
Chapter 2

Wavelet Algorithms

2.1 Numerical Evaluation of 0 and V'

In general, there are no explicit formulas for the basic functions 0 and ip. Hence, most algorithms 
concerning scaling functions and wavelets are formulated in terms of the filter coefficients. We 
compute the function values of (p and ip. The task of computing the function values of 0 and 
ip is a good example. These algorithms are very much useful when one wants to make plots of 
scaling functions and wavelets or of linear combinations of such functions.

2.1.1 Computing (p at Integers

The scaling function 0 has support on the interval [0, D — 1], with 0(0) = 0 and d)(D — 1) = 0 
because it is continuous for D > 4 (see [Dau92]). We discard 0(D — 1) in our computations, but 
keep 0(0). Putting x = 0,1, • • ■ , D — 2 in the dilation equation (1.31), we obtain a homogeneous 
linear system of equations. For example, when D = 6, we obtain the following system of
equations:

(m \ ( a0 \ (m \
m d 2 d\ O.Q 0(1)
0(2) = V2 CI4 a3 a2 a\ a0 0(2)
0(3) <25 (14 a 3 a2 0(3)

V m y ( a5 a4 )
V 0(4) /

where we have defined the vector valued function

A0$(0).

<£(./;) = [cp{x),<p(x + 1),...,<p(x+ D - 2)]^7 .

(2.1)
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2.1. Numerical Evaluation of <p and ip

Consider the eigenvalue problem for A0 as

A„$(0) = A$(0) (2.2)

Equation (2.1) has a solution if A = 1 is among the eigenvalues of A0 and hence, the compu
tational problem is entitled to find the eigen solutions of (2.2). The present case (2.1) does, 
indeed, have an eigensolution corresponding to an eigenvalue.

2.1.2 Computing 0 at Dyadic Rational

Given <&(0) from (2.1), we can use dilation equation (1.31) again to obtain 0 at all midpoints 
between integers in the interval, namely the vector <3?(|). Substituting

1 3 5
x = -....2 2 2

into the dilation equation (1.31) yields another matrix equation of the form (shown for D = 1):

( 0(|) ^ ^ tt] do ^ ( 0(0) \
0(f)

03 (i2 «i a0 0(1)
0(f) = V2 O5 a4 a3 a2 al 0(2)
0(1) 04 03 0(3)

'V 0(1) ) V “5 / \ 0(4) /

Equation (2.3) is an explicit formula and hence,

$>(0) = A„*(0),

A!*(0).

= Ax$(0). (2.3)

This pattern continuous to integers of the form f, 
system

where k is odd, and we get the following

/ * 0(i) \ ( a0 \

O 0(f) Ol Oo
* 0(f) a2 Ol Oo
o 0(f) 03 a2 Ol a0
* 0(f) = V2 Q4 a3 a2 Oi Oo
o 0(f) a5 CI4 03 a2 Ol
* 0(f) a5 a4 a3 02
o 0(f) 05 d4 03
* 0(f) 05 C14

V ° 0(f) ) V a5 /

/ 0(§) \ 
0(|) 
0(1) 

0(1)
V 0(1) )

(2.4)
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2.1. Numerical Evaluation of <f> and ip

We observe that if we split it in two systems, one with the equations marked with * and one 
marked with o, we can reuse the matrices A0 and Ax. This pattern repeats itself as follows:
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2.2. Evaluation of Scaling Function Expansion

This is the reason why we keep 3>(0) in the initial eigenvalue problem (2.1). We can use the 
same two matrices for all steps in the algorithm and we can continue as follows until a desired 
resolution 2q is obtained. So, for j = 2,3, • • • ,q, and for k = 1,3,5, • • • . 2J_1 — 1, we have

$

$

2.1.3 Function Values of the Basic Wavelet

Function values of tp follows from the computed values of (P by the wavelet equation (1.32). 
However, the function values of 0 are not needed at even numerators:

2.2 Evaluation of Scaling Function Expansion

2.2.1 Non Periodic Case

Let 0 be the scaling function of genus D and assume that 0 is known at the dyadic rationales 
m = 0,1, • • • ,{D— l)2q. for some chosen qeN. We want to compute the function

OO

fix) = S (2-5)
/= —OO

at the grid points
x = xk = —, k € Z. (2.6)

where r € N corresponds to some chosen (dyadic) resolution of the real line. Using (1.16), we 
find that

^ (|) = 2j/2(p{2J(k/2r) — l)

= 2i/2(p(2j-rk - /)
= 2j/2<i)((2j+v-Tk-2ql)/2q)
= 2 i'2<p(m(k,l)/2q), (2.7)
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2.2. Evaluation of Scaling Function Expansion

where
m.{k, l) = k2j+q~r - I2q. (2.8)

Hence, m(k. 1) serves as an index into the vector of pre-computed values of <p. For this to make 
sense, m{k, l) must be an integer, which leads to the following restriction:

j + q-r> 0. (2.9)

Only D — 1 terms of (2.5) can be non zero for any given xk. From (2.7), we see that these terms 
are determined by the condition

m(k, l)
0 <

2«
< D- 1.

Hence, the relevant values of l are l = lo(k),l0(k) + 1,..., lo(k) + D — 2, where

l0{k) = \k2j~r] -D+ 1.

The sum (2.5), for x given by (2.6), can therefore be written as

l0(k)+D-2

i=/o(fc)

m(k, /) 
2?

. k e Z

2.2.2 Periodic Case

We want to compute the function

2-> —1
/(*) = ci*hAx)i x G [0,1]

1=0

for x = xk = k/2r, A; = 0,1,2,--- , 2r — 1 where r € N. Hence, we have

f
21-1

1=0

21-1

cj.' yi
/=0 neZ

2J — 1

f=o nEZ

( m(k, /) + 2 J+qn\
29 y

(2.10)

with m(A, /) = fc2l+9 r — i29 by the same manipulation as in (2.7). Now, assuming that j > Jq 
where ./q is a non-negative integer, we have 23 > D — 1. Using Lemma 2.2.1 (proved below), we
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2.3. DST and IDST - Matrix Formulation

obtain the expression

/
2^-1

- 23'2 Cj,i<P
1=0

2o
k = 0,1,2, ■ ■ - ,2r — 1. (2.11)

Lemma 2.2.1 Let 0 be a scaling function with support [0, D — 1] and let m.n,j,q € Z with 
q > 0 and 27 > D — 1. Then

E *
m{k.l) + 23+qn\ 

~o )

Proof: See [Nie98].

2.3 DST and IDST - Matrix Formulation

Equation (2.11) is a linear mapping from 23 scaling function coefficients to 2r samples of /, so it 
has a matrix formulation. Let Cj = [cJi0, Cjtl, • • ■ , Cji2>-i]T and fr = [/(0), /(l/2r), ■ • ■ , /((2r - 
l)/2r)]3. We denote the mapping

fr = TrjCj. (2.12)

When r = j, (2.12) becomes
— Tj'-jC? • (2.13)

where Tjj is a square matrix of order N = 23. In the case of (2.12), we will often drop the 
subscripts and write simply

f = Tc. (2.14)

This has the form (shown here for j = 3, D = 4)

( /(0) \ (m m <i>(i) \ ' c3.0 ^

ni) 0(1) 0(0) 0(2) f'3.1
/(!) 0(2) 0(1) 0(0) c3,2

/(I) 0(2) 0(1) 0(0) C3.3

/(f) 0(2) 0(1) 0(0) c3,4

/(I) 0(2) 0(1) 0(0) C3,5

/(f) 0(2) 0(1) 0(0) f'3.6

\f(D) ^ 0(2) 0(1) 0(0) j
V C3-7 )

The matrix T is non-singular and we can write

c = T-1f (2.15)
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2.4. Periodic Function in Interval (a, b)

We denote (2.15) as the discrete scaling function transform (DST) and (2.14) as the in
verse discrete scaling function transform (IDST).

