Chapter 1. General Introduction to Wavelets and Artificial
| Neural Networks

1.1. Introduction

The work that is to be presented in this thesis is related to the exploration of the
méthéds of wavelet transforms and various neural network architectures és épplied to
signal proéessing and pattern recognition in developing an Optical Chafacter
Recogﬁition (OCR) system for the Gujarati script. Optical Character Recognition is
used to convert the digital i images of printed documents in to files of edltable text by-

'usmg computers o

Dévelo’prnent of Optical Character Recognition (OCR) systems for various scripts
used by different societies is among the fnost important tasks that a;e grouped under
- the title of Natural Langtiage Processing Systems. Much work has goné in to the study |
_ and development of these systems in the past 50 years and, as a result, quite re11able

‘OCR systems are now available for the European and some other scripts.

But the scenario rcgarding- the OCR syétemé for Indiah (or Indic) scﬁpté is notA a very
- happy one since there are aimost no commefciaily successful OCR>pr0&ucts for these =
scnpts available in the market. This is partly because of the fact that these scripts with
the numerous conjuncts and the vowel modifiers occurnng in all directions of the
basw symbol are much more complex in comparison to the linear European scripts.
There have been many documented efforts, mainly at research level, regarding the
development of OCR technology for Indic scripts during the past 35 years. But,

regarding the OCR technology for the Gujarati script, there had been only one
documented effort [1] before 2005.

In this thesis, we have.explored the usage of Wavelets and Artificial Neural Networks
(ANN) for the development of an Optical Character Recognition (OCR) system for
the Gujarati script. Wavelets with the important characteristics of space and frequency

localization are found to be good for extracting features of images. Artificial Neural
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Networks with their generalization capabilities are good for the construction of a

robust classifier. This introductory chapter is organized as follows:

This chapter contains five sections. After giving an introduction in the first section,
we present the general introduction té bandlimited functions and Shannon’s sampling
theorem in the second section. Section 3 highlights the advantages of Wavelets over
~ the Fourier transform followed by the introduction of continuous and discrete wavelet.
In section 4, we describe the applicabﬂity .of various Artificial Neural Nethrk
- architectures and ultimately present detéiled discussion of two of the most widely
| used ANN architectures viz. Multilayer Perceptron and Radial Basis Funciton

networks. At the end a brief summary and organization of the thesis is presented in

_ section-5.

1.2. Shannon’s theorem

The use of Shdnnon"»s theorem which is based on bandlimitéd funcﬁons plays. a vital

- role in Wavelets. A function f in L*(R)’ is called bandlimited if its Fourier transform ‘

Al A 1 ) . :
6= —-mjdt e f(t) | has compact support, i.e. f(£)=0 for |¢|> Q , where

Q is a finite real number.

Let us suppose, for simplicity, that Q = w. Then f‘ can be represented by its Fourier

series,
f&=Yce™
nelZ
1% i;zé 7
where c, =-— [d& ™ f(&)
2z -,

=L Jag e j
E ln

_1 . VIR U
Ton S(®)  (tnverse Fourier transform: f(n) = 72——7[—-:[615 e™ f(£))

T2 (R): Set of square integrable function. Let f and g;re in L*(R) then L’-inner product is defined as
(f.8)=[dx F(x) E)

2
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From the inversion of Fourier transform, it follows that

F= ~—J§~—; [age 7@

1 T Bx ~in
:E;[,dge égcn et

1

= -—-—5—- Jdg ez(x-n)é
NCY Rl
_Zf( )smﬂ'(x n) ' :
T(—n) (1.1)

. Formula (1.1) tells us that f is completely determined by its “sampled” values f{n).

If we lift the restriction £ = 1 and assume support f c [-9,90], with Q arbitrary
: real number then equatlon (1 1) becomes ‘

The function in ecjuation (1.2) is now determined by its saniplés f(n%} neZ.

. Shannbn’s theo_i’éni states that an € -bandlimited function cé.h bé reconstructed
~ completely from its values ’
(fkr)|kez) T==

Q _
sampled at the discrete points k7. “Completely” means at all points t€R we get back

~ the exact original value f{?).

1.3‘.’Wavelets

Due to the localization properties of wavelets in time and frequency domaih, they are
widely used in the field of image analysis, feature extraction etc.

The wavelet transform is a tool that cuts up data or funcnons or operators into
different frequency components and then studies each- component ‘with a resolution

matched to its scale. In this chapter, we emphasize only on signal processing. The
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wavelet transform of a signal evolving in time (e.g. the amplitude of the pressure on
an eardrum, for acoustical applications) depends on two variables: scale (or

frequency) and time; wavelets provide a tool for time-frequency localization [11].

A brief description of the progression of éoncepts from Fourier transforms to wavelet

transforms via the Windowed Fourier transform is provided below:

e In many applications, given a continuous signal f{#), one is interested in its
frequency content locally in time. This is similar to music notation, for example,
which tells the player which notes (= frequency information) to play at any given

’ inoment Standard Foﬁrier transform, |

(Ef)@) = —\é_—; [at e £

gives a representation of the frequency content of f, but it can not provide the

- _information concerning time-localization of f.

"« - Time-localization can be achieved by first windowing the signal f s0 as to cut off |
" only a well-localized slice of f; and then taking its Fourier transform:
@ f)@,1) = [ds f(s)g(s~t)e™ =g,,

~This is the windowed Fourier transform, which is a standard technique for time--

frequency localization.

* The wavelet transform provides a similar time-frequency description, with a few
important differences. The wavelet transform ( to be explained in the following
. sﬁbsection) of a function fresults in an expression of the following type involving

two parameters o and b called the dilation and translation:
wav -] . t-b
(@™ f)a,b)=|a["* [dt 12 w(——;——)
(T f)a,b) = [dt fOW™

a < (t=b
where ¥ o ]a} 2 W(T} is called analyzing wavelet.

In this case | satisfies




Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks

faty@®=0

g(x) » ¥
LY WAR G

[Fig. 1.1 Windowed Fourier transform gy, ] ‘ [ Fig.1.2 Wavelets W

The difference between the wavelet and windowed Fourier tr'ansforms' lies in the
shapes of the analyzing functions g, and y* as shown in the ﬁgutes 1.1 and 1.2. The
functions gy, all eonsist of thesame envelope function ‘g, translated to the proper time
location, aﬁd “filled in” with higher frequeﬁcy oscillationé All the g(,; b tegardless of

'+ the value of , have the same width. In contrast the w! hdve time- w1dths adapted to

thexr frequency high ﬁequency w' are very Narrow, while low frequency v" are ,

- } much broader (in the case of continuous wavelet transform) Asa result the wavelet

- transform is better than the windowed Fourier transform to “zoom in” on very short

lived high vfrequency ph'ehomena, such as transients in signals. '

,In the followmg subsectxons we d1scuss Contmuous Wavelet Transform and D1sc1 ete

: _'Wavelet Transform in some detaﬂ
'1.3.1 Continuous Wavelet Tranéform

In many applications, given a signal f{t) (/€ L’ (R)), one is interested in its
, frequency content locally in time. The wavelet transform provides time-frequency -

description.

