
Chapter 6

Wavelets and Preconditioners

In this chapter, we have made an attempt to solve Dirichlet-Poisson’s equation in two dimension 
using preconditioning concepts. We consider the representation of elliptic differential operators 
in wavelet bases and preconditioner based on wavelet methods. The method for solving Pois­
son’s equation for two dimensions and three dimensions with Dirichlet boundary conditions, has 
been implemented in Matlab based on work of G. Beylkin (see [Bey94]). In Galerkin approach, 
we get an ill-conditioned system. Here, we have made an attempt to show that the condition 
number of the reduced matrix is of size 0(1) using wavelet preconditioning.

As we know that the wavelets are smooth and well localized functions derived from dilations 
and translations of a single function ib. called the mother wavelet, in the following way:

'hk = {Tx - k) ; j,k€ Z.

The interesting thing about wavelets is that they provide unconditional basis for different spaces 
such as L2, Sobolev spaces, and Holder spaces. The first orthogonal basis of wavelets was con­
structed by J. O. Stromberg. Later, the concept of Multi Resolution Analysis introduced by Y. 
Meyer (see [Mey93]) and S. Mallat (see [Mal91]), leads to Fast Wavelet Transform (FFT). In 
1988,1. Daubechies [Dau88] constructed orthonormal wavelets with compact support.

It is well known that wide class of operators (Calderon-Zygmund and Pseudo-Differential Op­
erators) have almost sparse representations in wavelet bases which permits a number of fast 
algorithms for applying these operators to functions, solving integral equations etc. In 1989, 
G. Beylkin, R. Coifman, and V. Rokhlin [BCR91] used this fact to developed techniques to 
compress integral equations and thereby append the field to differential equations.
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For the last couple of years, the interest for using wavelets applications to Partial Differen­
tial equations grow and lot of research papers were published. For the Elliptic problems with 
Dirichlet or Neumann boundary conditions, S. Jaffard examined the use of wavelets as a test 
function in Galerkin’s method and showed the existence of a diagonal preconditioner which 
makes the condition number of the corresponding matrix bounded by a constant (see [Jaf92]). 
One drawback of the Jaffard’s result was the absence of an explicit description of the wavelets 
to be used and the fact that they did not have compact support which makes them unstable for 
practical use. Until now, there has been several constructions of wavelets but non of them have 
succeeds finally, to solve the Boundary Value Problem.

G. Beylkin developed a method to represent a differential operators in the wavelet bases con­
structed in [Bey94]. This method leads to fast algorithms for evaluating these operators acting 
on the functions, and therefore, suggest an alternative to common methods for the discretization 
of differential equations. The discretization of differential equations in the Galerkin’s method 
leads to a sparse matrix with large condition number. For a second order elliptic problem, the 
condition number is of order 0(l//i2), where h is the size of discretization. To avoid such ill 
conditioning, G. Beylkin used the preconditioning in [Bey94] to obtain a condition number of 
0(1). In this chapter, we have made an attempt to obtain condition number of 0(1) for second 
order elliptic problem in two dimension.

6.1 Numerical Approach to Poisson Equation

We shall use wavelets in the Galerkin’s method to solve Poisson’s equations with Dirichlet 
boundary conditions on a bounded domain Sic Rn. The Sobolev space is

H"(Q) = {f € L2(R) : D°f 6 L2(R).V|q| < s,s 6 N} ,

with norm

The operator Da is defined as

Ilk = / £ \D*m\2dx.
Jn\a\<s

Oaf(x) = -
d'a'f(x)

1 ■ ■ ■ dx%n ’ with la = £a*.

i= 1
Furthermore, a continuous function / 6 Holder space Cr(Q)\ 0 < r < 1, if there exists a constant 
c such that

If(x) - f(y)\ < c \x - y\r ; Vx, y e ii.
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For m < r < m + 1, let r = m + s, then the functions / G Cr(Q,) iff

Daf G Cr(ft); |a| = m.

