
Chapter 3

Vectorization and Parallelization of
FWT

3.1 The CP200 Vector Parallel Computer

The vector units on the CP200 computer run with a clock frequency of 142 MHz. They
can execute 8 multiplication and 8 additions per clock cycle, leading to a peak performance of
2.272 Gflops/processor. The actual performance however depends on many factors such as

• Vector length;

• Memory stride;

• Arithmetic density;

• Ratio of arithmetic operations to load/store operations;

• Type of operations.

A vector processor is designed to perform arithmetic operations on vectors of numbers through
hardware pipelining. There is an overhead involved with each vector instruction, so good perfor­
mance requires very long vector lengths. As with all modern computers, the memory speed up
of the CP200 falls short of the processor speed. To overcome this problem, memory is arranged
in banks with consecutive elements spread across the banks. Stride-one access the means that
the memory banks have time to recover between the consecutive memory access so that they

78

3.2. Vectorization of Fast Wavelet Transform

are always ready to deliver a piece of data at rate at which it is requested. Furthermore, the
CP200 has a special instruction for this which is faster than any non-uniform memory access.
Finally, on computer architectures using cache, stride-one means that all elements in a cache
line will be used before it is flushed. In either case, a stride different from one can lead to poor
performance because the processor has to wait until the data are ready.

Optimal performance on the CP200 requires that 8 multiplication and 8 additions occurs ev­
ery clock cycle. Therefore, any loop containing only addition or multiplication can never run
faster than half the peak performance. Also the use of load and store pipes are crucial. The
CP200 has one load and one store pipe, so addition of two vectors say can at best run at |
of the peak performance because two loads are needed at each iteration. Finally, the type of
arithmetic operations is crucial to the performance. For example, a division takes seven cycles
on the CP 200. Taking all these issue into account we shall see that good vector performance
requires operations of the form
for n = 0 : N — 1,
[y]n a* [x]„ + b
where a and b are scalars and x and y are vectors of length AT, with N being large.

3.2 Vectorization of Fast Wavelet Transform

3.2.1 Introduction

Problems involving the FWT are typically large and wavelet transforms can be time consuming
even though the algorithmic complexity is proportional to the problem size. The use of high
performance computers is one way of speeding the FWT.

In this section and in the next section, we have made an attempt to implement the ID and
the 2D FWT on a selection of high performance computers, especially the CP200. For sim­
plicity, we will assume that k = 1 throughout this chapter (see Definition 2.8.1). We have a
vector parallel computer CP200. This means that it consists of a number of vector processors
connected in an efficient network. Good vector performance on the individual processors is
therefore crucial to good parallel performance. In this section, we have discussed the implemen­
tation and performance of the FWT on one node of CP200. In the next section, we discussed
the parallelization of FWT and report results on several nodes on the CP200.

79

3.2. Vectorization of Fast Wavelet Transform

3.2.2 1 D Fast Wavelet Transform

The basic operations in the ID FWT can be written in the form
for n = 0 : 5/2 - 1.
[w]„ <- [w]„ + a, * [x]</+2„>s
is defined by the recurrence relations (2.32). The arithmetic density as well as the ratio of
arithmetic operations to load/store operations are good. However, memory is accessed with
stride two because of the inherent double shift in the wavelet transform and indices must be
wrapped because of periodicity. Therefore, optimal performance is not expected for the ID
FWT. Our implementation of the FWT on one node of the CP200 yields the performance shown
in Table 3.1. We make the following observations from Table-3.1. Firstly, the performance is far

N F CPU time (/i s) 5(Mflop/s)
1024 81840 676 121
2048 163760 844 194
4096 327600 1118 293
8192 655280 1790 366

16384 1310640 3260 402
32768 2621360 5650 464
65536 5242800 10180 515

131072 10485680 19311 543
262144 20971440 38130 550
524288 41942960 68646 611

Table 3.1: Timings of the FWT. D = 20, N = 2J, J = 10,11, • ■ • ,19, A — J.

