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4.1 Introduction 

 

In this section, we shall discuss the matrix summability of general infinite series. We 

have also discussed the concepts of orthogonal series and orthogonal expansion.  

 

4.1.1 General Matrix Summability 

Suppose, 

∑ 𝑎𝑛

∞

𝑛=1

  (4-1) 

be a given infinite series. Let {𝑠𝑛} be the partial sum of (4-1). Let  𝐴 ≔ (𝐴𝑛𝑣) be a 

given normal matrix. i.e. 𝐴 ≔ (𝐴𝑛𝑣) be a lower triangular matrix having non-zero 

elements in diagonal. Then, 𝐴 defines sequence-to- sequence transformation, which 

maps the sequence 𝑠 ≔ {𝑠𝑛} to 𝐴𝑠 ≔ {𝐴𝑛(𝑠)}, where  

 

𝐴𝑛(𝑠) ≔ ∑ 𝑎𝑛𝜈

𝑛

𝜈=0

𝑠𝜈 , 𝑛 = 0,1,2, … 

 

(4-2) 

(See Krasniqi, Xh. Z. 2012(1), Krasniqi, Xh. Z. et al. 2012, Tanovic-Miller, N. 1979) 

The following definition is due to Flett, T. M. 1957.  

Let,  

∆𝐴𝑛(𝑠) = 𝐴𝑛(𝑠) − 𝐴𝑛−1(𝑠). 

The series (4-1) is said to be summable |𝐴|𝑘, 𝑘 ≥ 1  if  

 

∑ 𝑛𝑘−1|∆̅𝐴𝑛(𝑠)|𝑘 <

∞

𝑛=1

∞ 

 

(4-3) 

It is important to note that if, we consider 

𝑎𝑛𝜈 =
𝑝𝑛−𝜈

𝑃𝑛
 

then |𝐴|𝑘  summability reduces to |𝑁, 𝑝𝑛|𝑘 summability. 

Similarly, if we consider 

𝑎𝑛𝜈 =
𝑝𝜈

𝑃𝑛
 

then |𝐴|𝑘 summability reduces to |�̅�, 𝑝𝑛|𝑘 summability. 

 

Flett, T. M. 1957 have extended the above definition by introducing the parameter 𝛿  

(See Krasniqi, Xh. Z. 2012(1)) 
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The series (4-1) is said to be summable |𝐴;  𝛿|𝑘, 𝑘 ≥ 1  if  

 

∑ 𝑛𝛿𝑘+𝑘−1|∆̅𝐴𝑛(𝑠)|𝑘 <

∞

𝑛=1

∞ 

 

(4-4) 

In more extended form, the following definition is due to Ӧzarslan, et al. 2011 

Let {Φ𝑛} be a sequence of positive real numbers. We say that (4-1) is summable 

Φ − |𝐴 ; 𝛿|𝑘   ;   𝑘 ≥ 1  and 𝛿 ≥ 0 if 

∑ Φ𝑛
𝛿𝑘+𝑘−1|∆̅𝐴𝑛(𝑠)|𝑘 < ∞

∞

𝑛=1

 (4-5) 

If we take  𝛿 = 0 and Φ𝑛 = 𝑛 for all values of 𝑛, then Φ𝑛 − |𝐴, 𝛿|𝑘 summability  

reduces to |𝐴|𝑘 summability. 

If we take  Φ𝑛 = 𝑛 for all values of 𝑛, then Φ𝑛 − |𝐴, 𝛿|𝑘 summability  reduces to 

|𝐴; 𝛿 |𝑘 summability. 

We associate two lower matrices �̅� ≔ (�̅�𝑛𝑣)  �̂� ≔ (�̂�𝑛𝑣) for given normal matrix 

𝐴: (𝑎𝑛𝑣). The matrices �̅� and �̂� are as follows: 

�̅�𝑛𝑣 ≔ ∑ 𝑎𝑛𝑖,    𝑛,𝑖=0,1,2…

𝑛

𝑖=𝑣

 

and 

�̂�00 = �̅�00 = 𝑎00,  �̂�𝑛𝑣 = �̅�𝑛𝑣 − �̅�𝑛−1,𝑣, 𝑛 = 1,2, … 

Here, �̅� and �̂� are well known matrices of series-to-sequence transformation and 

series-to-series transformation respectively. 