Finally, we say that / G Cr0 (O) if / G Cr(Rn) and vanishing outside 0.

The wavelets were constructed by S. Jaffard and Y. Meyer to provide bases for the Holder 
space Cq(^); r 6 Z and Sobolev space

= {/ e Hs(tt) : / = Q outside 0}.

In their construction, they consider the space Vp of functions that are C2m~2, vanishing outside 
0 and are polynomials of degree 2m — 1 in each variables in the cubes

k2-p + 2-p{0,l]n', with k€Zn.

They show that there exists an L2 orthonormal basis of Vv composed of functions such that

\DaipjJc\ < 2jo:2nj/2 exp (-j2j\x - k2~j\)

for jar) < 2m — 2 and a position 7. The wavelets are indexed by j = 0,1, • • • ,p and by k G Z" 
such that

kT j + (m + 1)2" “' [0,1] C a. •

This shows that and its partial derivatives are essentially centered around k2~j with a width 
of 2-jf. S. Jaffard and Y. Meyer proved the following proposition:

Proposition 6.1.1 If a function f G Hq(Q,), then the following condition for the wavelet coef­
ficients cjtk{— ()) holds

c, £\2’cjJcf < ||/||aBJ < C2 J2 ftciA2 ■

Proof: See [And98].

Consider now the following BVP for Poisson equation, where u G H2(Q)

—Au = f in Q \ 
u = g on d£2 J

where dfl is the boundary of fi and / G L2(R).
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Before we use a Galerkin method to solve the problem (6.1), it has to be reduced to a ho­
mogeneous problem. This can be done if there exist a smooth function g that extends g inside 
SI. Then, u = u — g will be the solution of the following problem:

—Au = f in SI ) ,
u = 0 on dSl J (6'2)

where we replace f by f — f - Ag. We shall give how variation form to equation (6.2) when 
we use Green’s formula

[ vAwdx = — f Vv ■ S7wdx + [ v^-ds.
Jn J n Jon °n

(6.3)

Multiply it in (6.2) by a function v G Hq(SI) and integrating, we arrive at the following variational 
form of (6.2)

/ Vu ■ Vvdx = / fvdx; Vu G
Jn Jn

Now, if we use the fact that the wavelets provide bases for H^, the Galerkin approximation will 
consists in finally u EVj such that

/ Vu • Vt’dx = / J'vdx; Vt; G Vr
Jn Jn

When the functions are expressed by their constitution in the wavelet basis, we are left with the 
problem

Mx = y (6.4)

where the stiffness matrix M is given by

and the values x and y are given by

x = ,

V = ((f,ipj,k)) ■

Next, we shall show that there exist a diagonal matrix D such that the condition number of the 
matrix is bounded. Recall that condition number of a matrix is defined as the ratio
of the largest and smallest singular values and controls the rate of the convergence of a number 
of iterative algorithms for solving linear systems.

Let A be the vector of the wavelet coefficients, then

ArMA = (V/, V/).
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Now, we have
c\ |yCj,tI2 < ATMA < C2 |2J9,fc|2 .

Hence, if D is the diagonal matrix defined by

DU,k)U,k') = 2'7<5(j,j)(W)

then
Ci ||A||2 < AtD~lMD~lA <C2Y] P|2 •

Further, we have the following theorem:

Theorem 6.1.2 For a Galerkin method using the wavelets constructed by S. Jaffard and Y. 
Meyer to approximate the solution of (6.2), the condition number of D~1MD~1 is bounded by 
C\C2 (see [And98]).

This leads us to the following problem instead of (6.4). Solve

MiXi = yi

where the matrix M\ is given by
Mi = D~1M D~l

and the vectors are given by
X\ = Dx. 

2/i = D~ly.

6.1.1 Numerical Results for One Dimension

In this section, we apply the methods discussed in the previous section to the following problem:

—u" = /; in [0.1] 

u(0) = u(l).