The Continuous Wavelet Transform canbe defined as below:
| way a - t— b .
@™ f)a.b)=(fw** )=l al™ [dr f(t)l//(T] (1.3)

where a and b are the dilation and translation parameters respectively which vary

continuously over R (with the constraint a#0) and ¥ € L'(R)
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The wavelet transform is given in equation (1.3) and a function can be reconstructed

from its wavelet transform by means of the resolution of identity formula [11]:
726, ([ 2L Yy
where V()= Iarm W[’t“ié), and {,) denotes the I — inner product. The
eoestan;t ¢, dei)ende oeiy qﬁ ¥ and is given by | |
—zfrjdfw(é‘)l gt < e (14
| where Y is the Fourler transform of the functlon ¥. The condxtl.on C;,,< o is known as

: the adm1ss1b1hty condition. -

'A ﬁmcnon e R—C satxsfymg ‘the condmons *PeLZ(R), “z;/][.-l and Cy< oo is -

o ‘called a mother wavelet or snnply a Wavelet

" The followmg example is an 111ustrat10n of compactly supported Contmuous Wavelet

o Transform (CWT).

- Exemple: Mexican Hat

iz
The Mexman Hat function is the second denvanve of the Gaussian function e 2.1t was

first used in computer vision to detect multlscale edges [29]. The use of Mexican hat
function is extended as a nonlinear activation function in the field of Artificial Neural
Networks (to be discussed later in this chapter). The branch of ANN in which all the
neurons of hidden layers possess continuous wavelets as an activation function is
known as Wavelet Neural Networks (WNN). Mexican hat function is used quite
ﬁ'eqﬁen’dy in WNN. If we normalize the second derivative of the Gaussian function so

that its L — norm becomes 1, we get
w() = ._2__.”—1;4(1 -—tz)exp"z”
B

and its Fourier transform is




Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks

!/7(60) : %ﬂ~1/4w2 E?Xp[-;oz ) |

Figures 1.3 and 1.4 demonstrate ¥ and the magnitude of its Fourier transform V.
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* [Fig. 1.3 Graph of Maxican Hat ¥] - [ Fig. 1.4 Graph of |V/|]
' 1.3.2 Discrete Wavelet Transform

Sha’nnon’s sampling theorem (equation 1.2) accomplishés >the, full reéonstfuctién ofa
o - N
bandlimited time signal f from a discrete collection (f (kT)| ke Z), T =0 of

- sample values [32].

: VSlAlppose B={vg vy,...,vn.1} is abasis for I2(Zy) such that all the Sasis élements‘ of B' are
localized in space. For a vector ze (Zy), we can write |
2= ay, (15)
n=0

for some scalars ag, ap, ..., aw.1. Suppose that we wish to focus on the portion of z near
some particular point zy. Terms involving basis vectors that are 0 or negligibly small
near ny can be deleted from relation (1.5) without changing the behavior near 7y
significantly. Thus we may be able to replace a full sum over N terms by a much

. smaller sum when considering only the portion of z near ny[12]

More generally, a spatially localized basis for expressing a signal is useful in signal

processing because it provides a local analysis of the signal: if a certain coefficient in
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the expansion of z is large, we can identify the location with which this large
coefficient is associated. We could then, for example, focus on this location and
analyze it in more detail. One example is to look closely at a potential tumor. Another
is radar or sonar imaging, for example in oil prospecting to identify the boundary of

an oil pocket, or in archeology to locate artifacts.

Our ultimate goal is to obtain a basis whose elements are both spatially and frequency
localized. Then a vector expansion coefficients in this basis will ‘pr'ovide both spatial
and frequency information. The scaling function for wavelet series expansion can be

~ described as below: -
Scaling functions:

- Consider the set 6f expansion functions cgmi)t;sed of integer translations and binary
scalings of thé real, square-integrable ﬁlnctioﬁ ¢(x) ; that is, the set {q) ik (x)}where
9 (x)‘='2é¢(2f,;;k) - for aiij,k'e Z.
.Here k determmes the posxtlon of ¢, (x) along the x-axis, _] determmeé 9, ,;(x) ’s
’ ‘Wldth how broad or narrow it is along the x-ax:s and the term 2’ 2 controls its height
- .or amphtude [13]. Because the shapc of bk (x) changes with j 7 ¢(x) is called a scaling

~ function. By choosmg B(x) w1se1y, {qbl . (x)}can be made to span L2 (R) the set of all

measurable square—mtegrable functions.

'If we restrictj’ to a specific value, say j = jg, the resulting expanéion set {gbjo & (x)}, isa
_ Subset of {¢j,k (x)}. It will not span I’ (R), buta subsﬁace within it. The subspace can
be defined as | '
' Vfo = span{ ¢j0’k (x)}
"_I'hat is, ¥, is the span of ¢, ,(x)over k. It f(x)eV, , it can be written as
F&=Fi8,)

More generally, we will denote the subspace spanned over k for any j as

v, = span| ¢, , ()}
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The following two subsections demonstrate the formation of the coefficients u and v

for Haar and Daubechies wavelets respectively.
1.3.2(a) Haar wavelets

Haar scaling function:

Let ¢: R — R be defined by
1 xe[0F
¢<x>={ D

0 otherwise

" Define qu;k : R — R as (as shown in section 1.3.2)

0,0 =27 92 - k)

| Here, ¢, is known as the father wavelet.

Deﬁn’é-the vector space V7 as .:' . L
' ij.span{'¢j,l;}j,kéz S

~ Therefore ¥/ can be expressed as a linear combination of ¢, as follows:

V{':{zu‘,. (0,50 = (())s € I <Z)}

where u;(%) is called approximation coefficients at level J-.

Since ge V° V', the above expression implies that

Px) = u, (k)q)l;k(x) = u,(k)V2 ¢(2x~ k) and hence ¢ is called scaling function.

keZ keZ

B Haar wavelet function:
Let : R — R be defined by
1 xe[0,1/2)

p(x)=4-1 xe[l/2,1
0 otherwise
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The wavelet function ¥ can be expressed in terms of scaling function ¢ as

R Y

kel

P
Define y, :R—> R as y, (x)=22y(2/x—k)
Here y;, is known as the mother wavelet.

Define the vector space W as .
W = span { Wj;k Yigez
Therefore W/ can be expressed as , '
W= {Zvj (k)'//j,k;v =.(V(k))kez' el’ (Z)}

where vi(k) is called detaii éoeﬂicients at iével j

| rsinéé p=gy, e V° L:,'V‘-‘, ¢(x) will be 'egp;essea as below B
B ‘¢<x)=k§u(k)¢l,k(xi S
- %u(k)ﬁ¢(éx~k)' |

thre "ﬁ(}c) = (g, ¢1,;) and u®=us(k) |

Scaling coefficients  u(k) = {1/ N2 i n=0 or n=1

0 otherwise

‘ 1742 if n=0
and wavelet coefficients v(k)=<-1/ NG if n=1
0 otherwise

are low pass and high pass filters respectively. It can be seen  that

v(k) = (~1)*"u(l— k). Where u(l—k) is a complex conjugate of u( 1 -k ).

10
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1.3.2(b) Daubechies wavelets

Even though the Haar wavelets are providing local analysis of a signal in frequency as
well as in spatial domain, they are not smooth in nature due to their step function
behavior. Daubechies has discovered new wavelet bases [11] which overcome the

limitation of the Haar wavelets. The formulation of Daubechies wavelets is detailed

_ below:

Sihce ¢ = ¢oo€ Vo < V1, and the ¢, , are an orthonormal basis in V1, Wé have
o=Dub, o e
- with | -

' (1.7)

bun =<¢a¢1 n>

A,_-As deﬁned in the deﬁmnon of the scahng function (/5 d1scussed in 1.3. 2(b) wecan

- rewnte equatlon ( 1 6) as -

o= «/'Eu pex-n W
 The fourier traﬁsfoﬁn of (1. 8) results in . . | B

¢(§)- J_Zu e—me:ﬂ(p(f/z) |  (1.9) |
 The equation’ (1 9) canbe rewritten as | |

$&=m(GID8EID) o 10
| where, -mo(é‘)=——2u,,e“”’f | (L11)

: Equahty in (1.10) holds pomtwme almost everywhere (a e.). As (1 7 shows, my isa
2m-periodic function in 40, 27]).