(See Krasniqi, Xh. Z. 2012(1), Krasniqi, Xh. Z. et al. 2012) 

  

4.1.2 Orthogonal Series and Generalized Matrix Summability 

Let {𝜑𝑛(𝑥)} be an orthonormal system of functions defined in the interval [𝑎, 𝑏].The 

orthogonal series is given by 

∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=0

 (4-6) 

where {𝑐𝑛} is a sequence of real numbers. 

The series (4-6) is called an orthonormal expansion for any  𝑓(𝑥), if 𝑐𝑛 is represented 

by 

𝑐𝑛 = ∫ 𝑓(𝑥)𝜑𝑛(𝑥)𝑑𝑥,   
𝑏

𝑎

𝑛 = 0,1,2 … 

 and it is denoted by, 
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𝑓(𝑥)~ ∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=0

 

Suppose the sequence {𝑝𝑛} and {𝑞𝑛} are denoted by 𝑝 and 𝑞 respectively. Then the 

convolution (𝑝 ∗ 𝑞)𝑛 of 𝑝 and 𝑞 is defined by,  

(𝑝 ∗ 𝑞)𝑛 = ∑ 𝑝𝑛−𝑘

𝑛

𝑘=0

𝑞𝑘 = ∑ 𝑝𝑘

𝑛

𝑘=0

𝑞𝑛−𝑘 

where (𝑝 ∗ 𝑞)𝑛 ≠ 0, for all 𝑛. 

We shall use the following notations. 

𝑅𝑛 ≔ (𝑝 ∗ 𝑞)𝑛 , 𝑅𝑛
𝑗

∶= ∑ 𝑝𝑛−𝑚𝑞𝑚
𝑛
𝑚=𝑗    

 , 𝑅𝑛
𝑛+1= 0; 𝑅𝑛

0 = 𝑅𝑛 

 

The generalized Nӧrlund  mean of (4-6) is the sequence {𝑡𝑛
𝑝,𝑞}, which is as follows: 

𝑡𝑛
𝑝,𝑞 =

1

 (𝑝 ∗ 𝑞)𝑛
∑ 𝑝𝑛−𝑘

𝑛

𝑘=0

𝑞𝑘𝑠𝑘 (4-7) 

 

The series (4-6) is |𝑁, 𝑝, 𝑞| summable, if 

∑|𝑡𝑛
𝑝,𝑞 − 𝑡𝑛−1

𝑝,𝑞 |

∞

𝑛=0

< ∞. 

4. 2 Generalized Matrix Summability of Orthogonal Series 

In this section, we shall discuss the matrix summablity as well as generalized matrix 

summablity of an orthogonal series. 

 

Okuyama Y. has proved the following theorems (Okuyama, Y. 2002): 

 

Theorem 4.1  

 

If the series 

∑ {∑ (
𝑅𝑛

𝑗

𝑅𝑛
−

𝑅𝑛−1
𝑗

𝑅𝑛−1
)

2

|𝑐𝑗|2

𝑛

𝑗=1

}

1
2∞

𝑛=0

 

converges, then the orthogonal series 

∑ 𝑐𝑛

∞

𝑛=0

𝜑𝑛(𝑥) 

is summable |𝑁, 𝑝, 𝑞| almost everywhere. 
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Theorem 4.2 

Let {Ω(𝑛)} be a positive sequence such that {
Ω(𝑛)

𝑛
} is a non-increasing sequence and 

the series  

∑
1

𝑛Ω(𝑛)

∞

𝑛=1

 

converges. Let {𝑝𝑛} and {𝑞𝑛} be non-negative. If the series  

∑|𝑐𝑛|2Ω(𝑛)𝜔(1)(𝑛)

∞

𝑛=1

 

converges, then the orthogonal series 

∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=0

 

is |𝑁, 𝑝, 𝑞| summable almost everywhere, where 𝜔(1)(𝑛) is defined by 

 

𝜔(1)(𝑗) ∶= 𝑗−1 ∑ 𝑛2 (
𝑅𝑛

𝑗

𝑅𝑛
−

𝑅𝑛−1
𝑗

𝑅𝑛−1
)

2∞

𝑛=𝑗

 

 

The following two theorems are due to Krasniqi, Xh. Z. et al. 2012. 