from optimal even for the largest value of N. Secondly, the performance improves only slowly
as N increases. To understand the latter property, we conduct performance analysis of one step
(the PWT) of the recurrence formulas (2.32). Since this is a simple operation on one vector, we
assume that computation time in the vector processor follows the model

T = t„ + tvF, (3-1)

where F is the number of floating operations, T is the execution time, t.v is the computation time
for one floating point operations in the pipelines, and ts is the start up time. The performance
expressed in floating point operations per second is than

R=j- (3.2)

80

3.2. Vectorization of Fast Wavelet Transform

Letting F go to infinity, results in the theoretically optimal performance

R0
r F hm —

F-* oo T
lim -----—-

F~*ao ts + tvF
^1
t"V

(3.3)

Let a G [0,1] be the fraction of Roo which is achieved for a given problem of size Fa. Then Fa
is found from (3.2) with R = a Rex, :

a _ Fa

tv ts tvFa

which has solution

In particular, for a = we find

which is another characteristic performance parameter for the algorithm in question. Fa can
now be expressed in terms of Fx as

For example, to reach 80% of the maximum performance, a problem size of F — 4Fi is required
and F — 9Fi is needed to reach 90%. The parameter Fx can therefore be seen as a measure of
how quickly the performance approaches R^- A large value of Fx means that the problem must
be very large in order to get good performance. Hence, we wish to Fi is small as possible.

a ts
1 OC tm

Fi h
t...

In order to estimate the characteristic parameters Fi and R^, we use measurements of CPU
time in the CP200. Table 3.2 shows the timings of the sequence of steps needed to compute the
full FWT with A = J = 19, N = 2J and D = 20, i.e. the PWT applied successively to vectors
of length S = N, fv ■ • ,2. Using these measurements, we estimate the parameters ts and tv to
be tg — 76fis and tv = 0.00157ns. Consequently,

(Roo)pwt - 637 Mflops

and
(Fi)pwt = 48222 operations. (3.4)

It can be verified that the values predicted by the linear model corresponding with those observed
in Table 3.2. The execution time of the PWT, thus follows the model

Tpwt(S) =ts + tvFPWT{S)

81

3.2. Vectorization of Fast Wavelet Transform

s F T(ii s) f?(\Iflop/s)
524288 20971520 32974 636
262144 10485760 16539 634
131072 5242880 8283 633
65536 2621440 4188 626
32768 1310720 2142 612
16384 655360 1120 586
8192 327680 598 548
4096 163840 344 476
2048 81920 180 455
1024 40960 130 315
512 20480 97 211
256 10240 85 120
128 5120 80 64
64 2560 50 32
32 1280 38 16
16 640 36 8

8 320 32 4
4 160 28 2
2 80 29 1

Table 3.2: Timings of the PWT. D = 20, N = 2;, J = 19, and A = J.

which can be used to predict the execution time of the FWT to depth A.v as follows:

\n~\

Tfwt(N) = Tpwr (Wi

i=0
Ajv-1

N

i=0

v- / N=) J ts + tvFPWT (

A^i-1
ta^N + tv FiPWT

I=0

or, if A^r assumes its maximal value

Tfwt{N) — t„ log2 N + tvFFwr(N). (3-5)

82

3.2. Vectorization of Fast Wavelet Transform

3.2.3 Multiple ID Fast Wavelet Transform

Consider a matrix X G IXM,N. We assume that X is stored by columns so that consecutive
elements in each column are located in consecutive positions in memory. Applying the ID
FWT to every column of X leads to inefficient data access and large F\/2 as described in the
previous section. By applying the FWT to the rows of X instead, one can vectorize over the
columns such that all elements will be accessed with stride-one in vectors of length M. We will
refer to this procedure as the multiple ID FWT (MFWT). Applying the MFWT to a matrix
X corresponds the expression