Hence, the orthonormality of the ¢(. - k) leads to special properties for my [11]. We
have

g ) + o (£ + ﬂ)l =1 ae, (1.12)
With the help of orthonormality of ¢ and y; the equation (1.11) should be of the form
[1 1],

11
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1+e7€ Y

5 ]Ll(e‘) , ' (1.13)

mo(é)z(

withN > 1 , and L;- a trigonometric polynomial.

- Now considering M, (&) = my(€) |, we find that My(&) is a polynomial in cos&
satisfying the propérty

| M@ MGl | A
By taking modulus, the equa’aon 1.13 can be wntten as |

1+e

lL &)

Imo &)=

1[ N2 -2"£,
:—i—i(l+c§s§) +sm‘§]2 L&)

I o
| :-F[2+2‘QOS§]ZIL1.(§)I
=07 [1+cos§] 2L, (f)t

| *2 2 [?;cos2 é:] }L («f)‘
= [cos 2|L ({f)l

| Theréfore,. | ‘ Mo(f)#'”&ﬁﬂ (COSZéj L(f)

where L(&) = |L;(E)’ is also a polynomial in cos&. For our purpose it is convenient to

rewrite L(£) as a polynomial in sin’(&/2) = (1-cosE)/2. Therefore,

Mo(ﬁ)b (cos2 5) P(sin2 —i—}

In terms of P, the constraint (1.14) becomes

(1-y)"P@) +y"P1-y) =1 11y

where, V= sin (fJ

12
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This formula is valid for ye [0,1] , hence for all yeR.

To solve equation (1.15) for P, by using Bezout’s theorem [11] there exist a

polynomial Py of degree < (N-1) such that the equation takes the form

(1-3)"PuG)+ " Pu(l-y) =1 (1.16)
- 3N +k 1 . »»

where, WNOE Z[ ] , ~ (1.17)
‘Daubechies D4 (scaling ffunétion 2%) Wavelet

“We begin with the equation (1 ;17) by coﬁsideringbthe value of N=2.

(1Y (2
Pz(y)=( }{1 )y=1+2y
’ : and consequently from equatxon (1. 15),

‘ P (sm2 -—) 1+2(sm2 i

. . o o n=l V
- = 2——Acos§ =4 cosOé’%»a1 cos’g' =2ak cosk&

The following lemma of Rlez [32] g1ves an unportant relat10nsh1p among the

_trlgonometnc polynomlals whlch can be stated as below:

Lemma 1.2 (Riez): Let 4(& be a posmve tngonometnc polynomlal invariant under
the substltutlon Eto - A is necessarily of the form
A&) = Zak ooskZ,‘ a,e - R.
k=0
Then there exists a trigonometric polynomial Bofordern,

B =Y be"™, b eR,

k=0
" such that, : |
| | A(9 =B(§ B(-H . (1.18)
identically in & .
"~ So, using equaﬁon (1.18) in our problem, we get

13
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(bo +he™* )(bo +blei5)= 2-—12—(ei§ + e;i‘f),

By simplifying , we get two equations

B+bE =1, byb =

Solution of these two equations leads to b, = ~é—(l +3 ), b = é— (1 -3 )

“Now, using equation (1.13), we can have

o ' —uf 2
mo@:[“e )Ll(cf)

2
frct e oen)
.-;%(1 4267 e“.l“f ) (1 +3+ (i—- ﬁ)e"ié)
;—(1+J‘+(3+J’)e *¢+(3 «f)e‘z“fm f)e"”)

* When ma(O) =] is also satlsﬁed

- _ By comparmg the value of mo (5) of equatlon (1.11) with the values obtamed above

we get

\/—zu e"'"é 8(+ 3+(3+f)e"5+(3 J.)e—Zlf +(1- J—)e—3rf)

Hénce, we get only four nonzero componehts of approximation coefficient u which
are mentioned in table 1. This table demonstrates the scaling (high pass) coefficients -
- u(k) and wavelet (low pass) coefficients v(k) of Daubechies D4 wavelets for scaling

- function 2% and wavelet function 2¥ respectively.

14
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Table 1. Daubechies D4 low pass and High pass filters

k | u(k) v(k) = (D) u(l-k)
0 1+43 1-43
42 42
. 3+43 3-43
42 T a2
X 3-.3 3+43
42 42
5 -1—-\/5 1+\/§
3 42 T 442

Daubechiés D6 (scaling functién 3%) Wavelet

We can obtain low pass and hlgh pass coefﬁc1ents for Daubeclnes D6 wavelets for by
substltunng N=3 m equat;on (1.17). Table 2. gives a 11st of the scalmg (high pass)
coefﬁcwnts u(k) and wavelet (low pass) coefﬁcxents v(k) of Daubechies D6 wavelets

for scalmg funchon 3¢ and wavelet function 3”’respect1vely

- Table 2. Daubechies D6 low pass and high pass coefficients

k- u(k) v(k) = (=) u(l— k)
0 - 0.33267055295 00825 - 0.0352262918857095
1 0.8068915093110924 0.0854412738820267
2 , 0.4598775021184914 -0.135011 OZOQI 02546
3 -0.1350110200102546 -0.4598775021184914
4 -0.0854412738820267 0.8068915093110924
5 0.0352262918857095 -0.3326705529500825

Thus, table 1 and 2 specify the first stage wavelet basis for Daubechies D4 and D6

- respectively.

15
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1.3.3 Series Expansion and Multiresolution Analysis (MRA)

A multiresolution analysis, formulated in the fall of-1986 by Mallat and Meyer,
provides a natural framework for the understinding of wavelet bases, and for the
construction of new examples. A multiresolution analysis (or MRA) with scaling
function ¢ is a sequence {V;}jez of subspaces of L*(R)having the following

properties:

1. Monotonicity: The sequence is increasing, that is, V; < Vi for all jeZ.
2. Existence-of the écaling function: There exists a function eV such that the set
_ {4;90 k(x)}k , 18 orthonormal and '

{Zz(k)%k z= (Z(k))kez GZZ(Z)}

) keZ
3 Dilation'propeﬂ'y' For each Js f(x)é Vo if and 'only if f(Zix)e Vi
4, _ ,Trmal mtersectlon propexty N ez V {0}

5. - Density: U jez Vi dense in L2 (R)

.MRA plays a major role in the deve’ldpmént of series expansioﬁs of a sigﬁal fof the
‘local analysis of that signal. The description of senes expansmn of a signal usmg
MRA techmque of DWT is given below:

A signal or function f{x) can often be better analyzed as a linear combination of

. expansion functions [13] .
| f0)=Y 0,0
' ; KPE (1.1a)

where £ is an integer index of the finite or infinite sum, the o are real-valued
expansion coefficients, and the @(x) are real-valued expansion functions. If the
expansion is unique-that is, there is only one set of ¢ for any given f{x) - the g(x) are
called basis functions and expansion set, {@, (%)}, is called a basis for the class of
functions that can be so expressed The expressible functlons form a function space

. that is referred to as the span of the expansion set, denoted

V = Spanip, ()}, (1.22)

16
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Therefore, any f{x)eV can be written in the form of Equaﬁon (1.1a).