 

Theorem 4.3   

If the series  

∑ {𝑛2−
2
𝑘 ∑|�̂�𝑛,𝑗|

2
𝑛

𝑗=0

|𝑐𝑗|
2

}

𝑘/2
∞

𝑛=1

 

converges for 1 ≤ 𝑘 ≤ 2, then the orthogonal series 

∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=0

 

is |𝐴|𝑘 summable almost everywhere. 

 

Theorem 4.4  

Let 1 ≤ k ≤ 2 and {Ω(𝑛)} be a positive sequence such that {
Ω(𝑛)

𝑛
} is non-increasing 

sequence and the series 

∑
1

𝑛Ω(𝑛)

∞

𝑛=1

 

converge. If the following series 

∑|𝑐𝑛|2Ω
2
𝑘

−1(𝑛)𝜔(𝑘)(𝐴; 𝑛)

∞

𝑛=1
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converges, then the orthogonal series 

∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=1

∈  |𝐴|𝑘 

everywhere  

where  

𝜔(𝑘)(𝐴; 𝑗) ∶=
1

𝑗
2
𝑘

−1
∑ 𝑛

2
𝑘

∞

𝑛=𝑗

|�̂�𝑛,𝑗|
2
 

 

The following two theorems are due to Krasniqi, Xh. Z. et al. 2012(1). 

 

Theorem 4.5   

If the series  

∑ {𝑛2(𝛿+1−
1
𝑘

) ∑|�̂�𝑛,𝑗|
2

𝑛

𝑗=0

|𝑐𝑗|
2

}

𝑘
2∞

𝑛=0

 

converges for 1 ≤ 𝑘 ≤ 2, then the orthogonal series 

∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=0

 

is |𝐴; 𝛿|𝑘 summable almost everywhere. 

 

Theorem 4.6  

Let 1 ≤ k ≤ 2 and {Ω(𝑛)} be a positive sequence such that {
Ω(𝑛)

𝑛
} is non-increasing 

sequence and the series 

∑
1

𝑛Ω(𝑛)

∞

𝑛=1

 

converge. If the following series 

∑|𝑐𝑛|2Ω
2
𝑘

−1(𝑛)𝜔(𝑘)(𝐴, 𝛿; 𝑛)

∞

𝑛=1

 

converges, then the orthogonal series 

∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=0

∈  |𝐴; 𝛿|𝑘 

 everywhere 
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where  

𝜔(𝑘)(𝐴, 𝛿; 𝑗) ∶=
1

𝑗
2
𝑘

−1
∑ 𝑛2(𝛿+

1
𝑘

)

∞

𝑛=𝑗

|�̂�𝑛,𝑗|
2
 

 

 

In this chapter, we have extended the two theorems of Krasniqi, Xh. Z. et al. 2012 

and Krasniqi, Xh. Z. 2012(1) , which are as follows: 

 

Theorem 4A 

 If the series 

∑ {Φ𝑛
2𝛿+2−

2
𝑘 ∑ |�̂�𝑛,𝑗|2

𝑛

𝑗=0

|𝑐𝑗|
2

}

𝑘
2∞

𝑛=1

 (4-8) 

converges for 1 ≤ 𝑘 ≤ 2 ,then orthogonal series 

∑ 𝑐𝑛

∞

𝑛=0

𝜑𝑛(𝑥) 

 

is  Φ − |𝐴: 𝛿|𝑘 summable almost everywhere. 

 

Theorem 4B 

Let 1 ≤ k ≤ 2 and {Ω(𝑛)} be a positive sequence such that {
Ω(𝑛)

Φ𝑛
} is non-increasing 

sequence and the series 

∑
1

Φ𝑛Ω(𝑛)

∞

𝑛=1

 

converges. 