We now consider the computational problem of interpolating a function / € C([0,1]) between 
samples at resolution r. That is, we want to use function values f(k/2r), k = 0,1,2, • • • , 2r — 1 
to compute approximations to f(k/2r'), k = 0.1,2, • ■ • , 2r< — 1, for some r' > r. There are two 
steps. The first is to solve the system

Tr.rcr - fr

for cT. Then second is to compute the vector fr< defined by

fr, = Tr-,rcr. (2.16)

Equation (2.16) is illustrated below for the case r = 3, and r' = 4.

f m \ ( 0(0) 0(2) <p( 1) \
/(ft) HI) 4(§) HI)
/(ft) 4(i) m <&2)
/(ft) 0(§) </>(§) HI)
/(ft) 4( 2) 0(1) <A(0) ' c3i0 '
/(ft) *(§) *(§) *(§) c3,l
/(ft) 0(2) 0(1) 0(0) Pj,2
/(ft) = 23/2 0(1) HI) 4(1) C3,3
/ (ft) 0(2) 0(1) 0(0) c3,4
/(ft) 0(1) *(§) 4(1) C3,5
/(ft) 0(2) 0(1) 0(0) C3.6
/(ft) HI) HI) HI) V /
/(ft) 0(2) 0(1) 0(0)
/(ft) 4(1) HI) HI)
/(If) 0(2) 0(1) <p(0)

\/(ft) J 1 0 (1) 0 (1) 0 (I) /

2.4 Periodic Function in Interval (a. b)

Consider the problem of expressing a periodic function / defined in interval ]a, 6[, where a.fe 6 R 
instead of unit interval. This can be accomplished by mapping the interval [a, 5] linearly to unit 
interval and we use the machinery derived in the previous Section 2.3.
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2.5. Fast Wavelet Transforms

We impose the resolution 2r on the unit interval [a, 6], i.e.

xk = k^ a + a, k = 0,1.2,...... ,2r-l.
27

The linear mapping of the interval a < x < b to the interval 0 < y < 1 is given by

x — ay = 7----- - a < x < b.
b — a

hence yk — k/2T, k = 0,1.2,........., 2r - 1. Let

9(y) = fix) = / ((& - a)y + a); 0 < y < 1. 

Thus, we have from (2.11),

9(Vk) = 9 22
22-1

E1=0

C'J,l $
[m jk, l))2j+«

2«

and transforming back to the interval [a, b] yields f(xk) = g(yk)- Thus, we have effectively 
obtained an expression of / G [a. b] in terms of scaling functions stretched to fit this interval at 
its dyadic subdivisions.

2.5 Fast Wavelet Transforms

The orthogonality of scaling functions and wavelets together with the dyadic coupling between 
MRA spaces lead to a relation between scaling function coefficient and the wavelet coefficients 
on different scales. This yields a fast and accurate algorithm due to Mallat [Mal89a] and is 
denoted by the pyramid algorithm or the fast wavelet transform (FWT). Let / G L2(R) 
and consider the projection

OC

(pvJ){x) = ^2 ci.'<Mar)' (2-17)

l=—oc
which is given in terms of scaling function only. We know from the Definition 1.4.2 that PyJ = 
Pvj_l f + Pwj-if, so the projection also has a formulation in terms of scaling functions and 
wavelets:

OO OO

(PVjf)(x)= ^2 c:-u(x) + dj-uVb-i./M- (2.18)
l——co /= —OC

Our goal here is to derive a mapping between the sequence {cj,;};ez and the sequences {cj-u };gz, 
The key to the derivations is the dilation equation (1-31) and the wavelet equation
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2.5. Fast Wavelet Transforms

(1.32). Using (1.31), we derive the identity

4>j-u{x) = 2(J 1)/2HV 1x ~ 1)

D-1
= 2j/2 ^2 ak4>{2J;r -21- k) 

k=0
D-l

fc=0

and from (1.32), we have
D—l

Vh-uOr) = ^Mj,2i+k(z)-
k=o

Substituting the first identity into the definition of c3 i from (1.25), we obtain

D—l

Cj-u —
/OO ^ ‘

ak<t>j,2i+k{x)dx

■°° k=0

rOO
= Ylak f (x)$j,2l+k(z)dx

k=0
D—l

= / ' Q'kCjtj,2l+k •
ib=0

(2.19)

(2.20)

Similarly, using the relation (1.28), 
obtain the following two relations:

we can find the similar expression for dj-u . Hence, we

cj-

D—l
1,1 = ^2 akcj,2l+k) 

fc=0
(2.21)

dj-
D—l

1,1 = ^2 bkcj,2l+k, 

k=0

(2.22)

which define a linear mapping from the coefficients in (2.17) to the coefficients in (2.18). We 
refer to this as the partial wavelet transform (PWT). To decompose the space V) further, 
one applies the mapping to the sequence z to obtained the new sequences {c3-2.t}(ez
and {dj-2,i}iez- This pattern can further be repeated to give the full FWT: Applying (2.21) and 
(2.22) recursively for j = .7, J — 1, .7 — 2,..., Jo + 1. starting with the initial sequence {cjj}iez, 
will then produce the wavelet coefficients in the expansion given in (1.26). Note that once the 
elements d3_ij have been computed, they are not modified in subsequent steps. This means 
that the FWT is very efficient in terms of computational work.
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2.6. Periodic FWT

The inverse mapping can be derived in a similar fashion. Equating (2.17) with (2.18) and 
using (2.20) and (2.21) again, we obtain

OO

/= —OC

OO OO

^ ^ Cj—l,n0j—l,n(^) “1“ ^ ^ dj—i^n^Pj—l,n(*^) 

n= —oc n=—oc
oo D—1 oo D—1

Q'k$j,2n+k(%) “f" bk$j,2n+k(%S)

n= — oc A=0 n=—oo /c=0
D—1 oo

E E fe-.. n^A: “1“ dj—l,n^/c]0 j.2n+fc(*^) •/c—0 n=—oc

We now introduce the variable l = 2n + A: in the last expression. Since k = l — 2n and 
k G [0, Z) — 1], we find for given /, the following bounds on n:

l-d+T
2

= ni{l) <n< n2(l) (2.23)

Hence,
OO OO 7*2(0

/ , (-0 — ^ ^ ^ ^ [Cj —l.ufl/—2n "b i)Tl6(—2n]0j,i(^')i

i=-oo l=-ocn=ni(i)

and equating coefficients, we get the reconstruction formula

n2(i)

Cj,/ [Cj — 2ti 4" d/j — i^nbi—2n\ • (2.24)
n=ni(l)

We call this the inverse partial wavelet transform (IPWT). Consequently, the inverse 
fast wavelet transform (IFWT) is obtained by repeated application of the reconstruction 
formula (2.24), for j = J0 + 1, J0 + 2, ■ ■ ■ ,J.