X(WA")r (3.6)

where WA;V is defined as in (2.33). Since there are M rows, the number of floating point
operations needed are

Fmfwt(M. N) = ADMN (l - (3.7)

The recurrence formulas now take the form

D-1
CrriM ~ ^ ^ alCm,<l+2n>g (3-8)

1=0

D-1
= Y. 6'Ck«+2n>s, (3-9)

1=0

where i — 0,1, • • • , Ajv — 1, rn = 0,1, • • • , M — 1, and n = 0,1, • • • , Si+i — 1. Timings for the
MFWT with Ajv = J = 10, N = 2J, and D = 20, where only the vectorized dimension M is
varied, are shown in Table 3.3.

A/ F T(H s) R{ Mflop/s)
16 1309440 11240 120
32 2618880 10889 240
64 5237760 11133 474

128 10475520 11474 912
256 20951040 14941 1402
512 41902080 23594 1777

1024 83804160 43711 1919
2048 167608320 84994 1974

Table 3.3: Timings of the MFWT. D = 20, A' = 2J, A/v = J = 10, and M =
16.32.-. • .2048.

83

3.2. Vectorization of Fast Wavelet Transform

We will now derive a performance model for this case. Each step of the MFWT applies a PWT of
length Si to the M rows of X. Hence, by (2.35) the number of flops are 2DSiM. Vectorization is
achieved by putting m into the innermost loop, so computations on each column can be assumed
to follow the linear model for vectorization (3.1). Hence, the execution time for one step of the
MFWT (3.8) and (3.9) is Si(ts + 2DMtv) and the execution time for the entire MFWT is

Tmfwt

Ajv-1
N

Y, Jiits+ZDMty)i=0
21V f 1 - (ts + 2DMQ (3.10)

The performance is then given by

Rmfwt =
Fmfwt

Tmfwt

2 DM
ts + 2DMtv

(3.11)

and (Roo)mfwt = 1/%, as usual. However, we observe that the performance measure is inde­
pendent of the depth AThe parameter Mi/2 is found by solving

1 2DM\j2
2 tv ts + 2 DMifety

(3.12)

which has the solution
(3.13)

Hence,

(F1/2) MFWT ADN I 1

2 N 1

Mi/2_ Jl~ 2^

l\k2X») tv

Using (3.10) and the measurements in Table 3.3, we get the new estimates

ts = 3.73/tts; tv = 0.000450p.s.

These estimates are different from those of the ID case and reflect the fact that the MFWT
algorithm performs better on the CP200. Consequently, we now have

(Roo)mfwt = 2.222 Gflop/s

and
(Fl/2)mfwt = 16959000 Operations

the latter corresponding to a vector length Mi/2 — 208. These values are close to being optimal
on the CP200 (recall that the peak performance per processor is 2.272 Gflop/s). Finally, since
(Fi/2(MFWT)) grows with N, we note that the MFWT is best for matrices with M > N.

84

3.2. Vectorization of Fast Wavelet Transform

3.2.4 2D Fast Wavelet Transform

The 2D wavelet transform is defined by the matrix product

X = WAa,X (WAM)T (3.14)

The expression X (WAv)T leads to vector operations on vectors of length M and stride-one
data access as described in Subsection 3.2.3. This is not the case for the expression WAMX,
because it consists of a collection of columnwise 1D transforms which do not access the memory
efficiently as described in Subsection 3.2.2. However, (3.14) can be written as

X7' = (x (WA»nT (WAa,);' (3.15)

yielding the efficiency of the multiple ID FWT at the cost of one transpose step. We call this
the split-transpose algorithm. It consists of the following three stages:

Algorithm: Split-transpose

1. Z = X(WA")r

2. U = Zr

3. XT = U (WA«)7'

Transposition can be implemented efficiently on a vector processor by accessing the matrix ele­
ments along the diagonals [Heg95], so the 2D FWT retains the good vector performance of the
MFWT. This is verified by the timings given in Table 3.3.