For any function. space ¥ and corresponding expansion set {(pk (x)}, there is a set of
dual functions, denoted {@, (%)}, that can be used to compute the o4 coefficients of
equation (1.1a) for any f(x)eV . These coefficients are computed by taking the inner
product of the dual @, (x)’s and function f{x). That is,

- & = (7.0, 1) o (130

Depending upon the orthogonality of the expansion set, this computation assumes one

of three possible forms.”

" Case I If the expansmn functlons form an orthonormal bas1s for v, meamng that

(o, .0, (x)) {f JJ;& : - (4
the bas1s and 1ts dual are equwalent That is, @, (x) gok (x) and equatlon (1.3a)
: becomes : : _ o ;
| | (cok(x),f (x)) B (1.50)
Case 2.1t the expanswns aré not orthoriormal, but are ar ortho gonal ba51s for V, then
(cok (0, ()=0  j=k |

and the basis func‘aons and their duals are called b1orthogona1 The oy are computed
- using equatlon (1 .3a), and the bxortho gonal basis and its dual are such that

{0, B0 =5, = 1;) sk

Case 3: If the expansion set is not a basis for ¥, but supports the expansion defined in
equation (1.1a), it is spanning set in which there is more than one set of o for any set

4 fGoeV. The expansion functions and their duals are said to overcomplete or

redundant. They form a frame [11] in which
AN <o @) <Blref (1.60)

~ forsome A > 0,0 <B < oo, and all fix)eV. The norm, ﬂ . n, of f(x), is defined as the

square root of the inner product of f{x) with itself.

17
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Dividing this equation by the norm squared of f{x), we see that 4 and B “frame” the
normalized inner products of the expansion coefficients and the function. If 4 = B, the

expansion set is called a tight frame and it can be shown that
[ == T e, f @) ) (172)
k . :

Except for the 4"/ term, which is a measure of the frame’s redundancy, this is
identical to the expression obtained by substituting equation (1.5a) (for orthonormal

basis) into equation (1.1a).

Iet 7 be an inner pfoduct spacé and let V° be subspace of the space V. Let Wbe an
orthogonal complﬁnént of ¥ in ¥ so that W’ is also a subspace of 7’ . Then
o V? @WO ={Vo W,V € V"arzd Wo € Wo} is cailed the orthogonal direct sum of ¥’ and
o o | |

 Inparticular, 1f we say ) Wo VI we mean that Vo and W’ are subspaces of V., ¥’

' @Woandeveryelementofxe 148 canbewnttenasx u+vf0rsome ueV and v

V= V°<—})W° - (1.19)
‘ ‘We deﬁne the Wavelet series expansmn of functxon f(xerl (R) relatlve to wavelet

W) and scahng function (%) using first stage wavelet basis as below:

f (x) = ¢1,k (x) :_Z U (k)¢o,k (x) + 2"0 (k)WO,k (%)

Equation (1.19) can be generalized using the first and fourth properties of MRA
(stated above) as V" =¥/ @ W/ and form a Multiresolution Analysis [12, 13].

. Therefore, the above equation will take the following form ‘
£ =2 u, 0y @)+ XXV W) gy 20
where Jjois an arbitrary integer called the starting scale.

- “The coefficients u; and v; in this expansion are called the approximation and detail

coefficients respectively.
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The computational aspect of equation (1.20) can be stated by the following lemma
[12]:

Lemma 1.3: Suppose {Vj } jez 18 a Multi resolution Analysis (MRA) with scaling function ¢
and scaling sequence u=(u;(k)),,. Suppose v=(v,(k)),, is defined by

v(k)=(-)*""u(l-k), and w= Zv(k)qp,{ , where ¢/ =272 ¢(2j - k). Suppose
: kez : ‘ :

. fe L*(R) and, for each j€ z, define sequences x; = (x; (k) ., and y; - (}z () ke, bY
%, 00 = (%] where ] = 2"y ~k) md 3, (0)=(1.07).

Then X, =’D(y m ¥ V) and  y, D(y s ¥ U), where downsamphng operator

_(D) and convolution (*). are on 1 2(z) and uk) = u(—k) and V(k) = v(—k) are duals of
u(approx1mat10n coefﬁments) and v(detaﬂ coefficients) respectively by consuienng

| ~appre§{§1nation chfﬁcients u =1 and detail coefﬁcients_v = V.
: ‘,Also', - yj+1-U(yJ)*u+U(x YRV o (L2

- where U is the upsamplmg operator on [ (z)

The computation described :By the ab_ové lemma is pictorially represented by the

N following diagram:
5=
B » 42 —> A0 TP
LV e LA T
Vitt= ) : : + | Y
((fa(ojﬂ,k >)kez - yj = -
) *u » v 2 » A2 -—!I> ¥ g
((f?¢j,k >)kez
. | |
Analysis phase Synthesis phase

[Fig. 1.5 analysis and synthesis phase of a signal]
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1.4. Artificial Neural Networks

. Work on artificial neural networks, commonly referred to as “neural networks”, has
been motivated right from its inception by the recognition that the human brain
| computes in an entirely different way from the conventional digital computer. The -
brain is a highly complex, nonlinear and parallel computer (information-processing
- system). It has the capability to organize its structural constituents, known as neurons,
so as to perform certain computations (e.g. pattern recognition, perception, and motor
. control) many times faster than the fastest digital computer in existence today [18].
_ 5
To visualize the complexity of biological neural processing, consider the sonar of a
bat. Sonar is an active echo-location system. In addition to providing ihformatioh
“about how far éway a targef (e.g. a flying insect) is, a bat sonar con'veysA information
' about the relative velocity of the target, the size of various features of the target, and
“the azimuth and elevation of the target. The complex neural computations needed to

1 .extract all this 1nformat1on from the target echo occur W1th1n the bat s bram havmg

' the size of aplum. .

'.Artlﬁc1al Neural networks are computatlonal algonthms that can broadly be defined

.as follows

A neural networks is a massively parallel distributed processor made up of simple
processing units, which has a natural propensity for storing experiential knowledge

and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process

2. Interneuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

Processing units are known as neurons.
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Chapter 1 : General Iﬁ&oduction to Wavelets and Artificial Neural Networks

ANN can be applicable in several areas like Pharmaceutical problems [2], medical
diagnosis, weather forecasting etc. The work to be presented in the thesis explores the

use of various ANN architectures for the purpose of classifying the symbols that

occur in Gujarati language:

The history of ANN starts from 1946, McCulloh Pits have developed the first neural
~ network model which simply takes binary inputs and computes the output using only

one neuron in the hidden layer. Hard limit function was used as an activation function
in the hidden layer.

Somc 15 years after the publication of McCulloch and Pitt’s classic paper, a new
approach to the pattern recogmtwn problem was introduced by Rosenblatt (1958) He
has proposed the perceptron as the first modcl for learmng with teacher (i.e.

