
PREFACE

Wavelet analysis is relatively new mathematical discipline, which has generated much interest 
in both Pure and Applied Mathematics over the past decade. ’Wavelet’ name itself was coined 
approximately a decade ago (see [GM84], [Mor83], and [MAFG82]). During the last couple of 
years, the interest in wavelets has grown at an explosive rate. There are several reasons for the 
success in this area which are mentioned below:

• Quoting from [Dau92], the concepts of wavelets can be viewed as a synthesis during the last 
thirty years from Engineering (subband coding), Physics (coherent states, renormalization 
group), and Pure Mathematics (study of Calderon-Zygmund operators). As a consequence 
of these interdisciplinary origins, wavelets appeal to scientists and engineers.

• Wavelets are simple mathematical tools with a variety of possible applications. Many re
searchers have done applications in areas like Signal Analysis (see [KMMG87], [Mal89b], 
and [Mal89a]); Numerical Analysis (see [BCR91]); Preconditioners and wavelets (see 
[And98], and [Kun94]); Wavelet methods for PDE’s (see [AWQW92], [WDU96], [Dor95], 
and [Jaf92]).

Many other application areas of wavelets are in Statistics, Econometrics, Fractals, Image Pro
cessing, Ordinary Differential Equations, Communication Theory, Computer Graphics and some 
others.

The important properties of wavelets are their ability to analyze different parts of a function at 
different scales and the fact that they can represent polynomials up to a certain order exactly. 
As a consequence, functions with fast oscillations, or even discontinuities, in localized regions 
may be approximated well by a linear combination of relatively few wavelets. In comparison, 
Fourier expansion must use many basic functions to approximate such a function well. These 
properties of wavelets lead to some important applications in the above-mentioned fields.

Wavelet bases are used in the approximation theory due to remarkable property of separating 
frequency locally, i.e. the coefficients of wavelet expansion gives information about the fre
quency content at certain space (or time) location. Even more, there exist orthonormal wavelet 
bases with compact support, and fast transforms between the classical and wavelet bases. In 
recent years, wavelet techniques are applied for solving differential equations. There are several 
research areas such as:

IV



• Design of accurate, wavelet based discretization of PDEs: In principle, these are 
Finite Element Method discretizations using wavelets as test functions. The approxima
tion properties of wavelets yield high accurate schemes. The main issues are: stability 
conditions, and the design of fast quadratures.

• Wavelets analysis of the solutions: Wavelets are used in the original signal analysis 
context, and to detect the presence of shocks, eddies, etc., in turbulent flow. The knowledge 
about the singularities of the solution is then used in classical schemes, e.g. adaptive mesh 
generation, or the control of artificial viscosity.

• Compression of dense, discrete operators: Boundary Element Methods often pro
duces discrete equations with a small condition number. Discrete solution operators are 
dense matrices, since the solution depends on information from the whole computational 
domain. However, information usually has a simple structure that can be approximated 
with a few wavelets. Using wavelets as test functions, or performing basis transformation 
to wavelet coordinates, induce a sparse structure for the discrete operators after truncation, 
without destroying the small condition number.

• Traditional schemes that relay on different grids can be rewritten in the wavelet formalism. 
Concepts such as coarse grids operators have a precious meaning in the wavelet framework.

