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4.1    Introduction 

Study of squeeze film behaviour is observed in many fields of real life, for example   

1. in industry it is observed in machine tools, gears, rolling elements, hydraulic systems, 

engines, clutch plates, etc.   

2. in human body, it is observed in skeletal joints. 

Squeeze film phenomenon arise because of two lubricated surfaces (plates or discs) approach to 

each other with a normal velocity. This velocity is called squeeze velocity. The authors who have 

studied this phenomenon from different viewpoints are [10, 22, 32, 53-55, 57, 72, 83, 87, 93, 

103, 107].  

Agrawal [1] studied effects of ferrofluid (FF) on a porous inclined slider bearing and found that 

the magnetization of the magnetic particles in the lubricant increases load capacity without 

affecting the friction on the moving slider. Chi et. al. [18] discusses about new type of FF 

lubricated journal bearing. Sinha et. al. [95] discusses about FF lubricated cylindrical rollers with 

cavitations. Uhlmann et. al. [99] discusses about some applications of FFs in tribotechnical 

systems. Ahmad and Singh [2] studied about FF lubricated porous-pivoted slider bearing with 

slip velocity. Singh and Gupta [94] studied about curved slider bearing with FF as lubricant. 

Shah and Bhat [77, 79-82, 84, 86]; Shah [92]; Shah and Patel [89-91]; Shah and Parsania [88] 

studied about FF lubricated various designed bearings like porous slider bearings of different 

shapes, long journal bearing, axially undefined journal bearing, squeeze film bearings with the 

inclusion of effects of slip velocity at the porous boundary and anisotropic permeability of the 

porous matrix attached to the impermeable plate from different viewpoints. 

The purpose of the present study is to analyze and compare newly designed squeeze film bearing 

of various shapes (exponential, secant and parallel), which formed when a upper porous plate  

(or disc or surface) approach to a lower one considering the effects of porosity, slip velocity, 

anisotropic permeability and rotation at both the plates. Moreover, the study also includes the 

effects of variable porous thickness. The porous matrix (or layer or region) is attached because of 

its advantageous property of self lubrication. The lubricant used here is water based FF which is 

controlled by oblique and variable magnetic field. Starting with basic equations from 

ferrohydrodynamic theory, Reynolds’s type equation is derived from which expressions for 



 

48 
 

pressure and load carrying capacity are obtained. The dimensionless load carrying capacity    is 

calculated for various values of porosity, slip velocity, anisotropic permeability and rotation of 

both the plates. Moreover, the effects of squeeze velocity and different strength of magnetic field 

are also considered for the study of   . 

Section 4.2 discusses about the development of mathematical model starting with basic flow 

equations from ferrohydrodynamic theory. The development is concluded with Reynolds’s type 

equation. Section 4.4 deals with the solution of the Reynolds’s type equation derived in     

section 4.3 with suitable boundary conditions for dimensionless pressure    and load carrying 

capacity   . Section 4.5 deals with the results and discussion for dimensionless load carrying 

capacity of the problem and section 4.6 give concluding remarks. 

 

4.2    Mathematical Model of the Problem 

Figure 4.1 shows schematic diagram in general of the various bearings under study. It consists of 

two solid circular plates (upper and lower), each of radius  . The upper plate and lower plate is 

attached with a porous matrix of thickness    and    respectively. Also, the upper plate moves 

normally towards lower one with a velocity (known as squeeze velocity)           , where  

   is central film thickness and   is time. The upper and lower plates are also rotated with 

angular velocities    and     respectively.   

As shown in Figure the gap between two porous plates (known as fluid film region or film 

thickness) is filled with a lubricant and in our case water based FF is used.  As FF is controlled 

by applied magnetic field (Rosensweig [74]), so variable and oblique (to the lower plate) 

magnetic field   with magnitude   of the form 

   
        

 
   

 … (4.1) 

is used for study. Here,   being a quantity chosen to suit the dimensions of both sides of the 

equation (4.1).   is chosen between      to      in order to get magnetic field strength between 

orders of     to     and   is radial coordinate. 