- supervised learning). The perceptron is the simplest form of a neural network used for
the. classification of pattefns said to be linearly separable (figure 1.6) (i.e., patterns

' that lie on oppositc sides of a hyperplane). Rosenblatt proved that if the pottcrns used
; 'to train the ‘oérceptron are drawn from two lincarly separable classes, then the

perceptron algorithm converges and positions the dec1smn surface in the form of

: hyperplane between the two. classes The algorithm is tramed w1th the help of Least

a -'Mcan Square (LMS) algonthm LMS algorithm behaves like a Jow- -pass filter, passmg‘

‘the low frequencey components of the error signal and attenuatmg its hlgh frequency

o components (Haykin, 1996)

-
%
ol

[F1g 1.6. Linearly separable patterns]
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Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks

The proof of convergence of the algorithm is known as Perceptron Convergence

Theorem. The Perceptron Convergence Theorem is stated as below:

Let the subsets of training vectors X and X, be lineraly sepearble. Let the inputs
presented to the perceptron originate from these two subsets. The perceptron

converges after some ny iterations, in the sense that

wng)=w(ng+1)=wlng+2)=...

is a solution vector for ng < Niax

Perceptron Convergence Theorem converges after some #, iterations provided the
training vectors are lihearly separable. The limitation of Rosenblatt’s model of

* . Perceptron is it does not converge for the non separable training vectors.

. In 1986 the development of the bz‘wk~propagation algorithm was reported by
- ARumelhart,' ‘Hinto'n',' -and .Williams which is playing a major in Vthe most popular
, learning algorithm for the training of 'Multiléyer Perceptron Significant (MLP). Also
- .in 1988, Bfoomhead and Lowe describea a procedure for the. ‘design of wla'yered
‘fe'e‘dfdrward ‘networks using Radial Basis' Function (RBF), 'Whiéh provide an
- alternative to MLP. Specht D. F.in 1 991, has brought the idea of General Regression
Neural Netvs‘r‘orks (GRNN). The théory is based on non—parémetric estimator of
\Statistics and estirﬁate_s the output without any kind of training. In the early 199Cs,
: ".Vapnik and Coworkers invented a computationally powerful class of supervised
learning networks, called Support Vector Machine (SVM).

The description of MLP network is to be discussed in the next section of this chapter
while in the fourth chapter MLP is used as a classifier for the development of Gujarati
" OCR. The Mathematical and computational aspects (algorithmic aspects) of General
Regression Neural Network will be presented in chapter 5. While kemel based
techniques Radial Basis Function and Support Vector Machine, in which the
classification of the patterns is based on function-separable space, will be described in
the 6™ chapter of the thesis. |
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Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks

Now, in the following two subsections we describe two widely used architectures of

ANN viz. Multilayer Perceptron networks (MLP) and Radial Basis Function networks
(RBFN).

1.4.1. Multilayer Perceptron (MLP):

Thé MLP is the most widely used neural network architecture. Typically, the netWork
 consists of a set of sensory units (source nodc;s) that constitute the input layer, one or
more hidden layers of computation nodes, and an output layer of computation nodes.
The input signal propagates thréughthe network in a forward direction, on a layer-by-

- layer basis. These neural networks are commonly referred to as multilayer perceptron
(MLPs).

Multiplayer 'perceptrons have been applied successfully to solve some difficult and

o ‘diifgrse problems by training them in a manner with a highly popular algorithm

. known' as the error backpropagation algorithm is based on the error-correction

1 leaming rule.

- . Basically, error back-propagation learning consists of two passes Athr‘ough the
different layers of the networks: a forward pass and backward pass -.In the forward
pass , an activity patterns (injmt vector) is applied to the sensory nodes of the
network, and its effect propagates through the layer by layer . Finally, a set of output |
is ‘pr'odﬁced as the actual response of the networks. During the forward pass the
synaptic weights of the networks are all fixed. During the backward pass, on the other
, hand , the synaptic weights are all adjusted in accordance with an error-correction
rule. Specifically, the actual response of the networks is subtracted from a desired
(target)response to produce an error signal. This error signal is then propagated
backward through the networks against the direction of synaptic connections-hence
the name “error back ~propagation”. The synaptic weights are adjusted to make the
actual response of the network move closer to the desired response in a statistical’
sense. The error back-propagation algorithm is also referred to in the literature as the

back-propagation algorithm, or simply back —prop .Henceforth we will refer to it as
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the back~propagaﬁon algorithm, The learning process performed with the algorithm is
called back-propagation learning.

Figure 1.7 shows the architectural graph of a mult@layer perceptron with one hidden
layer and an output layer. To set the stage of a description of the multilayer perceptron
in its general form, the network shown here is fully connected. This means that a
neuron in any layer of th_é network is connected to all the nodes/neurons in the

previous to right and on a layer-by-layer basis.

'Figﬁre 1.8 depicts a portion of the multilayer percéptron. Two kinds of signals are
_identified in this network: -

A lA.v Function Signals: A function signal is an input signal (stirﬁuius) that comes in at
~ the input end of the network, propagates forward (neuron by neuron) through the
» 7 network, and emerges at the output end of the network as an output signal. We
- refer to such a sigﬁal as a “function signal” for two reasons. First, it is presumed to
s A'pe'rfc_)rm a useful fuﬁctioﬁ ét the output of the network. Second, 'at each neuron of
- the network through which a function s_ignal passes, the signal is calculated as a_'
' ;ﬁmc‘tion bf the inputs and associated weights applied to that neuron. The function '

" ‘signal is also referred to as the input signal.

- 2. Error Signals: An error originates at an output neuron of the network, and
 propagates backward (layer by layer) thrbugh the network. We refer to-it as an
“error signal” because its computation by every neuron of the network involves an

error-dependent function in one form or another.
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X3

X2

© Km-l

Xm

Input Layer ' Hidden layer - Output layer
[Fig.1.7 Architecture of a multilayer perceptron]

- —> Function signals

: 4 .(M .......... ‘Error Signals

A [Fig. 1.8. forward propagation of function signals and back-propagation of error-signal}

Determining the number of hidden layers and the number of neurons in these hidden
layers for a given problem in the case of MLP networks are very critical decisions for
applications involving large networks. In such conditions following theorem leads to

important information regarding hidden layers.

The Universal Approximation theorem for Multilayer perceptron is as under{18}:

“Let ¢(.) be a nonconstants, bounded and monotone-increasing continuous function.

Let I n, denote the mp-dimensional unit hypercube [0,1]™ . The space of continuous
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Chapter 1 : General Introduction to Wavelets and Artificial Neural Networks

functions on 7, is denoted by C(I,, ). Then, given any function f € C(J m,) and €>

0, there exist an integer M and sets of real constants a; b;, and wy, where 1= 1,...,mp
such that we may define

Pt tymin) = S0 w, +8) (122)

i=] j=1

as an approximate realization of the function f{) ; that is,
IF(xl', sz,...xmo )= f (%505, )}~< A

forall x,,x,,..x, thatliein the input space”

The universal approximation theorem is directly applicable to multilayer perceptrons.
We first note that the lo gistxc functlon (51 gmmd) used as the nonhneanty in a neuronal
model for the construction of a MLP is mdeed a nonconstant, bounded and monotone- '
increasing function; it therefore satisfies the conditions xmposed on the function o).

'Next we note that equa'uon (1 22) represents the output of a MLP descnbed as

follows:

(i) The network has "mg inpﬁt,nodes and a single hidden layer conéisting of my
neurons; the inputs are denOted by x,,%,,.%,, o '
(i) Hidden neuron i has synaptxc we1ghts Wis Wiz see:Wo and blas bz

‘ '(m) The network output is a linear combmatxon of the outputs of the hldden neurons

with o, @,,..,, , deﬁmng the synaptic wei ghts of the output layer.