Disregarding the time for the transposition step, a simple model for the 2D FWT execution
time is

7fwt2(M, N) — Tmfwt(M, N) + Tmfwt[N, M) (3.16)

where TMfwt is given by (3.1).

3.2.5 Conclusion

The FWT has been implemented in the CP200. The one dimensional has relatively high value
of N\/2 and stride-two memory access so the performance is not very good. The 2D FWT can
be arranged so that these problem are avoided, and a performance of more than 80% of the

85

3.3. Parallelization of Fast Wavelet Transform

M F T(p s) /?(Mflop/s)
16 2538240 11903 213
32 5158400 12748 404
64 10398720 14305 726
128 20879360 17686 1180
256 41840640 27167 1540
512 83763200 47686 1756
1024 167608320 91751 1826

Table 3.4: Timings of the 2D FWT (FWT2). D = 20, N = 2;, X,\ = J — 10, and
M = 16.32. • • • . 1024.

theoretical peak performance is achieved even for relatively small problems. This is fortunate
as the 2D FWT computing more intensive than the ID FWT and consequently, it justifies the
better use of super computers.

3.3 Parallelization of Fast Wavelet Transform

3.3.1 Introduction

With a parallel architecture, the aim is to distribute the work among several processors in order
to compute the result faster or to be able to solve larger problems than what is possible with
just one processor. Let T°(N) be the time it takes to compute the FWT with a sequential
algorithm on one processor. Ideally,the time needed to compute the same task on P processor
is then T°(N)/P. However, there are a number of reasons why this ideal is rarely possible to
meet:

• There will normally be some computational overhead in the form of book keeping involved
in the parallel in the parallel algorithm. This adds to the execution time.

• If r is the fraction of the time on P processor is bound from below by (1 — r)T°(N) +
tT°(N)/P which is also larger than the ideal. This is known as Amdahl’s law.

• The processor might not be assigned the same amount of work. This means that some
processor will be ideal while others are doing more than their fair share of the work. In

86

3.3. Parallelization of Fast Wavelet Transform

that case,the parallel execution time will be determined by the processor which is the last
to finish. This is known as the problem of good load balancing.

• Processor must communicate information and synchronize in order for the arithmetic to be
performed on the correct data and in the correct sequence. This communication and syn­
chronization will delay the computation depending on the amount which is communicated
the frequency by which it occurs.

In this section, we will discuss different parallelization strategies for the FWT’s with special
regard to the effects of load balancing, communication, and synchronization. We will disregard
the influence of the first two points since we assume that the parallel overhead is small and that
the FWT has no significant unparallelizable part. However, in applications, using the FWT this
problem may become significant. Most of the material covered in this section has also appeared
in [NH97].

3.3.2 ID Fast Wavelet Transform

We will now address the problem of distributing the work needed to compute the FWT (y =
Wx) as defined in Definition 2.8.1 on P processors denoted by p = 0,1, • • ■ , P — 1. We assume
that the processors are organized in a ring topology such that Zp — l)p and (p + l)p are the
left and right neighbors of processor p, respectively. Assume also, for simplicity, that A is a
multiple of P and that the initial vector x is distributed such that each processor receives the
same number of consecutive elements. This means that the processor p holds the element

K)n, n = pj,p^+ !.-■■ ,{p+l)j - 1. (3.17)

A question that is crucial to the performance of a parallel FWT is how to chose the optimal
distribution of y and the intermediate vectors.