 

49 
 

Three various shapes of film thickness   dependent on the shape of the upper plate are 

considered for study and are defined as follows:  

(a) For exponential pad squeeze film bearing    

                          

… (4.2) 

(b) For secant pad squeeze film bearing    

             
            

… (4.3) 

(c) For parallel pad squeeze film bearing    

                 

 … (4.4) 

  where    is the curvature of the upper plate. 

 

In addition to basic flow equations given in (2.11) and (2.12), the velocity of fluid in the film 

region is 

q = u i + v j + w k, 

 … (4.5) 

where u, v, w are components of film fluid velocity in x, y and z - directions respectively.   

The continuity equation of fluid flow for the film region in cylindrical polar coordinates is  

 

 

 

  
     

  

  
    

   … (4.6) 
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where   and   are cylindrical polar coordinates, which on integration with respect to   across the 

film region       yields 

 

 

 

  
      

 

 

          

 … (4.7) 

where    and    are the values of   at     and     respectively. 

 

Basic flow equations for porous region  

Considering the validity of the Darcy’s law, the velocity components in cylindrical polar 

coordinates for the fluid flow in upper and lower porous matrix considering rotations of upper 

and lower plates are given as follows:  

For upper porous matrix of width   : 

     
  

 
 
 

  
    

 

 
       

         
    ( - direction) 

… (4.8) 

     
  

 

 

  
    

 

 
       

    ( - direction) 

… (4.9) 

where    is the fluid pressure in the upper porous region,    is fluid density,    is free space 

permeability,    is magnetic susceptibility and  
 
,  

 
 are fluid permeabilities in                            

r and  z- directions respectively. 

For lower porous matrix of width   : 

     
  

 
 
 

  
    

 

 
       

         
    ( - direction) 

… (4.10) 
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    ( - direction) 

… (4.11) 

where    is the fluid pressure in the lower porous region and   ,    are fluid permeabilities in      

r and z- directions respectively. 

The continuity equation of fluid flow in cylindrical polar coordinates for the upper and lower 

porous matrix are given as follows:  

For upper porous matrix of width   :  

 

 

 

  
       

    

  
    

… (4.12) 

For lower porous matrix of width   :  

 

 

 

  
       

    

  
    

      … (4.13) 

4.3    Analysis of the Problem  

Combining equations (2.11) to (2.15) using cylindrical polar co-ordinates under an assumption of 

incompressible, steady, axisymmetric flow and other usual assumptions of lubrication yields 

equation of motion of fluid in r- direction as 

   

   
 

 

 
 
 

  
   

 

 
       

       
 

 
      

 

   

… (4.14) 

with 
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… (4.15) 

  

  
    

… (4.16) 

considering rotation of both upper and lower plates and         , where   is fluid 

viscosity and   is pressure of fluid in the film region.  

Solving equation (4.14) using slip boundary conditions (Shah and Patel [90];                     

Sparrow et. al. [96]) 

  
 

  
 
  

  
  at      and     

 

  
 
  

  
   at      

… (4.17) 

where  

 

  
 

     

 
  and  

 

  
 

     

 
   

… (4.18) 

  ,    are slip parameters,    and  
 
 being the porosity in r- direction for upper and lower 

porous matrix respectively.  

One obtains 

        
 

  
 
   

 

 

  
   

 

 
     

   
   

   
 
   

 
  

                    
                    

                    
       

  

 
 
 
 
  

    
 

   
 

  
   

 

 
     

                                                                        

 
   

   
  

    
 

       
                               

  
 
 
 
 
 

  

… (4.19) 
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where  

                 

… (4.20) 

Substituting equations (4.8) and (4.9) in the continuity equation (4.12) for upper porous region, 

yields 

 
 

 

 

  
  

 

  
    

 

 
     

         
  

 
  

 

  

   
    

 

 
     

      

… (4.21) 

which on integration with respect to z across the upper porous matrix         , one obtains 

  
 

 

  
    

 

 
     

   
   

 
 
 
  

 

 

  
  

 

  
   

 

 
     

         
  

 
    

… (4.22) 

using the fact that the surface        is solid and Morgan-Cameron approximation [67, 81]. 

