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6.1    Introduction 

Wu [108], in an innovative analysis, dealt with the case of squeeze film behavior for porous 

annular disks in which he showed that owing to the fact that fluid can flow through the porous 

material as well as through the space between the bounding surfaces, the performance of a 

porous walled squeeze film can differ substantially from that of a solid walled squeeze film.  

Murti [54] analyzed the squeeze film behavior between porous circular discs. 

With the advent of ferrofluid (FF), Agrawal [1] studied its effects on a porous inclined bearing 

and found that the magnetization of the magnetic particles in the lubricant increased its load 

capacity without affecting the friction on the moving slider. Later Verma [103] and Shah and 

Bhat [78, 93] investigated the squeeze film between porous plates and found that its performance 

with magnetic fluid (MF) lubricant was better than with conventional lubricant. 

In all above investigations, none of the authors considered various porous structures for porous 

plates (or discs or surfaces) in their study. The porous layer (or matrix or region) in the bearing is 

considered because its advantages property of self lubrication. With this motivation, we 

recapitulate the study of the paper of Shah and Bhat [87] for various porous structures without 

the effect of rotation, and with the effect of FF as lubricant under a magnetic field oblique to the 

lower plate. The problem also include the effect of squeeze velocity and the curvature of the 

upper disc. The FF flow model considered here is due to R. E. Rosensweig [74]. 

A FF lubrication equation is derived for the above problem and the various porous structures are 

considered for computation of bearing characteristics like pressure and load capacity. The FF 

used in computations are water based. 

 

6.2    Formulation of Mathematical Model  

The configuration of the bearing, shown in Figure 6.1, consists of two circular plates each of 

radius a. The upper plate has a porous facing of thickness l1 which is backed by a solid wall. It 

moves normally towards an impermeable and flat lower plate with uniform velocity              

          , where    is the central film thickness and   is time. The film thickness   is given 

by 
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 … (6.1) 

where   is the curvature of the upper plate and   is the radial coordinate. 

Assuming axially symmetric flow of the FF between the plates under an oblique magnetic field 

                         whose magnitude   vanishes at       and its strength    is 

defined as 

   
        

 
   

… (6.2)  

where                is chosen so as to have a magnetic field of strength between the order of 

    to    . 

 The angle         , since the magnetic field arise out of a potential, can be determined from 

    
  

  
 
  

  
 

     

       
   

… (6.3)  

with the help of elliptic integrals depending on the value of  . 

The modified Reynolds’s type equation governing the film pressure   using basic equations 

(2.11) to (2.15) is [87]             

 

 

 

  
            

 

  
           

             

 … (6.4) 

where   is the permeability of the porous region,    is free space permeability,    is magnetic 

susceptibility,   is fluid viscosity and   is the pressure of fluid in the film region. 
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6.3    Solution of Case Studies 

Case I (a globular sphere model as shown in Figure 6.2).  

A porous material is filled with globular particles (a mean particle size   ). In this case    

Kozeny-Carman formula [42] gives the permeability 

  
  
   

         
   

    … (6.5) 

where    is the porosity.  

Introduce the dimensionless quantities  

    
   

 

      
      

 

 
       

  
   

  
                    

      
  

    
   

      … (6.6) 

Using equations (6.1), (6.2), (6.4), (6.5) and (6.6), the dimensionless film pressure    satisfies the 

equation  

 

 

 

  
                

      

        
 
 

  
                        

 … (6.7) 

Solving equation (6.7) under the boundary conditions                   

     when     and  
   

  
   when      

… (6.8) 

one obtain  

                
        

       
   

                       

                         
   

… (6.9) 
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The load capacity   of the bearing can be expressed in dimensionless form as  

    
   

 

        
 
  

  
  

         

       
   

                       

                         
 

 

 

    

… (6.10) 

 

Case II (a capillary fissures model as shown Figure 6.3).  

The model is composed of three sets of mutually orthogonal fissures (a mean solid size      and 

assuming no loss of hydraulic gradient at the junctions, Irmay [31] derived the permeability 

  
    

 
    

 

   
   

… (6.11) 

where      . 

Introduce the dimensionless quantities 

    
   

 

      
      

 

 
       

  
   

  
                   

      
  

    
   

… (6.12)                  

Using equations (6.1), (6.2), (6.4), (6.11) and (6.12), the dimensionless film pressure    satisfies 

the equation  

 

 

 

  
                 

        
 
  

 
 
 

  
                        

… (6.13) 

Solving equation (6.13) under the boundary condition (6.8), we obtain  
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… (6.14) 

The load capacity   of the bearing can be expressed in dimensionless form as      

    
   

 

        
 
  

  
  

  

         
 
  
   

      
 
              

      
 
                

 

 

 

    

… (6.15)     

 

6.4    Results and Discussion   

The dimensionless pressure    and load capacity    are given, by equations (6.9), (6.10) for 

globular sphere model given by Kozeny-Carman and by equations (6.14), (6.15) for capillary 

fissures model by Irmay. 

Setting the magnetization parameter      and without considering the two cases of  , the 

present analysis reduces to non-magnetic case [8]. 

Also, setting      in equations (6.9), (6.10) and (6.14), (6.15), we obtain the results for flat 

upper plate for two cases. 

The computed values of the dimensionless load capacity    are displayed in Figure 6.4 and   

Figure 6.5 for two different cases and for the following value of the parameters: 

                                                           

                                               

                              

 

Figure 6.4 and Figure 6.5 show that    increase with   and   . The increases are substantial in 

the case of concave plates (    ) for case I. 
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The load capacity also increases more in case I, this may be because of the slow coming out of 

the FF from the porous region. 

 

6.5    Conclusion  

Based upon the results and discussion it can be concluded that the better load carrying capacity is 

obtained for globular sphere model with the effect of FF under an oblique magnetic field to the 

lower plate. 

Thus, it is suggested to have a design of porous squeeze bearing with globular sphere in the 

porous region. 
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6.6    Figures 

 

 

Figure 6.1 Configuration of the problem 

 

 

 

Figure 6.2 Structure model of porous sheets given by Kozeny-Carman 

 

 

 

Figure 6.3 Structure model of porous sheets given by Irmay 
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Figure 6.4 Values of the dimensionless load capacity    for different values of    and    for 

 case I 

 

 

Figure 6.5 Values of the dimensionless load capacity    for different values of    and    for   

case II 
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