2.6 Periodic FWT

If the underlying function / is periodic, we also have periodicity in the scaling function and 
wavelet coefficients: Cjj = c^l+2jv (given in (1.72)) and dji = dJ>(+2Jp (given in (1.73)). Hence, it 
is enough to consider 2J coefficients of either type at level j. The periodic PWT is thus given 
by

D-1

Cj—l.L — ^ ^ QjkCj,<2l+k>2j (2.25)
k=0
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2.7. Matrix Representation of the FWT

2.7 Matrix Representation of the FWT

Let cj = [c-'^q. Cj.i, • • • ,and similarly dj - [dji0, dj%\, • • • , 2^-lJ Since (2.25) and
(2.26) are linear mappings from R2J onto R2J *, the PWT can be represented as

Cj-i — A-jCj, 

dj-i = BjCj

where Aj and B, are 2J_1 x 23 matrices containing the filter coefficients. For D = 6 and J = 4, 
we have

/

A4 =

Oq a i a 2 a.3

a0 di
0-4 a 5 

&2 a3

ao a4

\
{Z4 <25

a 2 «3 a4 a5

ao «i a2 «3 tt4 ds

a0 al d2 a3 Cl 4

dQ di a2

do ai

o4 as 
\ «2 «3 «4

and
( b0 bx

B4 =

62
^0

«5

63
6l

a5

a3 0-4 a5

d2 a3 (Z4 a5

do a\ d2 a3

do <h /

64 65

t>2 bo 

bo bi
b4 b5 
62 b3 
bo b 1

54
62

b5
b3
bi

W
b2

h
bo

bo bi
b.4 
62

60 &i

h
b-s
b2

64
(>3

64
\ ^2

&5
&3

60 bi
bi bo

b5
b4
b2
bo

b5
b3
bi

These are shift-circulant matrices. Moreover, the rows are orthonormal by equations (1.36) and 
(1.37). Bj is similar, but with b^s in place of a^’s; hence the rows of B j are also orthonormal. 
Moreover, the inner product of any row in A j with any row in B7 is zero by Proposition 1.4.1, 
i.e. AjB] = 0. We now compute A:; and Bj to obtain 2J x 2J matrix

Q = \ Aj
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2.8. A More General FWT

which represents the combined mapping

— QjCj. (2.29)

Equation (2.29) is the matrix representation of PWT step as defined by equation (2.25) and 
(2.26). The matrix Qj is orthogonal; since

'!'! - [ B( JIA’’ B 1 =
Hence, the mapping (2.29) is inverted by

Cj - Qj

AjAj
B.,AJ

cj-i
dj-i

BjBj
BjBj

If 0 '

0 li -

(2.30)

Equation (2.30) is the matrix representation of an IPWT step as defined in (2.27). The FWT 
from level J to level Jq = J — X can now be expressed as the matrix-vector product

d = WAc (2.31)

/ Oo \
dy„

dj0+i

V dj-i )

and
WA = QjoQjo+i- Qj-i-

The matrix Q of order 23 is given by where Ik(jj) denotes the k x k identity matrix with 
k = k(j,./) = 2J — 2J. It follows that WA is orthogonal and hence the IFWT is given by

c = (WA)Td.

2.8 A More General FWT

where c = cj,

d =

Suppose that elements to be transformed may contain other prime factors than 2, i.e. N = K2J 
with .7, K e Z and (K)2 = 1 (see equation (A.3) in Appendix). In this case, the FWT can still
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2.8. A More General FWT

Qr
j k(i,j)

be defined by mappings of the form (2.25) and (2.26) with a maximal depth A = J, i.e. Jo = 0. 
It will be convenient to use a slightly different notation for the algorithms in next chapters. 
Hence, let S', = ^ and

4 = cJ-i,k

d'k — dj-i,k

for i = 0,1,2, • • • , A — 1 and fc = 0,1,2, • • • , S* — 1. We can now define the FWT as follows:

Definition 2.8.1 Fast wavelet transform (FWT): Let J,K € N with (K)% = 1 and 
N = K2J. Let c° = be given. The FWT is then computed by the recurrence relations

where i = 0,1, • ■ • , A — 1, Si = |f,

cn+1 ~ Xw=0 aiC\l+2n)si 

dn+1 = ^l°\l+2n)Si

and n = 0,1,2, • • • , Si+i — 1.

(2.32)

The relation between the scaling function coefficients and the underlying function is unimportant 
for the FWT algorithm. In numerical applications we often need to apply the FWT to vectors 
of function values or even arbitrary vectors. Hence let x e Rn. Then the expression

x = WAx (2.33)

is defined by putting c° = x, performing A steps of (2.32), and letting

If A is omitted in (2.33), it will assume its maximal value J. Note that WA = I for A = 0. The 
IFWT is written similarly as

(WA)J x (2.34)
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2.9. Complexity of the FWT Algorithm

corresponding to the recurrence formula
"2(0

Cl = ai~ 2r>C<i»)5j+1 + ^-2"^|n)S4+i

n=ni(()

where i = A — 1, A — 2, • • • ,1,0, 5, = , l = 0,1, ■ • • ,5,-1, and rii(l) and ri2(l) are defined as
in (2.23).

2.9 Complexity of the FWT Algorithm

One step of (2.32), the PWT, involves DSl additions and DSt multiplications. The number of 
floating point operations is therefore

Fpwr(Si) = 2D Si (2.35)

Let N be the total number of elements to be transformed and assume that the FWT is carried 
out to depth A. The FWT consists of A applications of the.PWT to successively shorter vectors 
so that the total work is

Fpwt(N) =

D is normally constant throughout wavelet analysis, so the complexity is O(N). The IFWT has 
the same complexity as the FWT. For comparison, we mention that the complexity of the fast 
Fourier transform (FFT) is 0(N \og2 N).

A—1

PWT
i=0
A—1

N

£20
1=0 

2 DN

N

1 -

4DA(1 — —) <4DN (2.36)

2.10 Two Dimensional Fast Wavelet Transform

Using the definition of WA from the previous section, we define the 2D FWT as

X = WAA'X(WA,v)r (2.37)
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2.11. Accuracy of the Multiresolution Space

where X. X £ RA/ Af. The parameters Am and Ajv are the transform depths in the first and 
second dimensions, respectively. Equation (2.37) can be expressed as AI ID wavelet transforms 
of the rows of X followed by A ID wavelet transforms of the columns of X(WAw)T, i.e.

X = WA*' (Wa"X)T.

Therefore, it is straightforward to compute the 2D FWT given in the ID FWT from Definition- 
2.8.1. It follows that the inverse 2D FWT is defined as

X=(WA*')rXWA“ (2.38)

Using (2.36), we find that the computational work of the 2D FWT as follows:

Pf\VT2 (A/, N) = MFfwt(N) “K NFfwt{M)

= MiDN (‘ - + NiDM (‘ - 2^)
= 4DMN - -L - T) < SDMN (2.39)

The computational work of the inverse 2D FWT is the same.

2.11 Accuracy of the Multiresolution Space

2.11.1 Approximation Properties of Vj

In this section we discuss the point wise approximation error introduced when a function / is 
approximated by an expansion in scaling functions at level J. Let ./ £ Z, / € L2(R) and assume 
that / £ CP(R). For an arbitrary, but fixed x, we defined the point wise error as

ej{x) = f(x) - (PVjf){x). x € R

where (PvJ/)(x) is the orthogonal projection of / onto the approximation space Vj as given in 
Definition 1.4.2. Recall that Pvjl has expansion in terms of the scaling functions as well as in 
terms of wavelets. The wavelet expansion for Pvjf is

OC J— 1 OO

(PvJ) M= E Cj0,k<pjaM{x) + E E dj,k^jAx), (2-40)k= — oc j=Jo k=—00

and by letting J —* oc temporarily we get a wavelet expansion for / itself:
OC OOOO

/(J;) = 5Z cJok<PJo,k(x) + ^2 dx^i,k(x), (2.41)
k——oo j=J0 k=—oc
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2.11. Accuracy of the Multiresolution Space

Then subtracting (2.41) from (2.40), we obtain an expression for error ej in terms of the wavelets 
at scales j > J :

OO OO

ej(x) = dJ^j,kix)- (2-42)
j=J k=—oo

Define

C(/, = max — fc)|

= max W>(y)\.ye[0,D-l] l^U"1

Hence, maxx6;j Jt \ijjj,k(x)\ = 2and using Theorem 1.4.2, we find that

KfclM*)I < Cp2~ip max |/(P)(0I^-

Recall that
supp{ipj,k) - Ihk = k k + D — 1 

2^’ 2^

Hence, there are at most D — 1 intervals Ij^ containing a given value of x. Thus, for any x 
only D — 1 terms in the inner summation in (2.42) are nonzero. Let Ij be the union of all these 
intervals, i.e.

