be characterized as the procedure of

interpolation rather than the architecture of ANN because the feature map generated

from the training set can be straight away used for the classification of the new pattern

without any kind of training. Section 6.5 of this chapter introduces the new approach

of classifying multiclass problems using MAXNET network. All the approaches

quoted in the literatures like one-against-all, one-against-one, and DAGSVM are

lacking uniformity of classifying two class problems and multiclass problems. The

approach presented here is capable of handling multiclass problems as well as two

class problems. We have solved the dual problem mentioned in the equation (6.30) for

each category. Each solution of the dual problem yields the unique optimal

hyperplanes for each category which separates the current class with the remaining

classes and thus adopts the one against all approach. This new approach provides

same number of optimal hyperplanes as the number of classes. Therefore this

approach remains uniform for two class as well as multiclass problems.

These kernel based ANN architectures are based on sound mathematical background

and can be used for complex classification problems like speech recognition,

character recognition etc.

144