We consider first the data layout suggested by the sequential algorithm in Definition 2.13.1.
This is shown in Table 3.5. It is seen that distributive the results of each transform step evenly
across the processors results poor load balancing because each step works with the lower half
of the previous vector oidy. The processors containing parts that are finished early are ideal
in the subsequent step. In addition, global communication is required in the first step because
every processor must know the values on every other processor in order to compute its own part
of the wavelet transform. In subsequent, this communication will take place among the active
processors only. This kind of layout was used in [BKDC95] where it was observed that opti­
mal load balancing could not be achieved, and also in [Lu93] where the global communication

87

3.3. Parallelization of Fast Wavelet Transform

II o p = i
,.0,.0„0„0„0,.0„0„0C0C1C2C3C4C'5C6C7

I
4°i4c. 3C4C5Ce4

1

I
Co ^444444

„o,.o,.o „o ,.o „o ,.o „0c8c9t'10cllc12t'13c14c15
1

d\ d\ d\ d\ d\ d\ d\ d\
' i

dld\dl2d\d\d\d\d),
' 1

d\d\d\d\d\d\d\d\

Table 3.5: Standard data layout results in poor load balancing. Here P = 2, N = 16,
and A = 3.

was treated by organizing the processors of a connection machine (CM2) in a pyramid structure.

However, we can obtain perfect load balancing and avoid global communication by introducing
another ordering of the intermediate N resulting vectors. This is shown in Table 3.6. Processor

o
IIa. P= 1

,.0„0„0„0„0„0„0„0
t0clc2c3c4c5c6c7

I
c0ClC2C34C^l44

I

i
(?odl^\dod\d\d\

rororo ro ro ro ro r0C8C9C10C11C12C13C14C15

I
c\c\c\c\d\d\d\d\

i
(%(%<P2<P2d\d\d\d\

1
c\d\d^d\d\d\d\d\

Table 3.6: Standard data layout results in poor load balancing. Here P = 2, N = 16,
and A = 3.

p will now compute and store the elements {c^1 }n and {d(t+1}n where

N N Nn = Pp^Tr>p^TT + 1>--- >(P+l)p^TT-l> (3-18)

t = 0,1,2, ■ • • , A — 1.

Let now Sf = Si/P = N/(P21). Then the recurrence formula are almost the same as (2.32):

j+i _ ED— 1 i
1=0 alC(l+‘2n)si

4+1 = £/=</ Mz+2n>s, (3.19)

88

3.3. Parallelization of Fast Wavelet Transform

where i - 0.1, • • • , A - 1 and n = pSfl+1,pSf+1 + 1, • • ■ ,{p+ 1)Sf+l - 1. The difference lies in
the periodic wrapping which is still global, i.e. elements from processor 0 must be copied too
processor P — 1. However, it turns out that this is just a special case of the general communi­
cation pattern for the algorithms.

Note that the layout shown in Table 3.6 is a permutation of the layout shown in Table 3.5
because each processor essentially performs a local wavelet transform of its data. However, the
ordering suggested by Table 3.5 and also by equation (2.28) is by no means intrinsic to the FWT
so this permutation is not a disadvantage at all. Rather, one might argue as follows:

Local transforms reflect better the essence of the wavelet philosophy because all scale
information concerning a particular position remains on the same processor.

This layout is even likely to increase performance for further processing steps (such as compres­
sion) because it preserves locality of data.

Note also that the local transforms in this example have reached their ultimate form on each
processor after only 3 steps and that it would not be feasible to continue the recursion further
(i.e. by letting A = 4 and splitting {cj),cf} in to {cq.cIq}) because then N/(P2X) < 1, (3.18)
no longer holds, and the resulting data distribution would lead to load imbalance as with the
algorithm mentioned above. Thus, to maintain good load balancing we must have an upper
bound on A:

A < log2 (jj (3.20)

In fact, this bound has to be even more restrictive in order to avoid excessive communication.

Communication

We will now consider the amount of communication required for the parallel ID FWT. Consider
the computations done by processor p on a row vector as indicated in Figure-3.1. The quantities
in (3.19) can be computed without any communication provided that the index l + 2n does not
refer to elements on other processors, i.e.

I + 2n < (p+ 1) -p— - 1

N l + l
(P + l)p^T~— (3-21)

89

3.3. Parallelization of Fast Wavelet Transform

1

p-u- (P+1)

Figure 3.1: Communications on processor p involve D — 2 elements from processor
p + 1. Here D = C and N/(P2') = 8. The lines of width D indicate the filters as they
are applied for different values of n.