/,■(*)= u ^

{l-.xeij't}
and let

pp(x) = max |/p(OI-
(:r)

Then one finds a common bound for all terms in the inner sum as
OO

J] \dj,kf(>j,k\ < C^CP2-ip{D - 1 )pp(x).
k=—oo

The outer sum can now evaluated by using the fact that

Pj > Pj+i > Pj+i{x) > -

and we establish the bound

ej(x)\ < Crl,CP{D-\)ppJ{x)YJ^jP

j=j
2-JP

CilCP(D-l)pp(x)Y-^
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2.11. Accuracy of the Multiresolution Space

Thus, we see that for an arbitrary but fixed x the approximation error will be bounded as

\ej{x)\ = 0{2~JP).

This is exponential decay with respect to the resolution J. Furthermore, the greater the number 
of vanishing moments P, the faster the decay. Finally, note that each error term dj^tp],k(x) is 
zero for x ^ 7,^, and hence, ej(.t) depends only on ,f(y),y £ [x,x + (D — 1)/2J].

2.11.2 Approximation Properties of Vj

We now consider the approximation error in the periodic case. Let / £ L2([0,1]) and assume 
that its periodic extension (1.66) is P times differentiable everywhere. Furthermore, let J > J0 
be the smallest integer such that 2J° > D — 1 and define the approximation error as

ej(x) = f(x) ~ {Pvjf)(x), x £ [0,1]

where (Py )(x) is the orthogonal projection of / onto the approximate space Vj as defined in 
Definition 1.5.2. Using the periodic wavelet expansion

2J0 — \ J-1 2J —1

/(x) = cj0,i4>j0,i(x) + EE dj'irpj^x), x £ [0,1]1=0 j=J0 i=o

and proceeding as in the non-periodic case, we find that

oo 23 — l

ej(x) = EE dj.k'ipj,k(x) (2.43)j—J k=0

Since the coefficients dj^ are the same as in the non periodic case by by equation (1.28), Theorem
1.4.2 applies and we can repeat the analysis from Subsection 2.11.1 to obtain

\ej(x)\ = 0(2~JP) x £ [0,1].

We now consider the infinity norm of ej defined by

||ej(x)||00 = max |e7(x)|. 
xe[o,i]

52



2.12. Wavelet Transform of a Circulant Matrix

A similar analysis yields

Hence

oc 2J-1

|e/||oo < V Y] \dj.k\ max |^,fc(x)|
— — xEIj kj=J fc=0 J'

oo 2>-l
< CiCp y y |2*/22-W’+$>| max |/P(0I

i=J fc=o ^
OO= C^Cpmax|/^(0iy2-^

J = J

||eJ(x)|U = 0(2-J'’).

Finally, consider the L2 norm of e./:

Mli

< IMSc / rfx

= IMIL

(x)dx

/'

Therefore, we obtain
||eJ(.T)||2 = 0(2-JP).

2.12 Wavelet Transform of a Circulant Matrix

2.12.1 Introduction

In this section, we will describe an algorithm for computing the 2D fast wavelet transform of 
a circulant N x N matrix A. The 2D FWT is defined in (2.37) and circulant matrices are 
discussed in [Fra99]. Recall that the 2D FWT is a mapping A —» H given as

H = WAWr

where W is defined in (2.33). We will show that this can be dine in O(N) steps and that H 
can represented using O(N) elements in a suitable structure. Using the structure we define an

53



2.12. Wavelet Transform of a Circulant Matrix

efficient algorithm for computing the matrix vector product Hx where x is an arbitrary vector 
of length N. This algorithm has complexity O(N) and will be used in Chapters-4 in a wavelet 
method for solving PDE’s. This topic is based on [Nie98] and the approaches follows ideas 
proposed by Charton [Cha96]. However, many of the details data structures and the complexity 
analysis are represented by us.

2.12.2 The Wavelet Transform Revisited

Let N and A be integers of the form given in definition and let c* be a given vector with 
elements [cg,c^,--- ,c}v-_1] and let d' be defined similarly. Recall that ID FWT is defined by 
the recurrence formulas from definition:

D—l

cm ~ y ] akc(k+2m)s. 
k=0

c1 - X>cW2m)Si
k=0

for i = 0,1, • • • , A — 1, m = 0,1,2, ■ • • , Si+i — 1 and S, = Figure-2.1 illustrates that how a 
vector is transformed.

Figure 2.1: The steps of a ID wavelet transform for A = 3 and J = 4.

The 2D FWT defined in (2.37) has also a recursive formulation. The 2D recurrence formulas are 
straightforward generalizations of the ID formulas and they decompose a matrix analogously 
to the way the ID recurrence formulas decompose a vector.
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2.12. Wavelet Transform of a Circulant Matrix

The recursion is initialized by assigning a matrix A E R‘v x A' to the initial block which we denote 
CCU0. This block is then successively split into the smaller blocks denoted CC, J, DC*'J, CD,J", DD‘ j 
for i,j = 1,2, • •• , A. The block dimensions are determined by the superscripts i,j. A block 
with indices i,j has St = ~ rows and .S', = A columns. The steps of the 2D wavelet transform 
for A = 3 are shown Figure-2.2 with H being the aggregation of all blocks after the final steps 
shown in the upper right corner of the figure (comparison with the 1D wavelet transform shown 
in Figure 2.1 can be helpful fore understanding the scheme). Note that each step of the trans
form produces blocks that have attained their final values, namely those of the type DDlJ and 
subsequent steps work on blocks of the type CC*J, CD1' and DC',J. The formulas for three 
types of blocks are given below.

3.
rr

33
CD

32
rn

31
rn

3.
DC

33
DD DD32 DD3'

2DC' 23
DD

22
DD

21
DD

1.
DC

13
DD

12
DD

11
DD

t

11 11
CC CD

DC
11 11

DD

CC22 CD22 CD21

DC 22 DD22 DD21

L
DC

12
DD

11
DD

Figure 2.2: The steps of a 2D wavelet transform for A = 3 and .7 = 4

cc /+/,/+/ i+l.i+1
CD

i+U+J
DC

i+l.i+1
DD

Figure 2.3: The transform of a square block on the diagonals yields four new square 
blocks.
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2.12. Wavelet Transform of a Circulant Matrix

Blocks on the diagonal

Consider the square blocks CCM in Figure-2.3. Each step of the 2D wavelet transforms splits 
such a block into four new blocks denoted CC,+1’*+1,CD,+1'*+1,DC,+1’,+1 and DD‘+1,+l+1. 
Figure-2.3 illustrates the decomposition of this type. Let CC^n = [CC1J]mi„ and similarly 
for CDDC^t*. DD‘̂ xn. The recurrence formulas for these decomposition are then given as 
follows:

D-l 0-1

CC^n'+1 = E E a^CCi<U»>.4,<i+2»>.( (2-44)
k=0 (=0

co«-'+‘ = EE akbiCC^k+2m>lli<l+2n>St (2.45)
Jt=0 1=0 

D-l D-l
= ) " El bkO-lCC<k+2m>s. ,<l+2n>Si (2.46)

k=0 1=0 
D-l D-l

E E b^cc<t^>, i,<l+2n>Si (2.47)
fc=0 1=0

for i = 0,1, • • • , A — 1 and m, n = 0,1,2, • • • , Si+1 — 1

Figure 2.4: The transform of a block below the diagonals yields two new rectangular 
blocks.