The uhiversal approximation' theorem is an existence theorem in the sense that it

provides the mathematical justification for the approximation of an arbitrary
' continuous function as dpposed to exact representation. Theorem states that a single
hidden layer is sufficient for a multilayer perceptron to compute a uniform &
approximation to a given training set represented by the set of inputs x, x3, ..., Xm0

and a desired (target) output f{xy, X2, ..., Xmo)-

The usage of the term “back-propagation” appears to have evolved after 1985, when
its use was popularized through the publication of the seminal book entitled Parallel
Distributed Processing (Rumelhart and MecClelland, 1986). Back-propagation
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algorithm is playing an important role in the development of Multilayer perceptron
classification techniquf; of ANN. The algorithm can be summarized as below:

Error-Backpropagation algerithm:

Consider the N training samj'ples {X@, D)}, where X(n) and D(n) are input and
desired output vectors . The aigoriﬂnn can broadly be described as follows:

1. Initialization: Assuming that no prior information is available, pick the synaptic

- ~weights and thresholds from a uniform distribution whose mean is zero and whose
. variation is chosen to make the standa;d deviation of the induced local fields of the

neurons lie at the transition between the 1inéar and -saﬁ&ated'ijart's of the sigmoid

. activation function.

2;'PreSentations\of Training Examples: Present the network with an epoch of training
- examples. For each example in the set, ordered in some fashion, perform the

fsgquénce of fofward'and backward compufationé described above.’ o

3. Forward 'Cémpittatio’ni Let a fraiim’ﬁg eXample iﬁ thé»' epoch be denoted by
 (X(n), D)), with the input Qe,ctor X(n) appiied to the inplit'id_yer of sensory nodes”
~ ‘and the desired response vector D(n) presented to the output layer of computation
- nodes. Compute the induced local fields and function signals of the network by

'proceeding forward‘ through thet net\-xfork, layer by layer. The induced field

D (1) £ ;s It
v; (n) for.neuron jinlayer/is

o
! ! ~1)
V000 = 3wy ()

i=0"
where .‘})}H) (n)is the output (function) signal of neuron i in the previous / — 1 at
iteration n and wg) (n) is the synaptic weight of neuron j in layér I that is fed from
" neuron 7 in layer / — 1. The computed output of (-1)" layer can be given by
" y¢P(my=+1 for some particular i=0, and the corresponding weight vector of the

link from jth neuron of the /™ layer to 0™ neuron of the (I — 1) layer can be givenv
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by w')(n) =5 (n). Assuming the use of a sigmoid function, the output signal of
neuronj in layer / is
Yy ffl) = (p(v [ (n))

If neuron is in the first hidden layer (i.e. [ = 1), set

¥ =x;(n)

" where x/(n) is the j element of the input vector X(x). If neuron j is in the output
layer (i.e. [ =L, where L.is referred to as the depth of the network), set
¥ =0,(n) |
Cofnpute the error signal |
| )= din) - oi(n)
where dj(n) is the j® element of the desired response vector D(r).

- 4. Backward Computation: Compute tﬁe & (i.e. local gradient) of thé network déﬁned
by )
R | 4e§.” (n)qp} (vf.L)'(n)) o o ‘ fo'r neuroﬁ J in output layer L
6’( l),(n) - ®; (vﬁ’) (n)) 2 5,§'+1)_(n)wgﬂ~) (ﬁ) for rlzéuronA jin ‘hidden layer |
_ x : o ' .
where the prime ;(.)denotes di'ffei'evﬁt‘iationA w'ith.revspéct to the éréﬁnient. For the
' - necessary correction in the‘ syna;itic Weights, the géﬁeralizéd delta rule can be used

as shown below:

The total error energy &E(n) is obtained by E(n) = }izef (n) , where set C includes

jeC
all the neurons in the output layef of the network. The correction Awji(n) applied to
wji(n) in the o layer is denoted as AW;:(") and defined by the delta rule

9 (n)
AW}: (m=-1 oW (n) > where 77 1s a learning rate parameter
. El

Therefore the correction in the links of the synaptic weights connecting neuron j in

layer [ and neuron i in layer / — 1 is given by

wﬁ? (n+t)= wf,.? (n+ Awﬁ.? (n)
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W (n+1) = W (n) vn 8§(n)
ow,(n)

Therefore, U Dn+1)= f,f) (n+n 5](;) )y (n)

4. Iteration: Iterate the forward and backward computations under points 3 and 4 by
presenting new epochs of training examples to the network the absolute rate of

- change in the average squared error per epoch is sufficiently small.
1.4.2. Radial Basis Function Networks (RBFN) :

. The design of RBFN can be V1ewed as a curve fitting (approx1matxon) problem ina
high-dimensional space In the context of neural networks, the hidden units provide a
set of “functlons that constitute an arbitrary “basis” for the mput patterns (vectors)

when they are expanded into the hldden space; these functions are called radial-basis

* functions.

' 'RBFN have followmg two maJor propemes wh1ch make it smtable for our

_ class1ﬁca’c10n problems

s A vpattem—classifvicat.ion.pi’obiem ‘cast in a high dimensional space is more
- likely to be linearly ‘separable than in a low-dimensional space (Cover-1965)

° RBF networks ‘using exponentially decaying localized nonlinearities (e.g.
" Gaussian functions) consfrucf local appfoXimations to nonlinear input-output

mappings. -
Cover’s Theerem on the Separability of Patterns:

When a radial basis function network is used to perfohn a complex pattern-
classification task, the problem is basically solved by transforming it into a high
dimensional space. in a nonlinear manner. The Cover’s theorem on the separability of

patterns can be statéd as below:
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“A complex pattern-classification problem cast in a high-dimensional space

nonlinearly is more likely to be linearly separable than in a low-dimensional space”

Consider a family of surfaces where each naturally divides an input space into two
regions. Let ¢ denote a set of N pattérns (vectors) Xj,Xz,...,Xn, each of which 1is
assigned to one of two classes ¥; and ¥,. This dichotomy (binary partition) of the
points is said to be sei)arable with respect to the family of surfaces if a surface exists
in the family that separatesv the points in the class y; from those in the class %. For
e_ach pattern Xey, define a vector made up of a set of real-valued functions

AeX)li=12,...,m}, as shbwn by
QEP(X), 92X, ., G (O

Suppose that the pattern X is a vector in an mg-dimensionétl input space into
. corresponding points in a new space of dimension m1 We refer to ¢,(X) as a hidden -
function, because it plays a role similar to that of a hidden unit in a feedforward

neural network. Correspondingly, the ,spaée spanned by the set of hidden functions

{(p, X is referred to as the hidden space. or feature space.

A dichotomy %1, x2]' of ) is said to be (-separable if there exists an m I-dinieﬁsional

vector w such that we may write

wip>0,Xey,
wlp <0, Xey,

The hyperplane defined by the equation
w' =0

- describes the separating surface in the ¢-space (i.e., hidden space).

To illustrate the significance of the idea of @-separablity of patterns, consider XOR

o problem. In the XOR problem there are four points (patterns): (1, 1), (0, 1), (0, 0) and
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(1, 0), in a two-dimensional input space, as depicted in Fig. 1.9, The requirément is to
construct a pattern classifier that‘prbduces the binary output 0 in response to the input
patterns (1, 1) or (0, 0) and the} binary output 1 in response to the input pattern (0, 1)
or (1, 0).