The research presented in the thesis is centered around the SIX themes:
The construction of solution operators for elliptic equations in a wavelet basis 
The standard methods make use of the integral representation of solution operator. The rep
resentation in wavelet basis using different methods like, Boundary Element Method, found in 
the works of Beylkin, Coifman, and Rohklin [BCR91], David [Dav91], and many others. We 
adopt a different approach first used by Engquist et al. [BEZ94] for parabolic operators. We 
can regard the solution operator of an elliptic problem as the long time evolution operator of the 
corresponding parabolic equation. The short time evolution operator is built in wavelet basis 
and by efficient repeated squaring; the long time operator is obtained.
Building efficient preconditioners using wavelet decomposition of discrete elliptic 
operators
In the ID case, we find the well-known diagonal preconditioners (see [Bey93], and [Jaf92]). In 
the 2D case, we find a connection between separation of variables and an extended wavelet 
transform that permits the incorporation of the ID diagonal preconditioner in to a 2D struc
ture. Preconditioners can also be used to efficiently invert the discrete evolution operators of 
implicit schemes.
Derivation of homogenized equations
In the context of wavelet bases, the notion of coarse and fine grids (or function space) becomes
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precise. There is an exact meaning to be assigned to the homogenized operator. The wavelet 
transform becomes a systematic method for deriving homogenized equations even if the asymp
totic behavior of the solution is unknown. Brewster et al. [BB94] treats integrated equations 
in this manner. The basic tool for our analysis is wavelet transform. We use the orthonormal 
bases for compactly supported wavelets invented by Daubechies, which have fast direct and 
inverse transforms. The important properties of the wavelet basis (like orthogonality, vanishing 
moments) are analytic in their nature. By restricting our self as finite dimensional space, these 
properties are viewed as algebraic properties. The analytic properties of the differential operator 
and wavelet bases are used to provide inspiration and confirmation for the algebraic properties 
of some special discrete linear system and orthogonal matrices.
Wavelet transforms solution of elliptic partial differential equation and Green’s func
tions
The wavelet transform framework to solve some elliptic boundary value problem is known. The 
study applies to wavelet series for the evaluation of analytical solution of elliptic problem in any 
dimension. The wavelet can be understood as an alternative for the multi-dimensional problem 
to the standard Fourier series. Beylkin [BN96], and Glowinski et al. [GRWZ95] introduced a 
method to solve elliptic partial differential equations with Dirichlet boundary condition in the 
wavelet system of coordinates by constructing the Green’s function.
Wavelets and preconditioners
The solution of partial differential equations using preconditioning has several advantages. In 
the wavelet system of coordinates, the partial differential equation with boundary conditions are 
characterized by diagonal preconditioners leading to operations with sparse matrices having the 
condition number of 0(1). Less condition number is very good to avoid instability, minimizing 
the errors, and speed up the convergence.
Finite Pointset Method (FPM) and preconditioning aspects for the solution of el
liptic PDE
FPM is a mesh free method for solving partial differential equations. It is based on Least 
Square (LS) approximation or Moving Least Square (MLS) approximation. It is fully Lagrangian 
method to handle problems in Fluid Dynamics for flow simulation with complicated as well as 
rapidly changing geometry (see [KTUOO]), involving free surfaces (see [TK02], and [TJ02]) or 
phase boundaries (see [HJKT03]). FPM has great effect under influence of weight functions. 
The different weight functions have different impact on FPM simulations from error point of 
view as well as from condition number of matrix MTWM point of view (which we get from LS 
approximation around the central particle).

The problem still remains to find efficient algorithms to extract number of particles from the 
computational domain to enhance the speed of computation, i.e. how fast the solution converges 
and how much the system is well-conditioned. The study of the effect of preconditioners like
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Jacobi preconditioner, Block Jacobi preconditioner, Complete Factorization preconditioner, and 
some Incomplete Factorization preconditioners of different levels has effect on the improvement 
of efficiency of FPM. The analysis of effect of different preconditioners on different stationary 
and non-stationary iterative methods in terms of fast convergence is also essential.

The research work, which is incorporated in our thesis, is divided into the following parts:
Part I gives an exposition of the theory of orthogonal, compactly supported wavelets in the 
context of multiresolution analysis. These wavelets are particularly attractive because they lead 
to a very stable algorithm namely the Fast Wavelet Transform (FWT). The estimates for the 
approximation characteristics of wavelets and demonstrate how and why the FWT can be used 
as a front-end for efficient compression schemes.

Part II deals with vector parallel implementation of several variants of the Fast Wavelet Trans
form. We develop an efficient and scalable parallel algorithm for the FWT and derived a model 
for performance.