Blocks below the diagonal

Blocks of the type DCIJ(j > i) are split in one direction only as indicated in Figure-2.4. The 
recurrence formulas are the ID formulas applied to each row of the blocks DCI J:

DC^1 = J2aiDC^(l+2n)S] (2.48)

k=0
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2.13. 2D Wavelet Transform of a Circulant Matrix

for j = i, i + 1.

D — l

DD^t1 = V kDC^,

, A - 1 and m = 0,1,2, • • • ,5,-1, n = 0,1,2, • • • , Si+1 - 1.

i+i.j

i J
CD

CD

i+IJ
DD

(2.49)

Figure 2.5: Transform of a block above the diagonals yields two new rectangular 
blocks.

Blocks above the diagonal

For blocks CD,j with i > j we have a splitting as shown in Figure-2.5. The recurrence formulas 
are the ID formulas applied to each column of CDtJ:

n-i
CDSiJ'=E“*C7DS+WS„n (25°)

k=0 

D—l

DDSJ = Efc‘CDS+I„)s.,» (2.51)
i=0

for i = j,j + 1, • • • , A — 1 and m = 0,1,2, • ■ • , Si+1 — 1, n — 0,1,2, • • • ,Sj — 1.

2.13 2D Wavelet Transform of a Circulant Matrix

The 2D FWT of circulant matrices give rise to structured matrix blocks which we will call 
shift-circulant matrices. We begin by giving the definition.

Let A be an M x M circulant matrix as defined in [Fra99] and let {am}m=o,i,...,Ar-i be the 
first column of A. Then

[AL,n = m, n = 0,1, • - ■ ,M - 1.

A shift circulant matrix is a generalization of a circulant matrix which we define as follows:
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2.13. 2D Wavelet Transform of a Circulant Matrix

Definition 2.13.1 Shift-circulant matrix:

1. Let A be an M x N matrix where M > N with M divisible by N, and let {a)n}m=oli,-,w-i 
be the first column of A. Then, A is column-shift-circulant if

[A]m.n = a(m-an)M: m = 0, 1, • • • , M - 1, H = 0, 1, ..., N - 1

where a = At/N

2. Let A be an M x N matrix where N > M with N divisible by M, and let {an}n=o,i, -,Af-i 
be the first row of A. Then A is row-shift-circulant if

[A]mn = ; m = 0, l,--- ,M- 1, n = 0,1 • • • , N - 1.

where a = N/M

The number a is a positive integer that denotes the amount by which columns or rows are shifted.

A column-shift-circulant 4x2 matrix (rr = 2) has the form

^ «o «2 ^ 

fli 0-3
c*2 a0 

V a3 ai

A row-shift-circulant 2x4 matrix (a = 2) has the form

f do U\ 02 03 \
\ 02 a3 ai /

Note that a circulant matrix is both column-shift-circulant and row-shift-circulant with a — 1. 
Let {an}„=o,i....,./v-i be the first column of a circulant matrix A. Using this column vector as 
a point of a departure, we will now show how to compute a representation of H using only 
one vector per block. Note that according to the recurrence equations (2.44) to (2.51), the 
operations can be divided into 2D transforms of blocks on the diagonal and ID row or column 
transforms of off-diagonal blocks. We will treat these cases separately.

2.13.1 Blocks on the Diagonal

Lemma 2.13.1 Let CCM be a St x S, circulant matrix. Then CCl+1,l+1, CD!+1,,+1, DC,+1,+1 
and DD‘+lj+1 defined by (2.44) 1° (&-4V respectively, are circulant matrices.
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2.13. 2D Wavelet Transform of a Circulant Matrix

Proof: We will prove the lemma for CD,+1,l+1 only since the other cases are completely anal

ogous.

By assumption CCVi is circulant, i.e.

CCm,n - CC(m-n)Si

where ceM is the first column of CCl,\ Equation (2.45), then becomes

D-lD-l

EE a^lCC{{k+2m)Si - {l+2n)Si)Sik=0 1=0

(2.52)

Considering now the index of .the typical term of (2.52) and using Lemma A.1.1 and A.1.2 
mentioned in Appendix A, we find that

((k + 2m)si - (1 + 2n)si)si ~ ~ n))si + k - l)st
- «2(m - n))st/2 + k - l)Si 
= <(2(m ~ n))si+1 + k- l)3t

This expression does not depend on the individual values of m and n but only on their difference. 
Therefore, CD^l+1 depends only on (m — n)si+1 which proves that CD,+1;!+1 is. circulant. 
Hence,

CD%l’i+1
m,n Ca(m-n)si+1

for some column vector cd*+1,*+1. Having established that CD,+1,,+1 is circulant, we can now 
give a formula for the vector cdl+1,t+1. Putting n — 0 in equation (2.52) and using Lemma 
A.1.1, we obtain the first column of CD’+1,!+1;

m, 0

D-lD-l

- EE a^^C((2m+fc}s.-(i)Si>s.
k=0 1=0 
D-lD-l

~ XI X/ afc^CC{’<2rn+k-l)Si 

k=0 (=0

(2.53)

where m = 0,1, • • • , Sl+i — 1. A computationally more efficient expression for cdl+1,l+1 can be 
derived by rearranging the terms in (2.53) so that we sum over the differences in the indices. 
More precisely, we split the double sum into terms where k — l > 0 and terms where k — l < 0 
and rearrange these separately. Thus, let p = k — l. The terms in (2.53) with k — l > 0 are

D-1 k D-1 k
EE a^>lcc(2m+k-l)si ~ X] Xy a,+ACC(2m+p)Si (2.54)
fc=0 1=0 k=0 1=0
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2.13. 2D Wavelet Transform of a Circulant Matrix

k/l 0 1 2 3 4 5
0 0
1 1 0
2 2 1 0

C
O 3 2 1 0

4 4 3 2 1 0
5 5 4 3 2 1 0

The following table shows pas a function of k and l (for D = 6): Summing over the diagonals 
yields an alternative expression for (2.54):

D—l k

E E °i+P^CC(2m+p)s.
k—Q 1=0

D- 1

= E
D-X-p
^ ^ di+ph

p=o L i=o
CC{2m+p)Si (2.55)

Similarly, we take the terms from (2.53) with k — l < 0 and set p = l — k > 0:

D—X D-X D-X

E E ak^k+PCC{2m-p)Si ~ E
k=0 l=k+X P=1

'D-X-p
^ ^ ^k^k+p

k=0
cc.*1*{2 m-p)Si

Now, let
D-X-p

<fab= E P = 0,1,.--,D-1.
fc=0

Combining (2.55) and (2.56), we can rewrite (2.53) as

n-i
«C1,,+1 = 9rVC2m + E [^“<2

p=l
(2m-p)Si (ihaCC(2m+p)s.

(2.56)

(2.57)

for m = 0,1, • • • , Si+1 — 1. The vectors cci+1’i+1, dci+1,!+1 and ddH_1,t+1 are computed similarly 
but with the filters qpa, qba, qbb, respectively. The formulas are

£>—X

= <LC^L + E [^(L-p)Si + €aCC%m+p)si
P=X

*i+u+1 = +E (2m+p)s{
p=X

D-X
dd%u+1 = ibcc%n + £ [ibcj(L-P)Si + <fbbcc%m+p)Si

P-1

(2.58)

(2.59)

(2.60)
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2.13. 2D Wavelet Transform of a Circulant Matrix

It follows from (1.36) that

Qab = clba = °> P even 

Qaa = (fbb = °> P eVen’ P>0

So, the computational work in computing (2.57)-(2.60) is reduced accordingly.