Substituting equations (4.10) and (4.11) in the continuity equation (4.13) for lower porous 

region, yields 

  

 

 

  
  

 

  
    

 

 
     

         
      

  

   
    

 

 
     

      

… (4.23) 

which on integration with respect to z across the lower porous matrix        , one obtains 

   

 

  
    

 

 
     

   
   

  
    
 

 

  
  

 

  
   

 

 
     

         
        

… (4.24) 

using the fact that the surface         is solid and Morgan-Cameron approximation [67, 81]. 
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Assuming that the normal component of velocity across the film-porous interface are continuous, 

so that  

                                              

… (4.25) 

Equation (4.7) using equations (4.19) and (4.25), becomes 

 

 

 

  

 
 
 
 

 
 
 

 

  

 
 
 
 

 
 
 

  
     

 

 
  

 

 
 
  
 
 
  
 
       

 

  
   

 

 
     

  

 
   

   

 
 
 
 
 
 
        

     
 

 
  

 

  
 
  
 
     

        
                        

   
     

 

 
  

 

 
        

   
  

 
              

     
      

 

 
  

   

  
 
   
 

     
   

  

 
        

 

 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

 

                            

  

… (4.26) 

Using equations (4.9), (4.11), (4.22) and (4.24) in the above equation (4.26), yields 

 

 

 

  
   

 

  
   

 

 
     

           

… (4.27) 

where  
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Introducing the dimensionless quantities 

  
 

 
                                

 

  
      

 
 
 
 

  
         

  

  
     

   
  

  
        

  
  

        
  
  

        
   

 

       
    

   
   

 
   

 

     
        

        
 

     
   

equation (4.27) reduces to  

 

 

 

  
    

 

  
    

 

 
                      

… (4.28) 

where   
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which is known as dimensionless form of Reynolds’s type equation. 

 

4.4    Solution of the Problem 

Solving equation (4.28) under the boundary conditions 

      when     and  
   

  
    when        

yields 

   
 

 
            

     

  
      

 

 

 

… (4.29) 

The dimensionless form of load carrying capacity W of the bearing is therefore given by 

    
   

 

           
 

  

  
 
 

 
  

     

  
       

 

 

 

… (4.30) 

where                 

           

 

 

 

… (4.31) 

4.5    Results and Discussion  

The dimensionless load carrying capacity   of the present problem is numerically calculated from 

equation (4.30) using Simpson’s rule with step size 0.1 for the following value of different 

parameters: 
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The calculation of magnetic field strength is shown below: 

   
        

 
 

Max               

For                  

Moreover, it is assumed in the calculation that          

It is clear from equation (4.30) that the increase in the load carrying capacity is the first term of 

the equation when magnetic fluid (MF) lubricant is used. 

The calculated values of    for various parameters are shown graphically in Figures 4.2-4.14. 

During course of investigation it is noted that the result obtained with respect to l1 keeping           

l2 = 0.000075 fixed as well as with respect to l2 keeping l1 = 0.000075 fixed, remains almost 

same. So, for graphical presentation new parameter L is introduced which implies l1 (keeping        

l2 = 0.000075 fixed) or l2 (keeping l1 = 0.000075 fixed).  

Figures 4.2-4.4 shows the values of    for various values of porous layer width (or thickness)     

L versus K when  
 = 4, V = 0.06, r =  r = 10

-8
 and Ωl  = 2 for exponential pad squeeze film 

bearing (he), secant pad squeeze film bearing (hs) and parallel pad squeeze film bearing (hp), 

respectively. It is a general observation that    decreases with the increase of width of the porous 

layer. Moreover, when 0  l2  0.000075, the rate of decrease of    is almost constant (linear and 

parallel horizontal axis), while when 0.000075  l2  0.0075, the rate of decrease of    is steep. 

Also, it is a observed that    increases with the increase of K; that is, with the increase of 

strength of magnetic field H. For K = 10
15

, there is a substantial difference in increase of   .  
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Figure 4.5 shows the comparative study of    for various values of L for he, hs and hp considering  

K = 10
13

. It is observed that    is more in the case of exponential and parallel pad squeeze film 

bearings as compared to secant pad. Thus,            . Also, it is observed that after 0.0075, 

all bearings (he, hs and hp) behaves almost same for   . 