Part-Ill is an investigation of the numerical methods using the special properties of wavelets 
for solving partial differential equations numerically. Several approaches are identified and some 
of them are described in detail. The algorithms developed are applied to the linear and nonlin
ear elliptic problems. Numerical results reveal that good performance can be achieved provided 
that the problems are large, solutions are highly localized, and the numerical parameters are 
chosen appropriately, depending on the problem in question.

Part IV deals with analytical solution of elliptic boundary value problem using wavelet trans
form approach. The Green’s function approach for the solution of elliptic BVP in ID and 2D 
is presented. The error estimates are established for showing advantage of wavelet approach in 
compare to Fourier series approach. The wavelet-based Green’s function approach for solving 
Helmholtz and Modified Helmholtz equation is presented.

Part V deals with wavelet-based preconditioners for the solution of elliptic boundary value 
problems. The primary goal of this part is the understanding of the connection between discrete 
elliptic operators, their inverses, and different wavelet techniques in the framework of efficient 
computations. Discrete elliptic operators are used in the approximation of the solution of elliptic 
equations and also in the intermediate steps of iterative solvers for more general nonlinear prob
lems, e.g. the Navier-Stokes equations. It is well known fact that the discrete elliptic solvers need 
a large computational effort. In computations, the sparsity and the small condition number for 
the discrete operators are the key to efficiency. Sparseness of the matrix enhances the speed of 
performing Conjugate Gradient or Multi-grid type iterations, while the small condition number
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guarantees rapid convergence of such iterations. The classical discretizations of elliptic operators 
are sparse but have large condition number. There are some standard techniques for building 
efficient solvers relaying on the scale decomposition of the elliptic operators, its inverses, or the 
solution itself, e.g. the multi-grid, multi-pole, or domain decomposition methods. The different 
types of wavelet preconditioning are used to get the fast convergence and small condition number.

Part VI deals with introduction to Finite Pointset Method and its improvement by consid
ering the following aspects:

• Weight function approach

• Filtering algorithms approach

• Preconditioners

Part VII deals with two models: the lubrication model and cooling of coke in a Can model. 
In this part, we have applied wavelet based methods and Finite Pointset Method to get the 
accurate solutions.

Part VIII deals with comparison of our wavelet methods and Finite Pointset method by taking 
the test examples as models of Part VII using our wavelet solver and FPM solver.

Chapter-wise description: We have divided the whole thesis into ten chapters.
Chapter 1
The first chapter is introductory.

We have discussed the basic idea of wavelets, its connection with Fourier expansion and ad
vantages of wavelet expansion over Fourier expansion. The idea of removing Gibb’s phenomena 
over Fourier phenomena is greatly explained with our software.

A natural framework for wavelet theory is multiresolution analysis (MRA), which is a mathe
matical construction that characterizes the wavelets in general way. MRA yields fundamental 
insights in to wavelet theory and leads to important algorithms as well. The goal of MRA is to 
express an arbitrary function / € L2(R) at various levels of details.

Hence, the concepts of MRA, approximation spaces V} and , basic scaling function and 
basic wavelets, expansion of function in Vj, dilation equation and wavelet equation, filtering 
coefficients, property of vanishing moments, decay of wavelet coefficients, wavelet and Fourier 
transform, periodizied wavelets, and periodic MRA in L2([0,1]) are discussed in details.
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The P vanishing moments have an important consequence for the wavelet coefficients: They 
decrease rapidly for a smooth function. Furthermore, if a function has discontinuity in one of its 
derivatives then the wavelet coefficients will decrease slowly only close to that discontinuity and 
maintain fast decay where the function is smooth. This property makes wavelets particularly 
suitable for representing piecewise smooth functions. In this chapter, we have made an attempt 
to find estimates for the decay of wavelet coefficients (see [PS]).