A sufficient condition (independent of l) for this is

n^(P+1)p^Ti -f (3-22)

since l G [0, D — 1], We use this criteria to separate the local computations from those that may
require communication.

For a fixed n > (p+ 1)A^/(P2'+1) — D/2 computations are still local as long as (3.21) is fulfilled,
i.e. when

/<(p+l)^-2n-l (3.23)

However, when l becomes larger than this, the index l + 2n will point to elements residing on a
processor located to the right of processor p. The largest value of / + 2n (found from (3.19) and
(3.18)) is

Nmax(/ + 2n) = {p + 1)+ D - 3 (3-24)

The largest value of l + 2n for which communication is not necessary is
N

(P + Cpy-i-

Subtracting this quantity from (3.24), we find that exactly D—2 elements must be communicated
to processor p at each step of the FWT as indicated in Figure-3.1.

90

3.3. Parallelization of Fast Wavelet Transform

A tighter bound on A

It is a condition for good performance that the communication pattern described above takes
place between nearest neighbors only. Therefore, we want to avoid situations where processor
p needs data from processors other form its right neighbor (p + l)p so we impose the additional
restriction

max(I + 2n) < (p + 2)— - 1

N 1V(P + l^~p2r + D ~ 3 - ~ 1

D-2<(p + 2(3.25)

Since we want (3.25) to hold for all i = 0,1, • • • , A — 1, we get

D — 2 <
N

/J2A_1

from which we obtain the final bound on A:

A < log2
2N

(D - 2)P
(3.26)

For N = 256, D = 8, P = 16, for example, we find

A < 5.

The bound given in (3.26) is not as restrictive as it may seem: Firstly, for the applications
where a parallel code is called for, one normally has N >> max(R D), secondly, in most
practical wavelet application one takes A to be a fixed small number, say 4 — 5 (see [Str96]), and
thirdly, should the need arise for large value of A, one could use a sequential code for the last
step of the FWT as these will not involve large amounts of data.

3.3.3 Multiple ID Fast Wavelet Transform

The considerations from the previous section are still valid if we replace single elements with
columns. This is a parallel version of MFWT. Figure-3.2 shows the data layout of the parallel
MFWT algorithm.

The amount of necessary communication is now M(D — 2) elements instead of D — 2, the
columns of X are distributed block wise on the processors and the transformations of the rows

91

3.3. Parallelization of Fast Wavelet Transform

FWT direction
N Memory

access

Figure 3.2: Multiple FWT. Data are distributed column-wise on the processors. The
FWT is organized row-wise in order to access data with stride one.

of X involves the recursion formula corresponding to XWj. The recursion formulas take the
same form as in Subsection 3.3.3. The only difference from sequential case is that n is now
given as in (3.18). We are now ready to give the algorithm for computing one step of multiple
ID FWT. The full transform is obtained by repeating this step for i — 0,1, • • • , A — 1. The
algorithm falls naturally in to the following three phases:

1. Communication phase: D — 2 columns are copied from the right neighbor as these are
sufficient to complete all subsequent computations locally. We denote this column by the

block K0:0—3-

2. Fully local phase: The interior of each block is transformed, possibly overlapping the
communication process.

3. Partially remote phase: When the communication has completed, the remaining ele­
ments are computed using c*;+2n_;v/(p2«) whenever l + 2n > N/(P2l).

