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1.1 History Related to Orthogonal Series

(Bhatnagar, S. 1973, Kantawala, P. 1986, Patel, C. 1966, Patel, D. 1990, Patel, R.
1975, Shah, B. 1993, Thangavelu, S. 1996)

A tremendous amount of work has been done in recent years in the field of
summability, convergence and approximation problems of general orthogonal series.
The theory of orthogonal series was originated during the discussion of the problem
of vibrating string more than 200 years ago. The problem of vibrating string was
considered by Bernoulli D. (1700-1782) around 1753.The problem was to find the
solution of the following partial differential equation with given initial and boundary
conditions:

Ut = Uy, Ulx,0)=f(x), us(x,0) =0, u(0,t) =u(m,t) =0

This is the well-known wave equation. The graph of u(x,t) represents the shape of
vibrating string at time t (Thangavelu, S. 1996). The equation has been studied by
Euler L. (1707-1783) and D’Alembert J. L. R. (1717-1783) before Bernoulli D..
D’Alembert J. L. R. gave the solution of the form

1 1
u(x, t) =§f(x+t)+§f(x—t)

We can say that u(x,t) is a solution of the given problem if f is odd 2m periodic
extension to the real line R of the given initial condition in the interval [0, 7].

Bernoulli D. suggested the solution of the form

u(x, t) = z a,cos(kx)bsin(kx)
k=0
Based on this observation Bernoulli D. believed the possibility of expanding an
arbitrary periodic function f(x) with f(0) = f(mr) = 0 in terms of sin(kx) but he
didn’t have a clue how to calculate Fourier coefficients.

Later on Euler L. and Lagrange J. L. (1736-1813) also worked on the same problem.
They have given the possibility of representing an arbitrary function by trigonometric
series. In 1807, while working on heat conduction Fourier J. (1768-1830) suggested
the way for calculating Fourier coefficient and as a consequence a Fourier series of
the function f(x). This is how Fourier series was developed.

There has been a huge amount of development in the convergence, summability and
approximation problems of Fourier series. However, less attention has been paid in
the theory of orthogonal series.

Many leading mathematician like Alexits G., Andrienko V. A., Banach S., Bellman R.,
Bhatnagar S., Borwin D., Bor H., Bosanquet L. S., Fejér L., Hobson E. W., Hardy G.
H., Hilbert D., Jaxfsbova M. A., Krasnigi Xh. Z., Kachhara D., Kantawala P. S.,
Kaczmarz S., Lebesgue H., Leindler L., Lorentz G., Menchoff D., Meder J., Misra U.



K., Mdricz F., Okuyama Y., Patel C. M., Patel D. P., Patel R. K., Paikray S.K., Riesz
F., Riesz M., Sahoo N. C., Shah B. M., Sénmez A., Tandori K., Tiwari S. K., Wiener
N. and Weyl H. were working in the field of summability, convergence and
approximation problems of general and particular orthogonal series.

In our thesis, we would like to discuss the recent trends in summability, convergence
and approximation problems of general and particular orthogonal series. We shall
start with number of definitions and concept related to later part of thesis.

1.2 Basic Definitions and Some Fundamentals

(Alexits, G. 1961, Bhatnagar, S. 1973, Kantawala, P. 1986, Patel, D. 1990, Patel, R.
1975, Shah, B. 1993)

The notion of orthogonality will be based on Stieltjes — Lebesgue integral. Let u(x)
be the positive, bounded and monotone increasing function in the closed interval
[a, b], whose derivative u'(x) = 0 vanishes almost in a set of measure zero (in the
sense of Lebesgue).

1.2.1 Basic Definition

A function g(x) is called L,-integrable, if it is u measurable and if
b
[ lg@1duc) < e (1-1)
a

If u(x) is absolutely continuous and p(x) = w(x), then for any L,-integrable function
g(x), the relation

b b

[ 96due = [ gaperax (1-2)

a a

is valid.
We shall call p(x) the covering function or weight function.

If u(x) = x, the Stieltjes-Lebesgue integral reduces to an ordinary Lebesgue integral.
In particular, if p(x) = 1, then we say that g(x) is L- integrable.

A function g(x) is called L or Lf,(x) integrable function, if it is L, or L, integrable
function respectively and in addition,

b b
[ e <o or [ gp@dx <o (1-3)

a a

holds respectively. We may talk about L? — integrable function, if p(x) = 1.



1.2.2 Orthogonality of System

A finite or denumerably infinite system {¢,(x)} of L integrable functions is said to

be an orthogonal system with respect to a distribution du(x) in an interval (a, b), if
b

f ()P (X)du(x) = 0(m % ) (1-4)

a
holds and none of the functions {¢,,(x)}, vanishes almost everywhere.

1.2.3 Orthonormality of system

The system {¢, (x)} is said to be an orthonormal, if in addition to the condition (1-4),

the condition
b

f ©2(x)du(x) =1,n=0,1,2, ... (1-5)

is also satisfied.