Define a pair of Gaussian hidden functions as follows:

¢,(X)= e‘ﬂx-tnllz , b=y

6,(X) =ePul' t,=[0 07

K where the norm used here is the Euclidean norm.

08}

08}k

| X, 08
o5}
04l
03t

0.2}

0% i Il ! Il i Il 1 ! 1 Fy
0.1 02 - 03 04 05 06 07 08 09 1
- X1

[Fig. 1.9. Linearly nonseparable in X;-X> plane]
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Table 3. Specification of the-Hidden Functions for XOR.

Input Pattern, | First Hidden Function, | Second Hidden Funciton;
X $1(X) ¢X)
(,h) 1 ' 0.1353
0,1) : 0.3678 A 0.3678
0,0) 0.1353 1
1,0) . . 03678 . 0.3678
rx
0.9}
0.8+
o
S07+
2
20
0.6
g
E .
x 0.5+
o
5 A
8 0.4+ o
K] LY
0.3-
0.2+
0.1 L ] I 1 ! i L 1 ]x 4
01 -02 03 04 05 06 07 08 09 1
First Hidden Function ‘

[Fig. 1.10. Linearly separable in ¢;-¢; plane]

‘The input patterns are mapped onto the ¢;-¢; plane as shown in figure 1.10. Here we
observe that the ini)ﬁt 'patterns 0, 1) and (1, 0) aré linearly separable from the
remaining patterns (1, 1) and (0, 0).‘ The functional relationship between the input and
output pairs’ is sometimes referred to an interpolation problem, which may be

described as below:
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Interpolation Problem

In a practical situation, the surface I' is unknown and the training data are usually
contaminated with noise. The training and generalization phase of the learning

process may be respectively viewed as follows (Broomhead and Lowe, 1988):

. . The training phase constitutes the optimization of a fitting procedure for the
 surface T, based on known data points presentedv to the network in the form of
input-output patterns. ’ A ‘
. - The generalization phase is synonymous with interpolation between the data
-_ pomts with the mterpolatmn being performed along the constrained surface
. generated by the ﬁttmg procedure as the optimum approximation to the frue

R surface T.

Thus we are led to the theory of multlvanable interpolation in high- dlmensmnal

space The mterpolatxon problem may be stated as follows

vaen a set off N different pomts {X € R™ | i=12,.,N } and a correspondmg set of N
L ‘real numbers {di'e RA |l=1,2,---, }, find a function F :_RN —> R'that satisfies the

* interpolation condition: o o | |
‘ F(x,) d,, L i= 120N

- For the strict mterpola’uon the 1nterpolatmg surface (e, functlon F) is constramed to

pass through all the tralnmg data points.

The radial-basis functions (RBF) technique consists of choosing a function y = F(X)
that has the following form (Powell, 1988):
X =Y wo(X-t]) (1.22)
i :
where {q)Q[X-—Xi u)[ i=12,..,N}is a set of N arbitrary nonlinear functions, known as
radial basis functions, and || . || denotes a nonh that is usually Euclidean. The known
- data points X;€ R™, 1 = 1,2,...,N are taken to be the centers of - the radial basis

functions and {w;} are the unknown coefficients (weights).
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Inserting the interpolation conditions of the interpolation problem in the equation

(1.22), we obtain the following set of simultaneous linear equations:

Pu P - P w d,
On. P o O || W d,

Pvt Pnz  Pww I WN dy

-where ¢jz‘:q)(xj~xi)‘ | J.’i:l,Z,;—-,N :

" Let @ denote an N X N matrix with elements @
®={p,|(,)=12,..,N}
In vector form the above matrix equation can be expressed as:
| f Pw=d
Where N x 1 vectors d and w represent the desn:ed response vector and linear weight

i vector respectlvely, where N ‘is the size of the trammg sample. .

Assﬁming that ®is nénsingular a.r-l'dkthere,‘foré that the inverse matrix @ exists, we

“may go on to solve for thé 'Weight Véctor w as shown bélon_ |
o | W= =@'d |

| In order to ensure the nonsmgulanty of the mterpolatlon matnx ®, we may 1ead to

. the following theorem known as Micchelli’s theorem.
Micchelli’s Theorem

In the article of Micchelli’s (1986), the following theorem regarding the interpolation
matrix @ is proved: '

Let {X i} L1 be a set of distinct points in R™ . Then'the N X N interpolation matrix ¢,
whose ji-th element is @i = (| X; - Xil}), is nonsingular
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There is a large class of radial basis functions that is covered by Micchelli’s theorem:

it includes the following functions are of particular interest in the -study of RBF

“networks:

a. Multiquadrics:

o) = (¥ + A for some ¢ > 0 and reR
b. Inverse multiquadrics: , |

@(r) = (¢ + "7 for some ¢ > 0 and reR
¢ Gaussian functions: | '

2

-
(0(" )= exp( Py ] for some ¢ > 0 and re‘R

For the radial basis functions listed above to be nonsiﬁgular, the points {x, }::1 must all
_ be different (i.e., distiﬁct). That is all tﬁat‘ is required for nonsingularity of the

interpolation mat‘rii ®, whatever the values of size N of fhe{ data points.

: The Radlal basis functlon networks can be categonzed in to. the two networks viz.

Regulanzatxon networks and Generahzed network. Both the networks are 1ntroduced

in the following subsec‘uons
(a) Regularization network

- The regularization network is a universal approximator in that it can approximate

arbitrarily well any multivariate continuous function on a compact subset of R™,
_given a sufficiently large number of hidden units. The regularization network

architecture can be described as below;

Equation 1.22. can be written by using Gaussian function as a transfer function as

" below:
) N . nx_“tiu?
y }( - : r “i XP‘

The above equation states the following (Poggio and Girosi, 1990):
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¢ The regularization approach is equivalent to the expansion of the solution in terms
of a set of nonlinear functions mentioned above.
¢ The number of such functions used in the expansion is equal to the number of

examples used in the training process.

X1
.9]
_)
. )
Xm-1
X
: o . Hiddenlayerof N .
Input Layer = B - transfer functior‘ls' - 7" . Output layer

L [Fig71.411 Regularization RBF neﬁNbfk] -
(b) Ge_heralized' Radial ‘B‘asis Function networks

- The 6né-t6-one cofréspondeﬁce’betvwéen’fthe training inpﬁt dﬁta X; and the Green’ s |
| function[18] as a transfer function G(X,Xi) fori =‘]‘,2, N produces a regularization
| network (ﬁguré 1.11) that may sometimes be considered prohibitively expensive to
implement in computational terms for large N, specifically, :thev coniputation of the
linear weights of the ngtwérk. Furthermore, the likelihood of ill conditioning is higher
for lafger matrices; the condition number of a matrix is defined as the ratio of the
largest eigen value to the smallest eigen value of the matrix. To overcome these
computational difficulties, the complexities of the network would have to be reduced,
‘which requires an approximation to the regularized solution. This kind of the form of

RBF network is known as Generalized Radial-Basis Function networks (figure 1.12).
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’ Hidden layer of '
Input Layer fewer than N Output layer

' [Fig.1.12 Generalized RBF network]

_ The approach taken involves searching for a suboptimal solution of '"e'quation (1.22).
This is done by using a standard technique known. in ‘vaﬁational -_prob_lems as
Galerkin’s method. According to this technique, the_approximated‘_solutipn F'(X)is o

,expéhdécii'on a ﬁ;ﬁte basis, as shown by _
P ®=YweX
- . S

_ where ¢ gDi(X)'li_zJ ,2,...m} is a new set of basis functions that we assume to be linearly
mdgpendeﬁt without loss of generality. Typically, the number of V-basis functions is
3 less than the number of data points (i.e. m; N, and the w; constitute a new set of
weights). With radial-basis functions in mind, we set- '
2(X)=G(X-t]), i=12,.m, o (129)

where, the set of centers {t;|i=1, 2,3,..m 1} is to be determined.