2.13.2 Blocks below the Diagonal

We now turn to the task of computing the lower off-diagonal blocks DC1,J+1 and DD!|J+1, j > i 
defined by (2.48) and (2.49), respectively. The operations differ from those of the diagonal cases 
by being applied in one dimension only. Therefore, blocks tend to become more rectangular 
which means that they are not necessarily circulant in the ordinary sense. However, as we shall 
see, the typical block is still represented by a single vector, one which is shifted to match the 
rectangular shape. The block is then a column-shift-circulant matrix in the sense of Definition- 
2.13.1.

Lemma 2.13.2 Let DC'J, j > i, be a S, x Sj column-shift-circulant matrix. Then DC!J+1 
and DDi J+1 defined by (2-48) and (2.49), respectively, are column-shift-circulant matrices.

Proof: We will give the proof for the case of DC'J only. By assumption that DC’-' is column- 
shift-circulant, i.e.

where dc8J is the first column of DCtJ and a — Si/Sj — 2J *. Equation (2.48) then becomes

D—l

1=0 

D-1

(2.61)

We consider the index of the typical term of (2.61) and use Lemma A.1.1 and A.1.2 in Appendix 
A to obtain the following:

(m-a{l + 2n)S])si = (m - (a (l + 2n))aSj)St
= (m - (crl+ 2on)Sj)si

= (m — ol — 2on)s,
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2.13. 2D Wavelet Transform of a Circulant Matrix

Therefore.
D-1

DCitil = J2*idc
1=0

hj
(m—al-2(rn) $i (2.62)

Equation (2.62) establishes the existence of a vector, dciJ+1 say, such that DClJ+1 has the 
desired column-shift-circulant form

next1 =
for m = 0,1, • • • , St — 1 and n = 0,1, • • • , 5J+1 — 1. We can now look for an explicit formula for 
the vector dc*’J+1. Taking the first column (n = 0) of DCD+1 in (2.62) gives the result:

D-1

dti+1 = DC“i^LrDs - ™ = 0.1, • ■ • , 5, - 1
1=0

(2.63)

An analysis similar to the above establishes that DD1J+1 is column-shift-circulant with respect 
to the vector dd' J+ given by

D-1

dd^1 = DD^1 = £ Mc£_aI>Si, jti = 0,1, • • ■ .Si — l (2.64)
(=0

Since the initial block DC’ J is circulant according to Lemma 2.13.1, it is also column-shift- 
circulant with a = Si/Sl = 1 and we can use the column vector dci J as computed from (2.59) 
directly in (2.63) and (2.64) for the case i = j.

2.13.3 Blocks above the Diagonal

The upper off-diagonal blocks CD' "lj and DD'+|J, i > j, are computed according to (2.50) 
and (2.51). The situation is completely analogous to (2.63) and (2.64) but the blocks are 
now row-shift-circulant matrices represented by row vectors cd'+lj and dd!+lj, respectively, as 
stated by Lemma 2.13.3.

Lemma 2.13.3 Let CD£J, i > j be a S, x Sj row-shift-circulant matrix. Then CDl+lj and 
DD'+1,J defined by (2.50) and (2.51), respectively, are row-shift-circulant matrices.

Proof: We will now give the proof for the case of CDi J only. The proof is completely similar 
to that of Lemma 2.13.2, but the assumption is now that CDt,J is row-shift-circulant, i.e.

CDif„ = c(T;J ,
m,n (n—crm)s.
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where edij is the first, row of CD1^ and a = Si/Sj = 2® K Equation (2.50) then becomes

= Ea*CD\Ln>s,.,
k=0 
0-1

= ^2 akC^iLa(k+2m)s.)s. 

k=0 
0-1

= ^2 akCtf(i-vk-2<xm)Sj

k=0
Therefore, CDl+1,J has the desired row-shift-circulant form

Oft? =

for m = 0,1, • ■ • , Si+1 — 1 and n = 0,1, • • ■ , Sj — 1.

The formulas for the row vectors cd4+1,J and dd4+lj' follow by taking the first rows (m — 0) of 
and DDJJ*J, respectively:

<+« = CCg,u = Y, <**%-*>,.. n = 0,1, • • • , S} - 1 (2.65)
fc=0 3

0-1
d<+« = £)C;™ = ^6‘cti(»-rt)s.. n = 0,l,---,S,-l (2.66)

k= 0 5
However, one minor issue remains to be dealt with before a viable algorithm can be established: 
While the initial blocks CD4’® defined according to (2.45) are circulant and therefore also row- 
shift-circulant (with <7 = 1), they are represented by column vectors when computed according 
to equation (2.57). However, (2.65) and (2.66) work with a row vector cd4J. Therefore, we must 
modify each cd®’4 so that it represents the first row of CD4’4 instead of the first column. Prom 
Definition A.3.1 of a circulant matrix, we have that

cmn C^{m-n)s. ’ n 0,1, - - - ,Si-l

where cd®’4 is the first column of CD4’4. Putting m = 0 then yields the first row:

,n
cdfi-n)Si ’ n ■■ 0,1,-•• ,5,-1.

To obtain a row representation for CD4’4, we can therefore take the result from equation (2.57) 
and convert it as follows

rtf'1Cd(-n)Si
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Alternatively, we can modify equation (2.57) to produce the row vector directly:

cdi+1'j+1 0 i, i
QabCC{. 2 n)s,

D-1

+
p=l

E [^6CC(-2n-p)Si + <7fczCC(-2n+P)Sj (2.67)

for n = 0,1, • • • ,5,+j — 1. The equations for blocks above the diagonal (2.65) and (2.66) and 
equations for blocks below the diagonal (2.63) and (2.64) can now be computed with the same 
algorithm.

2.13.4 Algorithm

We will now state an algorithm for the 2D wavelet transform of a circulant matrix A. Let 
CIRPWT1 be a function that implements 2D decompositions of blocks on the diagonal accord
ing to (2.58), (2.59), (2.60) and (2.67):

[cci+1,<+1, cd'+1,i+1, dci+1’*+1, dd'+1,i+1] = Cl RPWTl(cc,i).

Moreover, let CIRPWT2 be a function that implements ID decompositions of the form de
scribed in equations (2.63) and (2.64). This function can also be used for computations of (2.65) 
and (2.66) as mentioned above.

[dc'J+1,dd'J+1] = CIRPWT2(dc‘'J), j > i

[cdi+lj',ddi+1’j] = CIRPWT2{cd‘'j), i > j.

With these functions the example shown in Figure-2.2 can be computed as follows:

Let cc0,0 be the column vector representing the initial circulant matrix CC0,0. Then

[cc1,1, cd11, dc1'1, dd1,1] = CIRPWTl{cc°'°)
[cc2’2,cd2'2,dc2’2,dd2’2] = CIRPWTl(ccul)

[dc^.dd1'2] = CIRPWT2{dc1’1)
jcd^dd2'1] = CI RPWT2(cd1,1)

[cc3’3,cd3'3,dc3’3.dd3’3] = CIRPWTl(cc2'2)
[dc2'2.dd2’3] = Cl RPWT2(dc2'2)
[cd3'2.dd3'2] = CI RPWT2(cd2'2)
[dc1'3.dd1'3] = CI RPWT2(dc1,2)
[cd^.dd3’1] = CI RPWT2{cdL2,1)

In general, the algorithm is
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For i — 0,1, • • • , A — 1
[cc'+L,+1. cdi+L'+1. dc‘+1,i+1. dd!+1,i+1] = CI RPWTK.cc1'1) 
For j = i,i - 1, • • • ,1

[dciJ+1,dd<J+1] = CIRPWT2{dci’j)
[cd‘+lj, dd1+lj] = CI RPWT2{ cd’J)

end
end

This algorithm describes the process of computing the 2D wavelet transform as described in 
the previous section. However, it dies not distinguish among vectors that should be kept in the 
final result and vectors that are merely intermediate stages of the transform. The vectors dcJ l 
and cdi;, for example, are part of the final result for i = A only, so all other vectors can be 
discarded at some point.