Algorithm: MFWT: level i —»i + 1
nP _ JV_
°i ~ P2'
p = ”my processor id” £ [0 : P — 1]

Communication phase

send d0:/)_3 to processor (p — l)p

92

3.3. Parallelization of Fast Wavelet Transform

receive c?q:£,_3 from processor (p+ l)p

Fully local phase

for n = 0 : Sf /2 — D/2
4J/ = E;=o* ai<:‘j+2n ■ min(/ + 2n) = 0
41/ = Efeo1 fe(<(+2n ! min(i + 2n) = Sf - 1
end

! Partially remote phase
! communication must be finished finished at this point
i

for 77. = Sf - D/2 + 1 : .S’f/2 - 1

local part
]__
C:+n = Ei= o"i 2"_1 “4,1+27, ! min(^ + 2n) = Sf - D + 2
4!/ = EfiT2"-1 bic:.i+2n ! min(i + 2n) = 5f - 1

Remote part, use cJ0:D_3

</// = <// + E,=Sf -2n a'^+2n-S/* ! mil4 + 2 *4 = 5f

4.1/ = 41,1 + El=Sf-2n bKl+2n-Sr ! mil4 + 2«) = Sf + D - 3
end

Performance model for the multiple ID FWT

The purpose of this section is to focus on the impact of the proposed communication scheme on
performance with particular regard to speed up and efficiency. We will consider the theoretical
based achievable performance of the multiple ID FWT algorithm. Recall that (3.6) can be
computed using

Fmfwt(N) = 4DMN (l - (3.27)

floating point operation. We emphasize the dependency on N because it denotes the dimension
over which the problem is parallelized.

93

3.3. Parallelization of Fast Wavelet Transform

Let tj be the average time it takes to compute one floating point operation on a given computer.
Hence, the time needed to compute (3.6) sequentially is

T°mfwt(n) = FMFwr(N)tf (3.28)

and the theoretical sequential performance becomes

RoMFW'l\N)
Fmfwt(N)
Tmfwt(N) (3.29)

In our proposed algorithm for computing (3.6), the amount of double precision numbers that
must be communicated between adjacent neighbors at each step of the wavelet transform is
M(D — 2) as described in Subsection 3.4.3. Let ti be the time it takes to initiate the communi­
cation (latency) and id the time it takes to send one double precision number. Since there are
A steps in the wavelet transform, a simple model for the total communication time is

Cmfwt = A (ti + M(D — 2)td) (3.30)

Note that Cmfwt grows linearly with AI but that it is independent of the number of processors
P as well as the size of the second dimension AT

Combining the expression for computation time and communication time, we obtain a model
describing the total execution time on P processors (P > 1) as

T^fwAN) = r'/fy(A) + CMFwt (3.31)

The performance of Parallel Algorithm formula for the speed of the MFWT algorithm has been
discussed in [Nie98].

3.3.4 2D Fast Wavelet Transform

In this section, we will consider two approaches to parallelize the split algorithm for the 2D
FWT as described in Section 3.2.4.

The first approach is similar to the way 2D FFT’s can be parallelized (see [Heg96]) in that it uses
the sequential multiple ID FWT and a parallel transpose algorithm: we denote it the replicated
FWT. The second approach makes use of the parallel ID FWT described in Subsection 3.3.2
to avoid the parallel transposition. We denote this approach as the communication-efficient
FWT. In both cases, we assume that the transform depth is the same in each dimension, i.e.

A — Aj\t = A n-

94

3.3. Parallelization of Fast Wavelet Transform

Then, we got from (2.39) and (3.7) the sequential execution time for the 2D FWT is

T“irr2(jV) = 2T°MFWr(N) (3.32)

3.3.5 Replicated 2D Fast Wavelet Transform

The most straightforward way of dividing the work involved in the 2D FWT algorithm among a
number of processors is to parallelize along the first dimension in X, such that a sequence of ID
row transforms are executed independently on each processor. This is illustrated in Figure-3.3.
Since we replicate independent row transforms on the processors we denote this approach the
replicated FWT(RFWT) algorithm. Here it is assumed that the matrix X is distributed such
that each processor receives the same number of consecutive rows of X. The first and the last
stages of Algorithm in Subsection 3.2.4 are thus done without any communication. However,
the intermediate stage, the transposition, causes a substantial communication overhead. A
further disadvantage of this approach is the fact that it reduces the maximal vector length
available for vectorization from M to M/P (and from N to N/P). This is a problem for
vector architectures such as the CP200 as described in Subsection 3.3.3. A similar approach