If  

∑|𝑐𝑛|2(Ω(n))
2
𝑘

 −1 𝜔(𝑘)(𝐴, 𝛿 ;  Φ𝑛))

∞

𝑛=1

 

 

(4-9) 

converges, then the orthogonal series 

∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=1

         

 is   Φ − |𝐴 ; 𝛿|𝑘 summable almost everywhere, where 𝜔(𝑘)(𝐴, 𝛿 ; Φ𝑛) is 

𝜔(𝑘)(𝐴, 𝛿 ;  Φ𝑛) ∶=
1

[Φ𝑗]
2
𝑘

−1
∑   [Φ𝑛]2(𝛿+

1
𝑘

)|�̂�𝑛,𝑗|
2

                                        

∞

𝑛=𝑗

 

 

Proof of Theorem 4A 

Let 𝑠𝜐(𝑥) be the 𝜐𝑡ℎ sequence of partial sums  
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∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=0

        

then the matrix transformation 𝐴𝑛(𝑠) of the partial sums 𝑠𝜐(𝑥) is given by  

𝐴𝑛(𝑠)(𝑥) = ∑ 𝑎𝑛𝜐(𝑥)𝑠𝜐(𝑥)

𝑛

𝜐=0

 

= ∑ 𝑎𝑛𝜐𝑠𝜐(𝑥)

𝑛

𝜐=0

 

= ∑ 𝑎𝑛𝜐 ∑ 𝑐𝑘𝜑𝑘

𝜐

𝑘=0

(𝑥)

𝑛

𝜐=0

 

= ∑ 𝑐𝑘𝜑𝑘

𝑛

𝑘=0

(𝑥) ∑ 𝑎𝑛𝜐

𝑛

𝜐=𝑘

 

= ∑ 𝑐𝑘𝜑𝑘

𝑛

𝑘=0

(𝑥)�̅�𝑛𝑘 

Hence, 

∆𝐴𝑛(𝑠)(𝑥) = ∑ �̅�𝑛𝑘

𝑛

𝑘=0

𝑐𝑘𝜑𝑘(𝑥) − ∑ �̅�𝑛−1,𝑘

𝑛−1

𝑘=0

𝑐𝑘𝜑𝑘(𝑥) 

=  �̅�𝑛𝑛𝑐𝑛𝜑𝑛(𝑥) + ∑(�̅�𝑛,𝑘 −

𝑛−1

𝑘=0

�̅�𝑛−1,𝑘)𝑐𝑘𝜑𝑘(𝑥) 

=  �̂�𝑛𝑛𝑐𝑛𝜑𝑛(𝑥) +  ∑ �̂�𝑛,𝑘

𝑛−1

𝑘=0

𝑐𝑘𝜑𝑘(𝑥) 

=  ∑ �̂�𝑛,𝑘

𝑛

𝑘=0

𝑐𝑘𝜑𝑘(𝑥) 

 

There are two facts to consider the values of 𝑘 ∈ [1,2]. 

(1) We shall take 1 < 𝑘 < 2 because by definition of |𝐴|𝑘 summability, we have 

𝑘 ≥ 1 and Hӧlder’s inequality is applied for  𝑝 =
2

𝑘
 > 1, 𝑞 = 

2

2−𝑘
> 1, so 𝑘 < 2.  

(2)  For 𝑘 = 1 , 2 we may apply Schwarz’s inequality.  

Therefore, we may take 1 ≤ 𝑘 ≤ 2. 

By the Hӧlder’s inequality and by definition of orthogonality, we have 

∫|∆𝐴𝑛(𝑠)(𝑥)|
𝑘

𝑑𝑥

𝑏

𝑎

= ∫|𝐴𝑛(𝑠)(𝑥) − 𝐴𝑛−1(𝑠)(𝑥)|𝑘𝑑𝑥

𝑏

𝑎

 

 = ∫ 1 ∙ |𝐴𝑛(𝑠)(𝑥) − 𝐴𝑛−1(𝑠)(𝑥)|𝑘𝑑𝑥

𝑏

𝑎
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 = {∫(1)
2

2−𝑘𝑑𝑥

𝑏

𝑎

}

1−
𝑘
2

∙ {∫{|𝐴𝑛(𝑠)(𝑥) − 𝐴𝑛−1(𝑠)(𝑥)|𝑘}
2
𝑘𝑑𝑥

𝑏

𝑎

}

𝑘
2

 

= {∫(1)
2

2−𝑘𝑑𝑥

𝑏

𝑎

}

1−
𝑘
2

(∑ |�̂�𝑛𝑘

𝑛

𝑘=0

𝑐𝑘𝜑𝑘(𝑥)|2)

𝑘
2

   

By orthonormality, we have 

= (𝑏 − 𝑎)1−
𝑘
2 (∑|�̂�𝑛𝑘 |2|𝑐𝑘|2

𝑛

𝑘=0

)

𝑘
2

 