In practice, we prefer an algorithm that makes explicit use of a fixed storage area and that 
does not store unnecessary information. Therefore, we will introduce a modified notation that 
is suitable for such an algorithm that makes explicit use of a fixed storage area and that does 
not store unnecessary information. Therefore, we will introduce a modified notation that is 
suitable for such an algorithm and also convenient for the matrix-vector multiplication which is 
described in Section 2.15.

2.13.5 A Data Structure for the 2D Wavelet Transform

As described in Section 2.12.2, the result H of a 
a characteristic block structure (see Figure-2.2), 
blocks as follows

' ccAA
FFJ = '^L>

DCA“i+1A
DDA-*+iA-j+i

2D wavelet transform is a block matrix with 
We now introduce a new notation for these

for i,j = 0 
for i — 0,1 < j < A 
for 1 < i < A, j = 0 
for 1 < i,j < A

(2.68)

We can now use indices i, j = 0,1, • • • , A to label the blocks of H in a straight-forward manner. 
It follows from the definition that each block H'J is an Nl x NJ matrix with

k _ ( N/2X = SAfor k = 0
- | at/2a-*+i = SA_*+1for 1 < k: < A (2.69)
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Figure 2.6: The new notations for the block structure of H (for A = 3).

Note that N° = N1. Because all the blocks H' J are either circulant or shift-circulant, we can 
represent them by vectors hl j with

f o for i > j 
1 Ho?m for i < j (2.70)

where m — 0,1, ■ * * , max{ A?!, NJ} — 1. It follows form (2.69) that the length of hlJ is

( Nl for i > j 
\ NJ for i < j (2.71)

and the shift parameter a is now given according to Definition-2.13.1 as

a =
$7 for i > J 
$7 for i < j

Equation (2.70) suggests a data structure consisting of the vector variables hiJ which refer to 
the actual arrays representing the final stage of the wavelet transform (e.g. ddA_i+1’A~J+1). This 
structure can also be used to store the intermediate vectors from the recursion if we allow the 
variables h1'3 to assume different values (and different lengths) during the computation - for 
example by using pointer variables. This is demonstrated in Figure-2.7. From Figure-2.7, we 
arrive at the final formulation of the algorithm in Subsection 2.13.4,

Algorithm: Circulant 2D wavelet transform (ClRFWT)

hA A <— cc°-°

For j = A. A — 1....... , 1.
[h-^'-Sh-Hh-"-1,!!"] <- CIRPWTl(hD) 
For i = j + 1. j + 2,...... A.
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A

'

fc” oc11 fit act

dc11 fc“ rfi

11
fit at3 fit at

h'ldt’ ht-dt

htdt” fl^dt

tltfkt

fc'2 cd" hi cjt

£4 h’iiit" warn
£4 htdt3 htdd

Figure 2.7: The use of variables htJ to implement the two dimensional wavelet trans
form of circulant matrix.

[h'Tfh'J] f- CIRPWT2{h’j)
[hJ’-1’*, hJ,‘] «- CIRPWT2(h3'i) 

end 
end

where CIRPWTl is derived from (2.58), (2.59), (2.60), and (2.67):

D-1
M-ij-i <_ no UJ, 
nm Haan2

M \ " [rjP h3'3 4. nP h3'3
2m ' 7 j yiaa,L<2m—p>Nj ' Liaali<—2m+p>A

P= 1 

D-1
hm «“ &b^2,n)N, + H [^<-

P= 1 

D-l

i flP h3'3
2m-p>Nj ' Haa'1 <-2m+p>Nj

K7 <LKm + X] kL^2m-P>w + €bh<2m+p>,

P= 1 

D-l
«“ + X! + <fbbh<2m+p> ,

P= 1

(2.72)

(2.73)

(2.74)

(2.75)
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2.13. 21) Wavelet Transform of a Circulant Matrix

for m — 0,1,2, • • • , N* 1 — 1. For > j, CIRPWT2 is derived from (2.63) and (2.64):
D-l

km 1 «“ a'h<’n-„l>N.
1=0

D-l

1=0

for m — 0,1,2, • • • , N* 1 — 1. For i < j CIRPWT2 is:

D-l
hmhj aih<m-

crl>.
1=0

(2.76)

(2.77)

(2.78)

D-l

Kl - £ b^<m-ai>Ni (2.79)
1=0

where m = 0,1,2, • • ■ , Nj — 1. Note that we use exactly the same code for CIRPWT2 by 
exchanging the indices i and j in the above algorithm. Our algorithm now takes the form

[h2'2.h2'3,h3’2,h3’3] 

[hu,hL2,h2’\h2’2] 

[h3'\h3’2] 

[h3'1^3’2] 

[h0-0, h0,1, h1,0, h1,1] 

[h2’0^2’1] 

[h^.h1'2] 

[h^h3-1] 

[h°’3,h‘’3]

<- CI RP\\'Tl{h3-3) 
<- Cl RPWTl{h22) 
4- CIRPWTl(h3'2) 
<- CIRPWTl(h3'2) 
<- CIRP\VTl(h1A) 
<- ClRPWTl(h21) 

CIRPWTlih1’2) 
<- CIRPWTl(h31) 
«- CIRPWTlih13)

2.13.6 Computational Work

The estimate for complexity of an algorithm in Subsection 2.13.5 is as follows:

Lemma 2.13.4
A—1

5>fck=0

N
~2'

Proof: See [Nie98],
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2.13.7 Storage

In this section, we will investigate the storage requirement for H as a function of the transform 
depth A when the data structure proposed in Subsection 2.13.5 is used.

Lemma 2.13.5 The number of elements needed to represent the result of X steps of the wavelet 
transform of a circulant N x N matrix as computed by algorithm in Subsection 2.13.5 is

SN(A) = N ^1 + Y, ^ j , A = 0,1,2.....Xmax. (2.80)

Proof: Ssee [Nie98].

2.14 2D Wavelet Transform of a Circulant, Banded Ma
trix

An important special case of a circulant matrix is when A is a banded circulant matrix such as 
the differentiation matrix D given in (4.7). In this case, each column of A consists of a piece 
which is zero and a piece which is regarded as non-zero. In certain columns, the non-zero part 
is wrapped around. Consequently, it is sufficient to store only the non-zero part of the first 
column along with an index 6 determining how if must be aligned in the first column relative 
to the full-length vector. The length of the non-zero part is the bandwidth of A, and we will 
denote it by L.

It turns out that each block of the 2D wavelet transform retains a banded structure, so the 
vector representing it need only include the non-zero part. Therefore, the storage requirements 
can be considerably less than that given by (2.80). An example of this structure is given in 
Figure-2.8. For each block, we know the non-zero values of the first column (or row in the case 
of blocks above the diagonal) represented by the vector v*J = [uJJ, u\\ • • • , the amount
by which it is shifted (o) and how it is aligned with respect to the first element of the block
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Figure 2.8: The structure of a wavelet transform of a 64 x 64 circulant banded matrix. 
Here, L = 3, D = 4 and A = 3.

(5).The block H3,1, say, has the general structure

H3,1 _

r 3.i 
V2 
..3.1

..3.1

L U1

3,1

.3.1

.3.1

,.3.1

..3.1

..3.1

tf1
.3,1

..3.1

.3.1 3.1
"o'

..3,1

.3.1

.3.1

..3.1

(2.81)

In this example, we have S = 3, N3 = 16, ./V1 = 4, a = 4 (from Definition 2.13.1), bandwidth 
L3,1 = 5, and

V<m+2>ie ^0r < m + 2 >16^ [O'4]
0 otherwise

h3’1 =
' "m
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with
it3,1   / 3,1
** rn,n L<m—4n>iQ

If the matrix is not banded we have the special case viJ = h' J and 4=1 so (2.80) applies 
exactly.

