
29 
 

 

 

 

 

Chapter 3 

 

Newly Designed Slider Bearing with Inclined Pad Surface 
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3.1    Introduction 

Wu [108] in an innovative analysis, dealt with the case of squeeze film behaviour for porous 

annular disks in which he showed that owing to the fact that fluid can flow through the porous 

material as well as through the space between the bounding surfaces, the performance of a 

porous walled squeeze film can differ substantially from that of a solid walled squeeze film. 

Later [96] extended the above analysis [108] by introducing the effect of velocity slip to porous 

walled squeeze film with porous matrix appeared in the above plate. They found that the load 

capacity decreases due to the effect of porosity and slip. Prakash and Vij [67] investigated a 

porous inclined slider bearing without the effect of magnetic fluid (MF) and found that porosity 

caused decrease in the load capacity and friction, while it increased the coefficient of friction. 

Gupta and Bhat [25] found that the load capacity and friction could be increased by using a 

transverse magnetic field on the bearing and a conducting lubricant.  

With the advent of ferrofluid (FF), Agrawal [1] studied its effects on a porous inclined bearing 

and found that the magnetizing of particles in the lubricant increased its load capacity without 

affecting the friction on the moving slider. Recently, many authors                                           

[71, 76, 80, 81, 83, 85, 91, 95, 100] have analyzed effects of FF as lubricant in their study and 

found the increase of efficiency of the bearing performance over conventional from different 

viewpoints.  

In all above investigations, none of the authors considered both the porous plates (or discs or 

surfaces) in their study. The porous layer (or matrix or region) in the bearing is considered 

because of its advantageous property of self lubrication. With this motivation the study of 

behaviour of an inclined slider bearing with the porous matrix attached to both the plates (that is 

upper and lower) is proposed here with a FF lubricant under a magnetic field oblique to the 

lower surface. Also, effects of slip velocity and anisotropic permeability at both the porous 

plates, as well as squeeze velocity when the upper plate approaches to lower one are included. 

The FF flow model considered here is due to R. E. Rosensweig [74].  

A FF lubrication model is derived for the above problem and the various sizes of upper and 

lower porous matrix are considered for computation of various bearing characteristics like load 

capacity, friction, coefficient of friction and center of pressures. Also, above characteristics have 
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been computed for two different cases of anisotropic permeabilities at upper and lower porous 

matrix. The FF used in the computations is water based. 

 

3.2    Formulation of the Mathematical Model 

A schematic diagram of the system under study is presented in Figure 3.1 consists of a FF film of 

thickness  within an inclined pad surface (stator) and a slider of length  in the x- direction and 

width  in y- direction, . The value of  is  at the inlet and  at the outlet. This film 

thickness is given by  

 

… (3.1) 

The slider and stator both have attached porous matrix of thickness  and  respectively. Both 

the porous matrix are backed by a solid wall. The slider moves with a uniform velocity  in the    

x- direction. Also, stator moves normally towards the slider with a uniform velocity , 

where t is time.  

By combining equations (2.11) to (2.15) under the usual assumption of lubrication, neglecting 

inertia terms and that the derivatives of velocities across the film predominate, the equation 

governing the lubricant flow in the film region yields 

 

… (3.2) 

where u is the film fluid velocity in the x- direction and H is the magnetic field strength,  is 

fluid pressure in fluid film region,  is free space permeability,  is magnetic susceptibility,  is 

fluid viscosity and  are axial coordinates.  

Solving equation (3.2) under the slip boundary conditions given by Sparrow et.al. [96] and 

modified by Shah et.al. [80] with the addition of slider velocity  to [96] 
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 when  and     when  

… (3.3) 

where  

  and   

… (3.4) 

 ,   being slip parameters, ,  are porosities in the x- direction and ,  are 

permeabilities in the x- direction in the porous region. 