Using equation 1.24 in 1.23, we may redefine F"(X) as

F'(X)= iwiG(X;ti)

=1
=Y wG(X~-t]) | (1.25)
=1
To fit the training data, we require that
- FXp=d ,j=12,..N
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where Xj is an input vector and d; is the corresponding value of the desired response.
In a matrix form equation (1.25) can be expressed as

Gw=d * (1.26)
where G is a matrix of dimension N X m;, w is- m; X 1 dimensional énd the desired

output vector d is N-dimensional.

‘ From equation (1.26), the weight vector can be computed By multiplying the

psudoinverse of the matrix G with the vector of desired résponse d.

) For instance, consider the XOR problem discussed above by taking number of centers ’

 2<N (N=4, total number of training patterns).

' To fit the training data of table 3, we reqﬁire that
' yX)=d,,  j=1234

o Where X; is an input vector and d; is the corresponding value of the desired output

o Then using the values of tablé 3in equanon in 1 26 we get the followmg set of

o 'equatlons Wntten in matrix form” ,

Gw=d |
g Wheré ) .
| 1 01353
03678 0.3678
0.1353 1
0.3678 0.3678 |
= [0 1.0 1F
= [w w b]®

The problem described here is overdetermined in the sense that we have more data

G:

s L e

points that free parameters. This explains why the matrix G is not square.

Consequently, no unique inverse emsts for the matrix G. To overcome this d1fﬁcu1ty,
we use minimum norm solution i.e.

w=G"'d, where G" is the psudoinverse of the matrix G
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= (G'G)'G'd
Note that G'G is a square matrix with a unique inverse of its own. So
1.8392 —1.2509 0.6727 -1.2509

GH=10.6727 -1.2509 1.8292 -1.2509
|—0.9202° 1.4202 -0.9202 1.4202

and hence
[-2.5018

w=|-25018
| +2.8404

These are the desired weight which proVides the desired output by using equation
(1.25) form;=2. '

© Fixed input=+1

X
%,
Input nodes ' Gaussian Functions - Linear output

neuron

[Fig. 1.11. RBF network for solving the XOR prbblérh]

The norm used in thé equatiéns 1.24 and 1.25 is usually a Euclidean norm. This norm
can not useful for the large databases because the width (deviation) from the input
| pattern to the center, considered in this norm is 1. In all the cases, for instance pattern
recognition problem, the width may not be equal to 1 hence we can thought of a
weighted norm. Using weighted norm we can give proper‘ jﬁstiﬁcation to the distance
calculated among the patterns by assigning suitable value of width. Chapters 5 and 6
of the thesis contain a typical épplication of weighted norm in the field of printed

character recognition problem for Gujarati script. The weighted norm can be

described as below:
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Weighted Norm:

Ordinarily, Euclidean norm is being used. When however, the individual elements of
the input vector X belong to- different classes, it is more appropriate to consider a

general weighted norm, the squared form of which is defined by
X" = (%" (cx)
=X'c’'cxX
Where C is an my X mp norm Weigﬁting matﬁx and my is Athe dimension of the input

- vector X. The equation 1.25 will take the form

F'(X)= ZW Gle_tH )

. . i=l - . )
© where, RX fL=(x-gFccx-t) - qaz2n

© The distance defined in the equation 1.27 is known as Mahalanobis distance.

By conmdenng mput vector X = [X;, XZ] and center vector t1 = [tl I tlz] the

- equatlon 1.27 can be characterized as below: B

. J(X‘;—ru T*'(Xz_;t” )2 | ) wﬁ@%o isba(.:ovalfi‘a_n(‘;e-
e . AO‘."‘,. o .
| "A.‘.and’hén‘ce ux tuc*“l"k ;fol)zf(?fzftlz)zl’ o
=~ lx-e ]
- lx-tyx-e)]

where the covariance (6) can be characterized as below:

1. 0(X) = cov(X) = IZ(X -xXr for 1-variable

i

2. o XY) =cov(X,Y¥) = \/%Z(X i "'f)(yg ”‘Y) for 2-variable

1 -2 : ~ ‘ '
3.0(x)= ‘n‘(xx - x) ‘ -for a single element x;

= 0} (Singleton element)
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1.5. Summary

This chapter discusses the basic introduction of different types of discrete wavelets
transforms like Haar, Daubechies etc and various commonly used Artificial Neural
Networks architectures like Mul‘tildyer Perceptron and Radial Basis Function
networks. The advantages of wavelet transform over the fourier transform is discussed
in section 2. Due to the localization property of wavelets in spatial and frequency
domain they are sharpér than the fourier frénsforms. The use of Weighted norm

presented at the end of this chapter plays a vital role in chapters 4,5 and 6.
Organization of the thesis:*

' The work presented in this thesis involves a study of opticél character recognition
techniques for Gujarati script using various Artificial Neural NetWork architectures
and wavelets. The thesis is divided 1n to six chapters The followmg is a brief

‘_ ' summary of the contents of each chapter

’ (a) “The current chapter i e, ohapter 1 prowdes the detaﬂs of Contmuous and stcrete
, wavelet transforms, mtroduces the concepts of Artificial Neural Networks and
describes the two most widely used Artificial Neural Network architectures v1z

Multllayer Perceptron and Radial Bams Functlon networks.

(b) Pattern recognition is a typical application of Statistical learning theory. Chapter
2 discusses the use of Statistical learning theory in pattern recognition problems.
Moreover, the chapter explains the complexities of Gujarati script and specifies

how it differs from the Western scripts and from the other Indian language scripts.

(c) Chapter 3 describes a novel approach for approximation (interpblation) of a
discrete finite length signal using the Multiresolution Analysis techniques of

Discrete wavelet transforms [5].

(d) Feature extraction and recognition are two major components of any Optical

Character Recognition system. Chapter 4 is concerned with an application of
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wavelets fm" feature extraction and Multilayer Perceptron as classifier for digital
images of Gujarati characters. The wavelet features are good in reducing the
number of features while retaining the characteristics of the images. Multilayer
perceptron network architecture is then used for the classification of Gujarati

symbols, constituting the lower and middle zone glyphs [3, 4].

(e) Chapter 5 describes on the General Regression Neural Netwqu (GRNN)
 architecture of Artificial neural networks as applied to character reéogﬁtion. This
approach of ANN is a typical application of Statistical learning theory. Applying
GRNN as a c13351ﬁer for the printed Gujaratl symbols, we have got the highest

.recogmtmn accuracy in all the three zones of the Gu}arau script [3()] among all

over experiments.

(f) Two' kernel based Artificial Neural Network archltecmres viz Radial Basis
. Function networks and: Support Vector Machines are introduced in the chapter 6.
" We haye explored these ANN architectures for the recognition purpose 111 the field

‘ of optical character recogmtlon The chapter also contams a uniform approach for

two-class and multiclass problems in Support Vector Machine archltecture.

o (g) At the end of the the'sis.,: the summary of all the éhapters are provided followed by
the references and aippe’ndix. 'A‘n -appendix prdvides a sample java code for

wavelets and Multilayer perceptron networks.
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