2.14.1 Calculation of Bandwidths

Given the bandwidth L of the original matrix A, it is possible to derive a formula for the band- 
widths of each block of the wavelet transform.

Let L1'3 be the bandwidth of block H' J shown in Figure-2.6. We can then use the recurrence 
formulas for the 2D wavelet transform to obtain the desired formulas.

Blocks on the diagonal
We start with the blocks on the diagonal given by equation (2.44) to (2.47) and consider again 
only the cd block as the typical case. Let us recall (2.72 ):

O—l

Lj-i.j-i o zj,j , \" r p u,j , p u,jLm LiaaIL2m ' / v y4aa L<2m—p>Nj ‘ ^aa L<2m+p>Nj
P= 1

for m = 0.1, • • ■ , N3-1 — l. Assume that h13 is banded, i.e. zero outside a band of length IJ'3 
as shown in Figure-2.9. Then we can use the recurrence formula to compute the bandwidth of 
h.j-ij-i. Without loss of generality we may assume that the nonzero part is wholly contained 
in the vector; i.e. there is no wrap-around.

Since h3J is zero outside the interval starting at mi of length L33, we see that h3ml'3~x will be 
zero only if 2m — p > mi + L3'3 or 2m + p < mx for all p G [0, D — 1], This leads immediately 
to the inequalities

2m + (D — 1) < mi 

2m — (D — 1) > mi + L3'3

or

or

m >
mi + L33 + D — l 

2

m <
mi - D+ 1 

2

71



2.14. 2D Wavelet Transform of a Circulant, Banded Matrix

Figure 2.9: The band of h',J has length L'J and start at index mx.

The length of this interval is then the bandwidth of hJ 1J 1:

J TTl\ + LP'i + D — 1 TTl\ — D + 1
lj ’ — -------------------------------------------------------------- — ---------------------------------------

2 2 
U-i

= — + £> - 1 (2.82)

However, since the bandwidth is an integer the fraction must be rounded either up or down if 
is odd. Which of these operations to choose depends on mx as illustrated in Figure-2.10. 

We have chosen always to round upwards because it yields an upper bound for the bandwidth. 
Thus, the formula becomes

Lj-hj-i = + D - 1 (2.83)

We observe that equation (2.83) has two fixed points, namely

ip-id-1 _ 2D-2 
2D - 1

and it turns out that there is convergence to one of these values depending on whether the initial 
is smaller than 2D — 2 or larger than 2D — 1. However, the important fact is that these 

fixed points are more related to the wavelet genus D than to the original bandwidth L.

Blocks below and above the diagonal
The bandwidths of the blocks below the diagonal are found from recurrence formulas of the 
form



2.14. 2D Wavelet Transform of a Circulant, Banded Matrix

Figure 2.10: The computation in equation (2.57) can be viewed as a sliding filter of 
length 2D — 1 applied to the band of hJJ. The numbers indicate offset with respect 
to 2m = . The resulting bandwidth depends on how the initial bandwidth is
aligned with this sliding filter. In this example LJJ =5, D = 4 so 1 is either 5
(case B) or 6 (case .4) depending on how the convolutions happen to align with the 
non-zero block. Thus, case A corresponds to rounding up and case B corresponds 
to rounding down in (2.82).

Again, we disregard wrapping and, proceeding as in the case of h,~lj~1 above, we find that 
h.D~l is zero only if m — al > m\ + L,J’ ox m — al < m\ for all l G [0, D — 1], This leads to the 
inequalities

m < mi
m — a(D — 1) > mi + LA'i

Consequently, the interval length for which /i^_1 ^ 0 is

I/’-*-1 — mi + Ll'i + a(D — 1) — mt 
= Ll'i + a{D- 1)

Performing similar computations for blocks above the diagonal yields the result

LiJ_1 = = Ll'J + a(D - 1) (2.84)

Since a is the ratio between N' and NJ, equation (2.84) shows that the bandwidth grows 
exponentially as the difference between i and j increases. Figures-2.11 and 2.12 show examples 
of the bandwidths for different transform levels.
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2.15. Matrix-vector Multiplication in a Wavelet Basis

Figure 2.11: The difference between a wavelet transform of depth A - 1 and A for
A = 3.

Figure 2.12: The bandwidths for depths A = 0,1.2.3. The initial bandwidth is 3 and
D = 4.

2.15 Matrix-vector Multiplication in a Wavelet Basis

We now turn to the problem of computing the matrix-vector product y = Hx where x. y £ R v 
and H is given as in (2.68). This system has the form shown in Figure-2.13.
The vector y may be computed block-wise as follows

A
y’ = ^H!JxJ. i = 0,1, • • • , A (2.85)

l=o

where A is the depth of the wavelet transform. The symbols xJ, y’, and H' J denote the different 
blocks of the x, y, and H as indicated in Figure-2.6. The computation in (2.85) is thus broken
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//

00
//

01
H H II03

10
H

II
//

12
H

13
H

//‘ //21
H" H

iO
H

it
H

S2
II

II
H

Figure 2.13: The structure of y = Hx for A = 3. 

down into the tasks of computing the products which we will denote by

yij = i,j = 0,1,■■■ , A - 1 (2.86)

In the following, we distinguish between blocks on or below the diagonal(i > j), and blocks 
above the diagonal (i < j).

2.15.1 Blocks on or below the diagonal

Let v!,J, i > j. be the vector of length Lh3 representing the non-zero part of the first column of 
H' J, i.e.

h‘J V<m+S-1>NI for <m + s- 1 >JV.€ [0, - 1]
0 otherwise

and
H,Jm,n = hij

(m—an)
Nl

(2.87)

where m = 0,1, • • • , N\ a = jfa, and (5 is the offset relative to the upper left element (see 
(2.81)). From equation (2.86), we see that the typical element of y1'3 can be computed column 
wise as

Vm

N’-1

E xj

n=0
N*-1

E /,*’: ri
{m-crn)Ni n

n=0
Ni-1

En=0

v'-J
(m-trn+6-1) N, (2.88)

(2.89)
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2.15. Matrix-vector Multiplication in a Wavelet Basis

For each n, this computation is only valid for those m 6 [0, Nl — 1] where is
defined, namely where

0 <(m-an + d- l)lN < LiJ - 1. (2.90)

Let k and l be defined such that k < m < l whenever (2.90) is satisfied. Then we can hud k 
from the requirement

(k — an + 6 — 1) N, = 0
«=> k — (crn — 5 + l)w

and the last row as l — (k + L!J — 1). Letting

i.j f i.j i.j i.j 1Vk i = [Vk ^k+V- - Vi \

then we can write the computation (2.88) compactly as

yd = y'u + - n = o, i, ■ • ■, w -1.

When k > l, the band is wrapped and (2.91) must be modified accordingly.

(2.91)

If the vector x is a wavelet spectrum then many of its elements are normally close to zero as 
described earlier. Therefore, we will design the algorithm to disregard computations involving 
elements in xJ where

141 < e.
The algorithm is given below.

Algorithm: y,J - H‘JxJ, i > j

For n = 0 to Arjl — 1 

if \x?n\ > ( then 

k = (an — 5 + l)N, 

l = (k + L1'3 — 1)^. 

if k < l then 

Vu = Vk-i + xnvl'J

76



2.15. Matrix-vector Multiplication in a Wavelet Basis

else (wrap)

V0:l ~ V0-.l + XnVlAJ-kL-l 

VhN*-! = Uk-Nt-l + XnV0'^>1-1-1 

end 

end 

end
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