From the above discussion, it is concluded that for smaller values of l1 and l2; that is, for smaller 

thicknesses of l1 and l2,    is more. It should be noted that smaller thickness implies lower 

permeability of the porous matrix. In other words, the above conclusion can be stated as    is 

decreasing for higher values of l1 and l2. This can be well understood by the following physical 

process: 

According to [96], the pressure of the porous medium provides a path for the fluid to come out 

easily from the bearing to the environment. The higher the permeability, the more readily does 

fluid flow through the porous material. In this way, the presence of the porous material decreases 

the resistance to flow in r- direction and as a consequence the load carrying capacity is reduced. 

This behavior of decreasing load carrying capacity with the insertion of porous matrix and higher 

permeability also agrees with the conclusions of Prakash and Tiwari [66] while discussing the 

problem of squeeze film of rough porous rectangular plates theoretically which was studied 

experimentally by Wu [107]. 

Figures 4.6 and 4.7 shows the values of    for various values of L versus V  when  
 = 4,            

K = 10
13

, r =  r = 10
-8

 and Ωl  = 2 for different bearing designs. It is a general observation that  

   increases with the decrease of V. The increase rate is significantly more when V < 0.0006. 

Thus, with the decrease of squeeze velocity,     is more effective. 

Figures 4.8 and 4.9 shows that     increases when  
 takes values from  8.0 to 8.0; that is, when 

upper plate takes shape from convex ( 
 < 0) to concave ( 

 > 0)  for various values of L when    

K = 10
13

, V = 0.06, r =  r = 10
-8

 and Ωl  = 2. This behavior agrees with the behaviors of [91].  

Figure 4.10 shows the comparative study of     when  
 = 4 for he and hs. It is observed that    

increases more in the case of exponential pad squeeze film bearing. 
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Figures 4.11 and 4.12 shows the results of    for various values of r versus  r when  
 = 4,           

V = 0.06, l1 = l2 = 0.000075, K = 10
13

 and Ωl = 2 for he, hp and hs, respectively. It is a general 

observation that    decreases with the increase of r. It should be noted here that the decrease 

rate of     is steeper when r > 10
-9

. It is also observed that    increases with the decrease of  r. 

Thus,    increases for smaller values of permeability parameter. When r > 10
-6

 then there is a 

very little effect on the value of   . Again, Figures 4.11 and 4.12 it is noted that     is more in 

case of exponential and parallel pad squeeze film bearing.  

Figure 4.13 shows the comparative study of    for various values of ψr when l1 = l2 = 0.000075, 

 
 = 4, V = 0.06, K = 10

13
, Ωl  = 2 and φr = 10

-8
  for he, hs and hp. The behavior of the graphs 

shows that    is more in case of exponential and parallel pad squeeze film bearing.  

Figure 4.14 shows the comparative study of    for various values of Ωf  for K = 10
13

,  
 = 4,        

V = 0.06, l1 = l2 = 0.000075, φr = ψr = 10
-8

 for he, hs and hp, respectively. It is general observation 

that    is maximum when Ωf  = 0. For positive and negative values of Ωf, almost symmetrical 

decreasing behaviour of    is obtained; that is, Ωf  = 0 line is mean line. Again, it is observed 

that    more in case of he and hp. 

 

Percentage increase in    

Effect on       for different bearing designs 

The following numerical value of    for different bearing designs is obtained when                     

l1 = 0.000075, l2 = 0.0000075,  
 = 4, V = 0.06, r =  r = 10

-8
, Ωl  = 2 and K = 10

13
. 

Bearing designs 

For exponential pad 

squeeze film bearing 

(he) 

For secant pad squeeze 

film bearing              

(hs) 

For parallel pad 

squeeze film bearing 

(hp) 

   0.5974 0.1727 0.5869 

% increases in    

as compared to hs 
245.92 100 239.84 

It is observed from the above table that    increases on average 243 % for exponential and 

parallel pad squeeze film bearing as compared to secant pad. 
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Effect of FF on different bearing designs 

The following numerical value of    for different bearing designs is obtained when                      

l1 = 0.000075,  l2 = 0.0000075,  
 = 4,  V = 0.06, r =  r = 10

-8
 and Ωl  = 2. 

