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7.1    Introduction 

Agrawal [1] studied magnetic fluid (MF) based porous inclined slider bearing using Neuringer-

Rosensweig’s model. Shah and Bhat in [85, 87] considered respectively squeeze film and slider 

bearing in their study using Neuringer-Rosensweig’s model. Recently Ahmad et. al. [2] studied 

“MF lubrication of porous-pivoted slider bearing with slip velocity” and they have ignored the 

term  

, 

where  

 +  

in the governing system of equations. In this study we have recapitulated the above problem [2] 

including the ignored term which is given by Jenkin’s [34] and worked on by Ram and Verma 

[71], Shah and Bhat [82] in their study from different viewpoint. 

With the addition of the above term and under an oblique magnetic field, it is found that the 

dimensionless load carrying capacity can be improved substantially with and without squeeze 

effect. The study also includes the detail about the effects of squeeze velocity and sliding 

velocity. It is observed that dimensionless load carrying capacity increases when squeeze 

velocity increases and sliding velocity decreases. 

 

7.2    The Mathematical Analysis  

The configuration of the porous-pivoted slider bearing with squeeze velocity is displayed in 

Figure 7.1 consists of a slider having a convex pad surface (or plate or disc) of length  with 

central thickness   and moving with uniform velocity   in the - direction. The stator has a 

porous matrix (or region or layer) with uniform thickness  backed by a solid wall. The porous 

flat lower plate is normally approached by the upper plate with a uniform velocity , 

where  is the central film thickness and  is time. The expression for the central film thickness  

is given by [2, 82]   
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… (7.1) 

where  and  are minimum and maximum film thickness respectively, and  is the axial 

coordinate. 

The above bearing is lubricated with water based ferrofluid (FF) and the equations governing the 

flow of FF by Jenkin’s model [2, 34, 82] are 

 

… (7.2) 

 

    … (7.3) 

 

… (7.4) 

 

… (7.5) 

 

… (7.6) 

with 

 +  

… (7.7) 
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where  is fluid density,  is film fluid pressure,  is fluid viscosity,  is fluid velocity,   is 

free space permeability,  is the magnetization vector,  is magnetic field vector,  is the 

magnitude of magnetization vector,  is corotational derivative of ,  is material constant, 

 is initial susceptibility of fluid,  is the saturation magnetization and  is another material 

constant of Jenkin’s model. 

In the present discussion, equation (7.6) is replaced by 

 (  is magnetic susceptibility), 

… (7.8) 

as suggested by Maugin [44] and 

 . 

… (7.9) 

The lubricant is FF, so a magnetic field vector  is applied such that it vanishes at the ends of the 

bearing. The magnitude  of magnetic field is given by 

 

        … (7.10) 

where  being a quantity chosen to suit the dimensions of both sides of equation (7.10).  

The equation of continuity in the film region is 

 

      … (7.11) 

where  and  are components of film fluid velocity in - direction and - direction 

respectively, and  is the axial coordinate. 

The equation of continuity in porous region is 
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        … (7.12) 

where  and  are components of fluid velocity in the porous region in - direction and            

- direction respectively. 

Referring the work of Agrawal [1] and Shah et. al. [82], using equations (7.2) to (7.9), one 

obtains 

 

       … (7.13) 

The velocity components of fluid in the porous region are 

 

    … (7.14) 

 

    … (7.15) 

where  and  are permeability and fluid pressure in the porous region respectively.  

Substituting equations (7.14) and (7.15) into equation (7.12), one obtains    

 

   … (7.16) 

which on integration with respect to  across the porous region ( ), yields        
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    … (7.17) 

using Morgan-Cameron approximation [67, 81, 82] and that the surface  is non-porous. 

The relevant boundary conditions for the velocity field [7] in the lubricant region is 

  at  

      … (7.18) 

and  

 at  

 … (7.19) 

where  ;  is slip parameter and k is slip coefficient, which depends on the structure of the 

porous material. 

Solving equation (7.13) with boundary conditions (7.18) and (7.19), one obtains 

 

  … (7.20) 

Integrating continuity equation (7.11) in film region over ( ), one obtains 

 

 … (7.21) 
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Using  because of squeeze velocity is in the downward direction and               

 because of continuity of velocity component at  of film region and 

porous region respectively, equations (7.17), (7.20), (7.21), gives  

 

  … (7.22) 

where 

 

 

Equation (7.22) is known as Reynolds’s type equation.  

Introducing following dimensionless quantities  

 

 

the dimensionless form of equation (7.22) is 

 

  … (7.23) 

where 
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which is known as dimensionless form of Reynolds’s type equation. 