Thus,  

∑ Φ𝑛
𝛿𝑘+𝑘−1

∞

𝑛=1

∫|∆𝐴𝑛(𝑠)(𝑥)|
𝑘

𝑑𝑥

𝑏

𝑎

≤ (𝑏 − 𝑎)1−
𝑘
2 ∑ Φ𝑛

𝛿𝑘+𝑘−1

∞

𝑛=1

(∑|�̂�𝑛𝑘 |2|𝑐𝑘|2

𝑛

𝑘=0

)

𝑘
2

 (4-10) 

= (𝑏 − 𝑎)1−
𝑘
2 ∑ {Φ𝑛

2𝛿+2−
2
𝑘 ∑|�̂�𝑛𝑘 |2|𝑐𝑘|2

𝑛

𝑘=0

}

𝑘
2∞

𝑛=1

    

Hence 

∑ Φ𝑛
𝛿𝑘+𝑘−1

∞

𝑛=1

∫|∆𝐴𝑛(𝑠)(𝑥)|
𝑘

𝑑𝑥 ≤

𝑏

𝑎

(𝑏 − 𝑎)1−
𝑘
2 ∑ {Φ𝑛

2𝛿+2−
2
𝑘 ∑|�̂�𝑛𝑘 |2|𝑐𝑘|2

𝑛

𝑘=0

}

𝑘
2∞

𝑛=1

    

 

Thus, using (4-8) 

∑ Φ𝑛
𝛿𝑘+𝑘−1

∞

𝑛=1

∫|∆𝐴𝑛(𝑠)(𝑥)|
𝑘

𝑑𝑥 < ∞

𝑏

𝑎

 

Now,  |∆𝐴𝑛(𝑠)(𝑥)|
𝑘
 is  non-negative and by Beppo Levi’s theorem, 

∑ Φ𝑛
𝛿𝑘+𝑘−1|∆𝐴𝑛(𝑠)(𝑥)|

𝑘
∞

𝑛=1

< ∞ 

almost everywhere. 

Hence the proof.  

 

Proof of Theorem 4B  

From (4-7), we have 

∑ Φ𝑛
𝛿𝑘+𝑘−1 ∫|∆𝐴𝑛(𝑠)(𝑥)|

𝑘
𝑑𝑥

𝑏

𝑎

∞

𝑛=1

 

≤ (𝑏 − 𝑎)1−
𝑘
2 ∑ Φ𝑛

𝛿𝑘+𝑘−1 [∑|�̂�𝑛𝑗 |
2

|𝑐𝑗|2

𝑛

𝑗=0

]

𝑘
2∞

𝑛=1
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= (𝑏 − 𝑎)1−
𝑘
2 ∑

1

(Φ𝑛Ω(𝑛))1−
𝑘
2

(Φ𝑛
2𝛿+1(Ω(𝑛))

2
𝑘

 −1 ∑|�̂�𝑛𝑗 |
2

|𝑐𝑗|
2

𝑛

𝑗=0

)

𝑘
2∞

𝑛=1

 

Hence by Hӧlder’s inequality  

≤ (𝑏 − 𝑎)1−
𝑘
2 (∑

1

(Φ𝑛Ω(𝑛))

∞

𝑛=1

)

1−
𝑘
2

(∑ Φ𝑛
2𝛿+1(Ω(𝑛)

2
𝑘

 −1

∞

𝑛=1

∑|�̂�𝑛𝑗 |
2

|𝑐𝑗|
2

𝑛

𝑗=0

)

𝑘
2

 

Since,  

∑
1

(Φ𝑛Ω(𝑛))

∞

𝑛=1

< ∞ 

 

≤ 𝑀1 (∑|𝑐𝑗|
2

∑ Φ𝑛

2𝛿+
2
𝑘 (
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Since {
Ω(𝑛)
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} is non-increasing,  
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2
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Hence, by condition (4-9) 

∑ Φ𝑛
𝛿𝑘+𝑘−1 ∫|∆𝐴𝑛(𝑠)(𝑥)|

𝑘
𝑑𝑥

𝑏

𝑎

∞

𝑛=1
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Hence, by Beppo Levi’s theorem,  

∑ Φ𝑛
𝛿𝑘+𝑘−1|∆𝐴𝑛(𝑠)(𝑥)|

𝑘
∞

𝑛=1

 

Hence, the proof follows. 