K 

0.0 

( Using Conventional 

Lubricant or Without 

using FF lubricant ) 

1.0E+15 

( Using FF Lubricant ) 
% increases in    because 

of FF as lubricant 

Bearing 

designs 
he hs hp he hs hp he hs hp 

   0.5947 0.1700 0.5842 0.8675 0.4428 0.8570 45.87 160.47 46.70 

It is observed that because of using FF as lubricant    increases approximately 46% for 

exponential and parallel pad squeeze film bearing whereas it will increase approximately 160% 

for secant pad squeeze film bearing. Thus, secant pad squeeze film bearing affected more when 

FF considered as lubricant. 

 

Effect of squeeze velocity on different bearing designs 

The following numerical value of    for different bearing designs is obtained when                      

l1 = 0.000075, l2 = 0.0000075,  
 = 4, K = 10

13
, r =  r = 10

-8
 and Ωl  = 2. 

V 0.06 0.00006 % increases in    

Bearing 

designs 
he hs hp he hs hp he hs hp 

   0.5974 0.1727 0.5869 3.0315 2.6150 3.0213 407.45 1414.19 414.79 

It is observed that because of using smaller values of V (that is, when small squeeze velocity),    

increases approximately 410 %  for exponential and parallel pad squeeze film bearing whereas it 

will increase approximately 1414% for secant pad squeeze film bearing. Thus, secant pad 

squeeze film bearing affected more by V. 

Effect of curvature on different bearing designs 

The following numerical value of    for different bearing designs is obtained when l1 = 0.000075, 

l2 = 0.0000075, V = 0.06, K = 10
13

, r =  r = 10
-8

 and Ωl = 2. 

 

 



 

61 
 

   8.0 8.0 % increases in    

Bearing 

designs 
he hs he hs he hs 

   0.5667 0.1667 0.6080 0.1748 7.29 4.86 

It is observed that when the upper plate is concave (β  > 0),    for exponential pad squeeze film 

bearing increases approximately 7.0 % whereas for secant pad squeeze film bearing it will 

increases approximately 5.0%. 

Effect of r on different bearing designs 

The following numerical value of    for different bearing designs is obtained when                      

l1 = l2 = 0.000075, β = 4, V = 0.06, K = 10
13

, Ωl  = 2 and  r = 10
-8 

. 

r 10
-6

 10
-11

 % increases in    

Bearing 

designs 
he hs hp he hs hp he hs hp 

   0.0847 0.0585 0.0844 0.6499 0.1825 0.6382 667.30 211.96 656.16 

It is observed that with the decrease of permeability r from 10
-6

 to 10
-11

,    increases 

approximately 667 % for exponential squeeze film bearing, 212 % for secant pad squeeze film 

bearing, and 656% for parallel pad squeeze film bearing.  

Effect of ψr on different bearing designs 

The following numerical value of    for different bearing designs is obtained when                      

l1 = l2 = 0.000075, β = 4, V = 0.06, K = 10
13

, Ωl  = 2 and φr = 10
-8 

. 

ψr 10
-6

 10
-11

 % increases in    

Bearing 

designs 
he hs hp he hs hp he hs hp 

   0.0840 0.0576 0.0837 0.6560 0.1837 0.6442 680.95 218.92 669.65 

 

It is observed that with the decrease of permeability ψr from 10
-6

 to 10
-11

,    increases 

approximately 681 % for exponential squeeze film bearing, 219 % for secant pad squeeze film 

bearings, and 670% for parallel pad squeeze film bearing.  
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4.6    Conclusion 

The problem of newly designed squeeze film bearing of various shapes (exponential, secant and 

parallel) considering the effects of porosity, slip velocity, anisotropic permeability and rotation at 

both the plates is discussed here for its optimum performance in the sense of efficient and durable 

bearing because production of efficient and durable bearings always has an attraction for Industry.  