The equation (3.2) becomes 

 

… (3.5) 

where 

 

… (3.6) 

Substituting the above value of  in the integral form of continuity equation   

 

… (3.7) 

where  is the axial component of the fluid velocity in the film,  and  are values of  at 

 and  respectively. 

One obtains 
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… (3.8) 

Using Darcy’s law, the velocity components of the fluid in the porous matrix are given as follow: 

 For upper porous region:  

 (in - direction) 

… (3.9) 

 (in - direction) 

… (3.10) 

where ,  are fluid permeabilities in the upper porous region in  and - direction 

respectively, and  is the fluid pressure in the porous region. 

For lower porous region:  

 (in - direction) 

… (3.11) 

 (in - direction) 

… (3.12) 

where ,  are fluid permeabilities in the lower porous region in  and - direction 

respectively, and  is the fluid pressure in the porous region. 

Substituting equations (3.9) and (3.10) in the continuity equation for upper porous region 
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… (3.13) 

yields 

 

… (3.14) 

which on integration with respect to  across the upper porous matrix ( ), one obtains 

 

… (3.15) 

using Morgan-Cameron approximation [67, 81] and that the surface  is non-porous. 

Substituting equations (3.11) and (3.12) in the continuity equation for lower porous region 

 

… (3.16) 

yields 

 

… (3.17) 

which on integration with respect to  across the upper porous matrix ( ), one obtains 

 

… (3.18) 
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using Morgan-Cameron approximation [67, 81] and that the surface  is non-porous. 

Considering the normal component of velocity across the film porous interface are continuous, 

so that , , equations (3.15), (3.18) and (3.8) yields  

 

… (3.19) 

where 

 

 

which is the Reynolds’s type equation for the considered  phenomenon. 

By considering magnetic field strength which vanish at the inlet and outlet as 

 

… (3.20) 

where  being a quantity chosen to suit the dimensions of both sides of equation (3.20). 

Such a magnetic field attains a maximum at the middle of the bearing producing magnetic 

pressure. On the other hand a uniform magnetic field cannot produce magnetic pressure because              

 

Introducing the dimensionless quantities 
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 equations (3.1) and (3.20) implies respectively 

 

and 

  

Also, equation (3.19) transforms to 

 

… (3.21) 

where  

 

 

Equation (3.21) is known as dimensionless Reynolds’s type equation. 

 

3.3    Expressions of Bearing Characteristics 

Since the pressure is negligible on the boundaries of the slider bearing compared to inside 

pressure, solving equation (3.21) under boundary conditions  when . 

The dimensionless film pressure  is obtained as: 

 

where   
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The load carrying capacity , friction on the moving slider , coefficient of friction  and the  

x- coordinate of the center of pressure  are expressed respectively in dimensionless forms as  

 

 

 

 

 

where 

 

and 

 

 

3.4    Calculation of Results 

The various bearing characteristics like load capacity, frictional force on the moving slider, the 

coefficient of friction and x- coordinate of center of pressure are computed for various sizes of 

upper and lower porous matrix for ,  and for ,              

, using Simpson’s one-third rule with step size 0.1, for the following values of the 

parameters: 
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3.5    Discussion of Results 

The mathematical model of water based FF lubricated slider bearing with an inclined pad surface 

including combined effects of porosity, anisotropic permeability, slip velocity at both the ends, 

and squeeze velocity is proposed under an oblique magnetic field. The results of various bearing 

characteristics (refer Section 3.3) are obtained for the various values of the parameters           

(refer Section 3.4) are presented graphically. 

From the Figures 3.2-3.9 the following observations are made: 

In Figures 3.2 and 3.3, the dimensionless load capacity  for various values of lower  porous 

matrix  and values of upper  porous matrix  are displayed for the constant values of          

,   and  ,  , respectively. 