Chapter 2
There are no explicit formulas for the scaling function cj> and the wavelet function ip. Hence, 
most algorithms concerning scaling functions and wavelets are formulated in terms of the filter 
coefficients. A good example is the task of computing the values of <f> and In this chapter, 
we have developed algorithms to compute cj> and ■</>. We have also described various algorithms 
for Discrete Wavelet Transform (DWT), Inverse Discrete Scaling Function Transform (IDST), 
Fast Wavelet Transform (FWT), and Periodic Fast Wavelet Transform (PFWT). The accuracy 
of multiresolution space is discussed in details.

Chapter 3
Problems involving the FWT are typically large and wavelet transforms can be time consuming 
as algorithms complexity is proportional to problem size. Hence, the use of high performance 
computer is essential. In this chapter, we will describe our efforts to implement the FWT on a 
selection of high performance computers.

Chapter 4
Even though the field of wavelet theory has had a great impact in other fields, such as signal 
processing, it is not yet clear whether it will have a similar impact on numerical methods for 
solving partial differential equations.

In the early nineties, people were very optimistic because it seemed that the nice properties 
of wavelets would automatically lead to efficient solution methods for PDEs. The reason for op
timism was the fact that many nonlinear PDEs have solution containing local phenomenon (e.g. 
formation of shocks) and interaction between several scales (e.g. turbulence). Such solutions 
can often be well-represented in wavelet bases. It was, therefore, believed that efficient wavelet 
based numerical schemes for solving PDEs would follow from wavelet compression properties 
(see [BMP90], [CP96], and [PW76]).

However, this early optimism remains to be honored. Wavelets have not had the expected impact 
on differential equations; partly because the computational work is not necessarily reduced by
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applying wavelet compression - even though the solution is sparsely represented

Wavelet based methods for PDEs can be separated in to the following classes:

Class 1: Methods based on scaling function expansions 
The unknown solution is expanded in scaling functions at some chosen level J and is solved 
using a Galerkin approach. Because of their compact support, the scaling functions can be 
regarded as alternatives to splines or the piecewise polynomials used in Finite Element schemes. 
By expanding the solution in scaling functions, high frequency components can be filtered away 
and continuous dependence on the initial condition is restored. In literature, examples of such 
methods can be found in [LER97], [Jam93], [RE97], and [Wal96].

Class 2: Methods based on wavelet expansions
Under this class, the unknown solution is expressed in terms of wavelets instead of scaling func
tions; so, wavelet compression can be applied. An important aspect of the wavelet approach is 
that certain operators represented with respect to a wavelet basis become sparser when raised to 
higher powers. From this property, one can obtain an efficient time-stepping scheme for certain 
evolution equations. This method has been employed to solve the heat equation (see [BMP90], 
[BN96], [CP96], [Dor95], and [Wal96]).

Class 3: Wavelets and finite differences
In this third approach, wavelets are used to derive adaptive finite difference methods. Instead of 
expanding the solution in terms of wavelets, the wavelet transform is used to determine where 
the finite difference grid must be refined or coarsened to optimally represent the solution. Under 
this class, we have Wavelet Optimized Finite Difference (WOFD) method developed by Leland 
Jameson (see [Jam94], and [Jam96]).

Class 4: Other methods
There are few other approaches that use wavelets in ways that do not fit into any of the previ
ous classes. Examples are operator wavelets, anti-derivatives of wavelet, the method of traveling 
wavelet-preconditioning (see [Bey94], [JS93], [PB91]. and [WZ94]).