FWT direction
► N FWT direction N

Memory’
access

Transpose

2

3
M

Figure 3.3: Replicated FWT. The shaded block moves from processor 1 to 0.

was adopted in [LS95] where a 2D FWT was implemented on the MasPar - a data parallel
computer with 2048 processors. It was noted that the transpose operations dominate the
computation time and a speedup of no more than 6 times relative to the best sequential
program was achieved. A suitable parallel transpose algorithm needed for the replicated FWT
is one that moves data in wrapped block diagonals as outlined in the next section.

Memory
access

Parallel transposition and data distribution

Assume that the rows of the matrix X are distributed over the processors, such that each
processor gets M/P consecutive rows, and the transpose X; is distributed such that each

95

3.3. Parallelization of Fast Wavelet Transform

processor gets N/P rows. Imagine that the part of matrix X that resides on each processor
is split columnwise into P blocks, as suggested in Figure-3.4, then the blocks denoted by i are
moved to processor i during transpose. In total each processor must send PI blocks and each
block contains M/p times N/P elements of X. Hence, following the notation in Subsection
3.4.3, we get the model for communication time of a parallel transposition

(MN \
CRFWT = (P — 1) yi + p2 ’Id) (3.33)

Note that Crfwt grows linearly with M. N and P (for P large).

PI 2 3 4

P2 1 3 4

P3 1 2 4

P4 1 2 3

Figure 3.4: Communication of blocks, first block-diagonal shaded.

Performance model for the replicated FWT

We are now ready to derive a performance model for the replicated FWT algorithm. Using
(3.32) and (3.33), we obtain the parallel execution time as

Tj;ywr(N) = Tfwt2(N)

P
C,RFWT

and the theoretical speedup for the scaled problem N = PN\ is

p P
srfwt{PNi) = i , r 7To TTm

t + PrFWT/1 FWTIv'tp
(3.34)

3.3.6 Communication-efficient FWT

In this section, we combine the multiple ID FWT described in Subsection 3.4.3 and the repli­
cated FWT idea described in Subsection 3.5.1 to get a 2D FWT that combines the best of both

96

3.3. Parallelization of Fast Wavelet Transform

worlds. The first stage of Algorithm: Split-transpose given in Section 2.10 is computed using
the parallel multiple ID FWT as given in Algorithm of Subsection 3.4.3, so that the consecutive
columns of X must be distributed to the processors. However, the last stage uses the layout from
the replicated FWT, i.e. consecutive rows are distributed to the processors. This is illustrated
in Figure-3.5 The main benefit using this approach is that the transpose step is done without

FWT direction
FWT direction

Memory
access

Transpose

No communication !

Memory
access

Figure 3.5: Communication-efficient FWT. Data in shaded block stay on processor
0.

any communication whatsoever. The only communication required is that of the multiple ID
FWT, namely the transmission of A1(D — 2) elements between nearest neighbors, so most of
the data stay on the same processor throughout the computations.The result will therefore be
permuted in the N-dimension as described in Subsection 3.4.2 and ordered normally in the other
dimension. We call this algorithm the communication-efficient FWT (CFWT).

The performance model for the communication-efficient FWT is a straightforward extension
of the MFWT because the communication part is the same, so we get the theoretical speedup

P
scfwt(pni) - 1 T r /To (!V)

1 + CMFU'T/J FWT2\iVlJ

where CMFWt and TpWT2(N\) and as given in (3.30) and (3.32) respectively.

(3.35)

3.3.7 Conclusion

We have developed a new parallel algorithm for computing the 2D wavelet transform, the
communication-efficient FWT. The new approach avoids the use of a distributed matrix trans­
pose and performs significantly better than those algorithms that require such a transpose.

97