 

7.3    Solution  

Solving equation (7.23) for pressure under the appropriate boundary conditions  

 at , 

yields 

 

     … (7.24) 

where  

 

 

The dimensionless form of equation (7.1) is  

 

   … (7.25) 

where 

 

   … (7.26) 

The dimensionless form of load carrying capacity using (7.24) can be obtained as 
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  … (7.27) 

7.4    Results and Discussion 

The problem on “MF lubrication of porous-pivoted slider bearing with slip velocity by [2]” is 

recapitulated here for its optimum performance. 

During the course of investigation it is observed from equation (7.13) that a uniform magnetic 

field does not enhance the bearing characteristics in Rosensweig’s model of FF flow. 

The values of the dimensionless load carrying capacity  has been calculated for the following 

values [37] of the parameters using Simpson’s 1/3 rule with step size 0.1. 

 

 

 

The FF used here is water based. The magnetic field considered here is oblique to the stator and 

its strength is of  in order to get maximum magnetic field at   for the calculation 

of  in Figure 7.10. For remaining Figures, magnetic field strength is indicated there. 

The calculation of magnetic field strength is shown below [77]: 

From equation (7.10), 

 

Max  

For  

The calculated values of  are presented graphically as shown in Figures 7.2 to 7.10 for various 

cases. 
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Figures 7.2 and 7.3 indicates the study of the effect of squeeze velocity ( ) when  

(Jenkin’s model) and  (Rosensweig’s model) respectively with respect to order of 

magnetic field strength (H is obtained from K as per above calculation). 

From Figure 7.2, it is observed that, for ,  increases considerably in the presence of 

squeeze velocity. Also, as  increases (that is, as order magnetic field strength increases),  

increases. From Figure 7.3, it is observed that, for , again  increases considerably in the 

presence of squeeze velocity, but it does not affect much when the order of magnetic field 

strength increases. 

Figures 7.4 and 7.5 shows the comparative study of Jenkin’s model and Rosensweig’s model 

when  and  respectively with respect to order of magnetic field strength.  

From Figure 7.4 it is observed that when ; that is, when squeeze velocity is present,  

increases considerably in the case of . Also,  has an increasing behavior with the 

increase of order of magnetic field strength. Whereas the behavior of  is consistent with 

respect to increase of order of magnetic field strength for . The same behavior of  can 

be observed from Figure 7.5 when , that is, when  there is no squeeze velocity. 

Figures 7.6 and 7.7 shows the study of effect of squeeze velocity ( ) when  (Jenkin’s 

model) and  (Rosensweig’s model) respectively with respect to permeability  of the 

porous medium. From both the Figures it is observed that,  increases with the decrease of 

permeability . Also, when ,  is increases more as compared to . 

Figures 7.8 and 7.9 shows the comparative study of Jenkin’s model and Rosensweig’s model 

when  and  respectively with respect to permeability . From both the Figures it is 

observed that,  increases with the decrease of permeability .  

Figure 7.10 displays values of   for various values of  and  for , and from it the 

following observations can be made: 

 (1)   increases with the increases of . 

 (2)   increases with the dereases of . 
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From Figures 7.2 to 7.9, it is observed that the values of  increases substantially in the case of 

Jenkin’s model; that is, with the consideration of the ignored term of Ahmed et. al. [2] as  

 with  and   for and  rather than 

Rosensweig’s case (Ahmed et. al. [2] for ).  

 

7.5    Conclusion  

The problem on “MF lubrication of porous-pivoted slider bearing with slip velocity by [2]” is 

recapitulated here for its optimum performance with the inclusion of the ignored term        

 with  and . The FF used here is water based and 

magnetic field strength considered is of as shown in Figures in order to get maximum magnetic 

field at  . 

The design of the pivoted slider bearing can be made with the considerations of the following 

observations: 

Under an oblique magnetic field to the stator, the dimensionless load carrying capacity can be 

improved substantially by considering following features: 

1. FF flow behavior given by Jenkin’s model. 

2. Presence of the squeeze velocity. 

3. Smaller values of permeability parameter . 

4. Increasing values of  up to  as per [98]. 

It should be noted from equation (7.13) that a uniform magnetic field does not enhance the 

bearing characteristics in Rosensweig’s model of FF flow. 
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7.6    Figures 

 

Figure 7.1 Porous-pivoted slider bearing with a convex pad surface 

 

 

Figure 7.2 Values of   for various values of  when ,  and  
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Figure 7.3 Values of   for various values of  when ,  and  

 

 

 

Figure 7.4 Values of   for various values of  when ,  and  
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Figure 7.5 Values of   for various values of  when ,  and  

 

 

 

Figure 7.6 Values of   for various values of  when ,  and  
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Figure 7.7 Values of   for various values of  when ,  and  

 

 

 

Figure 7.8 Values of   for various values of  when ,   and  
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Figure 7.9 Values of   for various values of  when ,  and  

 

 

 

Figure 7.10 Values of   for various values of and  when K = 10
10
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