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7.1 Introduction

Let {¢,(0)},n = 0,1, ... be an orthonormal system defined in an interval (a, b).

Let

o

D e (®)

n=0
be an orthogonal series, where {c,} be a sequence of real numbers.

Let f(8) € L?(a, b). The orthogonal expansion of f(0) is

oo

f~) cnn (©)

n=0

where, ¢, is determined by

b
- [ r@0.@a0;

Let

o

Sn(e) = Z Cn (pn(e)

n=1
be a sequence of partial sums of series (7-1).

The (L, 1) sum of the series (7-1) is given by

lim(1 —x) z Tonn x™

x-1 1-— x”

(See Bellman, R. 1943)

The (L, @) sum of the series (7-1) is
_ - n(1 —x)\" N
chl_rg(l —x) E_l Cn ¢n(0) <m> X

where, a is any real numberand 0 < x < 1.

(See Zhogin, 1. 1969)

7.2 Generalized Lambert summability of Orthogonal series
Richard Bellman (Bellman, R. 1943) has proved the following theorem:
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Theorem 7.1

Lambert summability of an orthogonal expansion (7-2) implies the convergence of
partial sums S,»(8) of orthogonal expansion (7-2).

We would like to generalize the Theorem 7.1 for generalized Lambert summability of
an orthogonal expansion.

Our theorem is as follows:
Theorem 7A

Generalized Lambert summability of an orthogonal expansion (7-2) implies the
convergence of partial sum S,»(6) of an orthogonal expansion (7-2).

7.3 Proof of Theorems
Proof of Theorem 7A

Letx=1—i
2n

Define
c k(1 —
Un(6) = kzl Cr Pi(6) <(—x)"f)> — S;n(0)
Hence,
= k(1 — & c k(1 —
5@ =Y @ (52) =Y en@r Y an@ (T2 »
k=1 k=1 k=2"+1
2n 00
k(1— k(1 —
= Z ¢k 9x(6) K(—),:)) xf — 1] + Z cr ¢ (6) <(—xi‘6)> x*
k=1 k=2"+1
1= T,(0) +V,,(8)
where,
Zn
k(1 -
T,(8) = ) ci0u(0) K(—?) xk 1]
k=1
C k(1 -
Va(6) = Z ¢k @i (6) <(—xf)> x*
k=2"+1

We may arrive at our conclusion if, we prove that

lim U,(6) =0
n—00
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Now, we consider the series

i[unwﬂz

n=1

It is sufficient to prove

b
f [U(6)]2d6 < oo

NgE

1

S
1l

for convergence almost everywhere in 6.

Now,

b
[ 11+ v@rras

I
s

2[0(9)

n=1 n=1"¢
[ee] b [ee]
szzf [T, (6)]2d6 + ZZf [V,(6)]2
n=1"¢ n=1
.= 211 + 212 (7'3)

Now, we shall show the convergence of I, .

Here,

n=1
o 2
b k(1 - x)
z f z Ck (pk(e) -1 do
n=1"% k=1
Hence, by orthonormality, we have
I0e) AL 2
k(1 —x)
< 2 k _
Il_z ch{<1—xk> 1}
n=1|k=1
Now, for0 <x <1
1 —xk .
1—-x
So,
1-x* <k(1-x),
So,
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Hence,

Szkzcﬁ Z 272

Since, f € L?(a, b), we have

Hence, I, < oo.

Now, we shall show convergence of I, .

iLb[Vn(H)]ZdH <

n=1
I = i f Va0
o e 22
=Z f b{ ck 01(6) <—k1(1__xf)> xk} do
n=1"% \g=2m41

88



= z Z k)Zax
n=1k=2"+1

™ is decreasing function of k,

Z 1 — (1 = n)zn z k2a _x)Zaxzk

n 1 k=2"+1

=0(1) i i k292 (1 — x) 2@y 2k

n=1k=2"+1

:0(1)5: i kzaci(zin)za (1_l>2k

Since (1 -2

on
n=1k=2"+1

=0(1) Z Z kZaC]% (27™)2% (1 — 2—11)2k
n=1k=2"+1

We can majorize

[0e]

kZa Z 2—2na (1 _ 2—n)2k

n=1
by integral,
kZa fooz_zxa(l _ 2—x)—2k dx
0
Hence,
L=0) Y ¢ [ 2 - 2ieeds
k=2"+1 0
= kZa
=0 )
L Qe+ D2k +2) . 2k + )
Since k2%

2k+1)(2k+2)...(2k+a) is bounded,

I, = 0(1) Z c2
k=2m+1
But f € L*(a, b) ,So,

C,%<oo
k=2"+1
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Hence,
I, <
Hence, we have proven the convergence of I; and I, separately.

Hence by (7-3) we have

® b
> | waoran <
n=1 a
Hence,
PG
n=1
Therefore,

lim U,(8) = 0
n—-o0o

Hence, the proof.
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