On the basis of first two approaches, we have developed a mathematical software to solve 
elliptic boundary value problem. Based on this software, we have developed numerical solutions 
of hyperbolic problems (see [Soma]), parabolic problems (see [Somb]), and Burger’s equation 
(see [Som04a]). This chapter also includes the solution of elliptic BVP with periodic and non
periodic boundary conditions in ID and 2D (see [Some]).
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Chapter 5
Discrete elliptic operators are used in the approximation of uniformly elliptic and possibly vari
able coefficient differential equations. In computations, the sparseness and small condition 
number of the discrete operators is the key to efficiency. The sparseness enhances the speed 
of iterations while small condition number guarantees the rapid convergence of such iterations. 
The matrices that we obtain using finite difference method are sparse: however, they have large 
condition number. Using the Galerkin method with Fourier system, we can obtain the bounded 
condition number but the matrix is no longer sparse. In the Galerkin method with wavelet basis, 
we obtain both the advantages. In this chapter, we have made an attempt to establish the error 
estimates to show the advantage of wavelet-Galerkin method over the finite difference method 
and Fourier-Galerkin method not only in terms of fast computation and rapid convergence but 
by obtaining better accuracy (see [PS04]).

The numerical techniques such as Finite Difference, Finite Element, and Finite Volume are 
already known. The wavelet methods have several advantages over these traditional methods. 
Wavelets have ability to represent functions at different levels of resolution, thereby providing 
a logical means of hierarchy of solutions. Furthermore, compactly supported wavelets (such as 
those due to Daubechies) are localized in space which means that the solution can be refined in 
regions of higher gradients.

By doing comparison with a simple finite difference solution of this problem with periodic 
boundary conditions, we have shown how a wavelet technique can be efficiently developed. 
Dirichlet/ Neumann/ Robin’s boundary conditions are then imposed using capacitance matrix 
method described by Proskurowski, and Widlund [PW76]. The convergence of wavelet solution 
is examined and they are compared favorably with the finite difference solutions.

Chapter 6
G. Beylkin [Bey94] developed a method to represent differential operators in the wavelet basis. 
This method leads to fast algorithm for evaluating these operators acting on functions. There
fore, he suggests an alternative to common method for the descretization of elliptic equations.

Usually, the descretization of differential operators in the Galerkin method leads to a sparse 
matrix with large condition number. Typically, for the second order elliptic problem, the con
dition number is 0(l/h2), where h is the size of discretization. To avoid such ill-conditioning, 
Beylkin used the preconditioning aspects to obtain the condition number of size 0(1). In this 
chapter, we have proved the same estimates for non-linear elliptic PDE. We have also made an 
attempt to find the effect of different wavelet preconditioners for the solution of elliptic BVP in 
terms of stability and convergence (see [Som05b]).
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Chapter 7, 8 and 9
The particular type of meshfree method. Finite Pointset Method (FPM), and its effect on elliptic 
problems is discussed in details in these three chapters.

Mesh free methods use a set of nodes scattered within the problem domain as well as set of 
nodes scattered on the boundaries of the domain to represent (not discretize) the problem do
main and its boundary. No mesh implies no information on the relationship between the nodes 
is required. The increasing complexity of real life problems leads towards the development of 
new methods. The Finite Element Method has better flexibility, effectiveness, and accuracy in 
problems involving complex geometry in compare to Finite Difference Method. Now, the limita
tions of FEM and FDM are becoming increasingly evident. For example, large deformations can 
deteriorate the accuracy because of element distortion. To answer this question, new and more 
powerful classes of techniques, known as meshfree, or meshless, or gridfree method are emerging.

The traditional mesh based method such as Finite Element Method (FEM) and Finite Dif
ference Method (FDM) often run into problems when the mesh (elements) deteriorates during 
simulation due to the geometry change. Meshfree methods are originally developed to simulate 
Fluid Dynamics problems. They are so called particle methods. The appearance and the devel
opment of meshfree method is motivated by the challenges in numerical simulation of process 
involving significant changes of the geometry such as multiphase flows, Filing process and other 
free surface flows in Fluid Dynamics; large displacements, crack propagation in Solid Mechanics, 
etc.