It is observed from the Figure 3.2 that the dimensionless load capacity decreases with the 

increase of porous matrix thickness  as well as . The decrease rate of load capacity is slow 

with respect to . It is observed from Figure 3.3 that, the dimensionless load capacity decreases 

with respect to  but its behaviour is almost remains same with respect to . The maximum 

dimensionless load capacity is obtained when  but with the disadvantage that the 

bearing has no self lubricating property. This behaviour of decrease in load capacity with the 

insertion of porous matrix also agrees with the conclusions of [67, 96]. According to [96] the 

above trends for squeeze film bearing can be obtained because of the physical process as under: 

The presence of the porous medium provides a path for the fluid to come out easily form the 

slider bearing to the environment. The higher the permeability, the more readily does fluid flow 

through the porous material. Thus, the presence of the porous material decreases the resistance to 

flow in x- direction and as a consequence the load carrying capacity is reduced. The effect of 
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velocity slip is to decrease the resistance encountered by the fluid flowing in the gap itself and, 

by this means, to diminish the load carrying capacity.  

In Figures 3.4 and 3.5, the dimensionless friction force on the moving slider  for various values 

of lower porous matrix  and values of upper porous matrix  are displayed for the constant 

values of ,   and  ,  , respectively.  

It is observed that the same behaviour is obtained for  as we have discussed for  with respect 

to  and . 

In Figures 3.6 and 3.7, the dimensionless coefficient of friction  for various values of lower 

porous matrix  and the values of upper matrix  are displayed for the constant values of                 

,   and  ,  , respectively. 

It is observed that  increase with the increase of  and . 

In Figures 3.8 and 3.9, the dimensionless - coordinate of the center of pressure Y  for various 

values of lower porous matrix  and  the values of upper  porous matrix  are displayed for the 

constant values of ,   and  ,  , respectively. 

 It is observed that the position of the center of pressure does not affect much with respect to  

and .  

Also, one can obtain the following cases for the specific values of the parameters: 

(a) When , , the case of [85] is obtained from equation (3.21) as 

 

 

 

where 

 

. 
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(b) When , the non-ferrofluid case [67] is obtained from equation (3.21) as 

 

 

where 

, 

. 

 

3.6    Conclusion 

The present study proposes the mathematical model of water based FF lubricated slider bearing 

with an inclined pad surface including combined effects of porosity, anisotropic permeability, 

slip velocity at both the ends, and squeeze velocity under an oblique magnetic field. The results 

of various bearing characteristics are presented graphically.   

The porous layer in the bearing is considered because of its advantageous property of self 

lubrication. With this motivation the present study is proposed.  

Based upon the formulation in Section 3.2, and Results & discussion (Section 3.4 and 3.5) the 

following conclusions can be made for designing slider bearing:  

(1) Because of having the self lubrication property of the porous plate bearings, it is 

suggested to have both the porous plate for better self lubrication. 

(2) Better load capacity is obtained when the thickness of  and  are small.  

(3) Small thickness of  has more influence on better load capacity when  and       

, . 

(4) Small thickness of  has more influence on better load capacity when  and      

, .  

(5) It should be noted that a uniform magnetic field does not enhance the bearing 

characteristics in this model due to Rosensweig since  in equation (3.2). 
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3.7    Figures 

 

Figure 3.1 Slider bearing with inclined pad surface 

 

 

Figure 3.2 Dimensionless load capacity  for various values of  and   

for ,  
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Figure 3.3 Dimensionless load capacity  for various values of  and   

for  

 

 

Figure 3.4 Dimensionless friction force on the moving slider  for various values of 

  and  for ,  
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Figure 3.5 Dimensionless friction force on the moving slider  for various values of 

  and  for  ,  

 

 

Figure 3.6 Dimensionless coefficient of friction   for various values of   and   

for ,  
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Figure 3.7 Dimensionless coefficient of friction   for various values of  and   

for ,  

 

 

Figure 3.8 Dimensionless the - coordinate of the center of pressure  for various values of 

  and  for ,  
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Figure 3.9 Dimensionless the - coordinate of the center of pressure  for various values of 

  and  for ,  
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