The porous layered attached at both the plates because of its advantages property of self 

lubrication. The problem also includes the effects of study of variable porous thickness for both 

the plates. The lubricant used here water based FF which is controlled by oblique and variable 

magnetic field. The following conclusions can be made in order to increase the efficiency and 

durability of bearings. 

   can be increased 

(1) when width of upper porous layer decreases. 

(2) when width of lower porous layer decreases. 

(3) when taking higher value of K ( K  10
14

); that is, the magnetic field strength is of the 

order grater than or equal to 10
5
. 

(4) with the decreasing values of squeeze velocity V. 

(5) with the decreasing values of permeabilities r and  r. 

(6) for small rotations of the upper plate. 

From the result and discussion, the best bearing design for the considering bearing problem can 

be obtained when l1 = l2 = 0.000075, 5( ) 10O H  , r =  r = 10
-9 

 and  
 = 8 for concave upper 

plate. Moreover, for exponential pad squeeze film bearing    , parallel pad squeeze film bearing 

    and secant pad squeeze film bearing    , the behaviour with respect to increase of    can be 

obtained as              . 

During the course of investigating it is observed from equation (4.14) that Rosensweig’s model of 

FF does not affect on the performance of the bearing system when uniform magnetic field is used.  
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4.7    Figures 

 

          Front view                                                                            Top view 

Figure 4.1 Schematic diagram of squeeze film bearing configuration 

 

 

 

Figure 4.2 Values of     for various values of L versus  K when  
 = 4, V = 0.06, 

 r =  r = 10
-8

 and Ωl  = 2
 
for he 
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Figure 4.3 Values of     for various values of L versus K when  
 = 4, V = 0.06,  

r =  r = 10
-8

 and Ωl  = 2 for hs 

 

 

 

Figure 4.4 Values of     for various values of L versus  K when  
 = 4, V = 0.06,  

r =  r = 10
-8

 and Ωl  = 2 for hp 
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Figure 4.5 Comparative study of     for various values of Lwhen  
 = 4, V = 0.06,  

r =  r = 10
-8

, Ωl  = 2 and K = 10
13

 for he, hs and hp  

 

 

 

Figure 4.6 Values of     for various values of L versus V when  
 = 4, K = 10

13
,  

r =  r = 10
-8

 and Ωl  = 2 for he and hp 
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Figure 4.7 Values of     for various values of L versus V when  
 = 4, K = 10

13
,  

r =  r = 10
-8

 and Ωl  = 2 for hs 

 

 

 

Figure 4.8 Values of     for various values of L versus  when K = 10
13

, V = 0.06, 
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 and Ωl  = 2
 
for he 
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Figure 4.9 Values of     for various values of L versus  when K = 10
13

, V = 0.06,  

r =  r = 10
-8

 and Ωl  = 2
 
for hs 

 

 

 

Figure 4.10 Comparative study of     for various values of L versus when K = 10
13

, V = 0.06, 

 r =  r = 10
-8

, Ωl  = 2 and  
 = 4 for he and hs 
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Figure 4.11 Values of      for various values of r versus  r when  = 4, V = 0.06,                          

l1 = l2 = 0.000075, K = 10
13

 and Ωl  = 2 for he and hp 

 

 

 

Figure 4.12 Values of      for various values of r versus  r when   = 4, V = 0.06,                          

l1 = l2 = 0.000075, K = 10
13

 and Ωl  = 2 for hs 
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Figure 4.13 Comparative study of      for various values of  r when l1 = l2 = 0.000075,  = 4, 

V = 0.06, K = 10
13

, Ωl  = 2
 
and r = 10

-8
 for he, hs and hp 

 

 

 

Figure 4.14 Comparative study of      for various values of  f  when K = 10
13

,   = 4, V = 0.06, 

l1 = l2 = 0.000075 and r  =  r = 10
-8

 for he, hs and hp 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 


W

 -
--

->
 

  r ----> 

                  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

-30 -20 -10 0 10 20 30 


W

 -
--

->
 

 f   ----> 

                  