The classical meshfree Lagrangian method to handle problems in Fluid Dynamics is the Smoothed 
Particle Hydrodynamics (SPH) method. SPH was initially developed to study phenomena in 
Astrophysics (see [GM77], and [Luc77]). Later, it was developed for the flow cases even on earth 
(see [CR99], [Mon94], [MorOO], and [MFZ97]). In SPH. incompressible flows are approximated 
by using the compressible approach together with very stiff equations of state. SPH is referred 
to as the first meshfree method.

The basic steps of the SPH scheme are as follows: first the conservation laws are expressed 
in the Lagrangian form for primitive variables and the spatial derivatives are approximated; 
then the governing PDE reduced to a time dependent system of ODE and finally, it is solved by 
ODE solver. This is a grid free method, where the spatial derivatives of a function at a point, is 
approximated by discrete values over a set of neighboring points. These neighboring points are 
the so called particles and their distribution need not be uniform, or regular. Therefore, this 
method is suitable for fluid dynamical problems with moving boundaries and free surface flows.
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A Finite Pointset Method (FPM) is a meshfree method to solve partial differential equations. 
The computational domain is represented by a finite number of particles, also referred to as 
numerical points. These points can be arbitrarily distributed; however, they have to provide 
a neighboring relationship governed by the smoothing length, i.e. each point needs to find 
sufficiently many neighboring points within a ball of certain radius. Considering the equation 
of Fluid Dynamics, the numerical points move with fluid velocity and carry all information 
which completely describes the flow problem concerned. Of course, this is a fully Lagrangian 
method being appropriate for flow simulations with complicated as well as rapidly changing ge
ometry (see [Luc77]), involving free surfaces (see [TJ02], and [TK03]), or phase boundaries (see 
[HJKT03]). The FPM is based on LS approximations, where the higher order derivatives can 
be approximated and the boundary conditions can be treated in classical sense (see [Kuh99]). 
Computation of several flow problems using the method of LS or MLS are reported by different 
authors (see [Dil96], [Kuh99], [TK01], [TK02], [TK03], [TiwOO], and [TM03]).

In chapter 7, we have discussed FPM discretization of general elliptic problem. This chapter 
also deals with weight function aspects to discuss convergence and stability of elliptic problems 
(see [Som04c]).

Chapter 8 deals with preconditioning aspects of FPM method to show the fast convergence 
and stability of the method (see [Som04b]). Several preconditioners are used and several itera
tive and non-iterative methods are also presented to discuss convergence and stability.

In chapter 9, we have proposed different filtering algorithms to discuss the stability and conver
gence aspects (see [Som05a]).

Chapter 10
Chapter 10 deals with two models: First model is based on pressure distribution in the slider 
bearing. The problem was posed by Stephen Chapman and Alister Fitt and it is related with 
slider bearing industry in United Kingdom. In almost every rubbing surface when oil is some
where present, a lubrication film manages to get between the surfaces to carry the part of the 
load. So, the lubrication of the machinery is very important to reduce the friction. It is very 
important to design sophisticated machines which are free from poor lubrication. The slider 
bearing consisting of surface with viscous fluid as a Newtonian lubricant is analyzed in this 
chapter. The analysis is based on perturbation technique. We assume only viscous and New
tonian effects whereas inertial terms are neglected. Our initial two models are based with the 
assumption that pressure is zero at the ends of slider bearing. After constructing the pertur
bation solutions, the pressure distribution on the load in the slider bearing is calculated by our
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models and validated by our wavelet method and Finite Pointset Method (see [PS06]).

Second model is based on cooling of coke in a Can. Cooling of coke contained in a Can in 
refrigerator is very much essential during the summer time. In this part of chapter 10, we have 
made an attempt to present the mathematical model to see the diffusion of heat out of the Can. 
The main objective is to see how long it will take for the Can of coke in refrigerator to cold 
enough. We have used Wavelet technique and FPM technique to solve this model (see [PS03]). 
At the end, we have done the comparison of wavelet method (mesh-based methods) and FPM 
(meshless methods) in terms of convergence, stability, and speed by using preconditioning as 
well as non-preconditioning aspects using above two models.
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