We know how to represent linear operators in a wavelets basis for L2(R). Since, we do not 
have basis for the specific interval [0.1], we have to find a function u(x) defined on the real line 
satisfying the condition

—u" = f(x); in 0 < x < 1.

If we denote the function u to be 1-periodic, then the condition

fi(0) = fi(l)
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is automatically fulfilled and the restriction to the interval [0,1] of the function u(x) solves the 
original problem.

Suppose we are given the scaling coefficients for the function / at level N. Now, we look 
for an approximation to u in the subspace Kv and therefore, express the operator d2/dx2 in the 
non standard form. Since, we only consider 1-periodic functions, we may restrict ourselves to 
the functions

4>j.k(x)\ for k = 0,1, • • • ,2J - 1 j = 0, l,--- ,N- 1

in equation
7h = 2J J <t>(2Jx - i)^~4>(2Jx - l)dx = 4

Furthermore, we want the basic functions to be differentiable; this means that the fillength L 
in equation

i"io(0 =
V2 k=0

must be greater than or equal to 10. This gives rise to a system of linear equations for the wavelet 
coefficients of the function u, where the complex matrix has sparse status. To solve this linear 
system of equations, we use the different methods like: CGS, PCG, BICG, BICGStab, GMRES. 
QMR, etc. with the preconditioning described earlier. Table 6.1 compares the condition number 
kp with preconditioning and k without preconditioning:
For the numerical experiments, we let the function / be given by

N K Kp
5 0.0026 e5 4.3952
6 0.0100 e5 4.6355
7 0.0410 e5 4.7583
8 0.1640 e5 4.9133
9 0.6559 e5 5.0405
10 2.6200 e5 5.1694

Table 6.1: Comparison of Condition Number without and with preconditioning.

f(x) — sin(27rr) + sin(47r.x) + sin(67nr) + sin(87r.x), 

and hence the exact solution is given by

u(x) = — 1
647T2

16 sin(27rx) + 4 sin(47rx) + sin(67rx) + sin(87rx)
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6.1. Numerical Approach to Poisson Equation

All calculations were made with Matlab, where we use predefined functions to handel sparse 
matrices. The program uses the level N and vector of the scaling coefficients of / as input. The 
scaling coefficients of / are evaluated by a quadrature formula.

6.1.2 Numerical Results for Two Dimension

We consider the Dirichlet boundary value problem

Au = —2; in (0,1) x (0,1)

u — 0 on x = 0, y = 0, x = 1, and y = 1. 

The analytic solution of this problem is given by

(6.5)

g _^L(x,y) = (l - x)x -
sinh[(2n — l)7r( 1 — y)] + sinh[(2n — l)7ry] sin[(2n — l)xx]

(2n - l)37T3 ^ sinh[(2n — 1) 7r ]

N
No Preconditioning 

Iterations Error
With Preconditioning 
Iterations Error

8 30 19.1234 e-6 5 5.2005 e-5
9 79 3.80 e-5 7 3.6000 e-5
10 170 1.8321 e-5 5 3.0535 e-5
12 400 6.5163 e-5 6 4.123 e-5

(6.6)

Table 6.2: Comparison of Condition Number without and with preconditioning for 
the mentioned problem

Table 6.2 shows the result of preconditioning and without preconditioning on the solution of the 
above problem. We have used wavelet preconditioning and GMRES method to solve the linear 
system of equations. The number of iterations in all methods are observed with a permissible 
tolerance of 10-5.

6.1.3 Conclusion

• We have solved Dirichlet-Poisson problem using wavelet approach with preconditioning 
aspects.

• The iterative methods which we have used are: CGS. BIGG, GMRES. B1CG.
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6.1. Numerical Approach to Poisson Equation

• The preconditioned which we have used are: Jacobi, ILU, and wavelet preconditioners.

• The best preconditioner is Wavelet preconditioner and best iterative methods is GMRES

• The condition number of the resulting matrix after using preconditioner is of size 0(1).
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