Every orthogonal system ,(x)} can be converted into an orthonormal system by
means of multiplying every one of its member by a suitable chosen constant factor.
Since none of factor ¥, (x) can vanish almost everywhere; the functions

oy = n)
" [l ()| (1-6)
where,
b 3
[ (O)ll = f W2 () du(o) (1-7)

If, u(x) = xi.e. wx) = p(x) =1, then {p,,(x)} is ONS in the ordinary sense.
1.2.4 Orthogonalization Process

A system of functions {g,,(x)} is said to be linearly independent in an interval [a, b], if
n

j=0
for u — almost every x € [a, b] necessarily implies the relation
a,=a, =a,=..=a,=0,foralln €N.

Every orthogonal system {g,(x)} is linearly independent (Alexits, G. 1961).
Conversely; any linearly independent system of functions {g,(x)} can be converted
into an ONS {¢, (x)} such that for each n, ¢, (x) is linear combination of the functions
9o(x), g1(x), ..., gn(x).The procedure of constructing an orthonormal system from a
linearly independent system is known as Erhard Schmidt's (Schmidt, E. 1907)
general process of orthogonalization.



1.2.5 Orthogonal Series and Orthogonal Expansion

A series of the form

(0]

D nal) (1-8)

n=0

constructed from an orthogonal system {¢,(x)} and an arbitrary sequence of real
number {c,} is called an orthogonal series.

However, if the coefficients {c,} in the series (1-8) are of the form:

1

€= [ F)@n()du(x),n =012 ... (1.9)

for some function f(x), then (1-8) is called the orthogonal expansion of function
f(x). We shall express this relation by the formula

o

FO)~ ) cnton) (1-10)

n=0
In this case, we shall call the numbers ¢y, ¢;, c,, ..., the expansion coefficients of
function f(x).
1.2.6 Double Orthogonal Series
Let {@mn(x,y)};m,n = 0,1,2, ... be a double sequence of functions in the rectangle
R={(x,y) /Ja <x <b,c <y <d}such that

Oom+kn=+l
1m=kn=1L

fL(pmn (x, ¥) i (xy) dxdy = {

The series

D' o) @11

m=0n=0
where {c,,,,} is an arbitrary sequence of real numbers is called a double orthogonal
series.

The series (1-11) is called double orthogonal expansion of the function

fy) €ll(@<x<bc<y<d
with respect to an orthonormal system of the function {¢,,, (x,y)} if the coefficient
Cmn IS given by

mn = | j G (o) (6, ) dxdy

6



and is denoted by

fx,y) ~ i i Cmn Pmn (X, Y)

m=0n=0
1.3 Different summabilities
(Alexits, G. 1961, Bhatnagar, S. 1973, Datta, H. et al. 2016, Kantawala, P. 1986,

Misra, U. K. et al. 2002, Paikray, S. et al. 2012, Patel, D. 1990, Patel, R. 1975,
Shah, B. 1993)

Now, we would like to define different summability methods which will be used in
later part of our thesis.

In each summability methods, we consider an infinite series of the form

i ", (1-12)

where, {s,,} be the sequence of partial sums of (1-12).
1.3.1 Banach Summability
(Datta, H. et al. 2016, Paikray, S. et al. 2012)

Let w and [, be the linear spaces of all sequences and bounded sequences
respectively on R. A linear functional defined on [ and defined on [, is called a limit
functional if and only if | satisfies:
0] Fore=(1,1,1..)
l(e) =1;
(i) For every x > 0, that is to say,
X, =0,VneN,x €ly,, l(x) =0;

(i)  Forevery x = {x,} €l

[(x) = I(r(x))
where t is the shift operator on [, such that 7(x,,) = (x, + 1).
Let x € I, and [ be the functional on [, then I(x) is called the “Banach limit” of x.
(Banach, S. 1932)
A sequence x € [, is said to be Banach summable if all the Banach limits of x are
the same.
Similarly, a series (1-12) with the sequence of partial sums {s,} is said to be Banach
summable if and only if {s,} is Banach summable.

Let the sequence {t;(n)} be defined by



k-1

ty(n) = z Sn+v, kK EN (1-13)

v=0
Then t;(n) is said to be the k" element of the Banach transformed sequence.
If

Ilim ty(n) =s
a finite number, uniformly for all n € N, then (1-12) is said to be Banach summable to

S.

Thus, if
sup |[ty(n) —s| = 0,as k = o (1-14)
n

then, (1-12) is Banach summabile to s.

1.3.2 Absolute Banach Summability
If

D6 — )] < oo
k=1

uniformly for all n € N, then the series (1-12) is called absolutely Banach summable

(Lorentz, G. 1948) or |B|-summable, where t;(n) is defined according to (1-13),

1.3.3 Cesaro Summability
(Cesaro, E. 1890, Chapman, S. 1910, Chapman, S. et al. 1911, Knopp, K. 1907,)

Leta > —1

Suppose A% denote

[m+a+1) - (n+a)
[(la+DI'(n+1) n /°

The sequence o7 defined by sequence-to-sequence transformation

n

1
o == ) Ak, (1-15)
An
v=0
is called Cesaro mean or (C,a) mean of the series (1-12)
The series (1-12) is said to be summable by the Cesaro method of order a or

summable (C, a) to sum s if



limof =s
n—-oo

where, s is a finite number.

1.3.4 Absolute Cesaro Summability

[o2]
Do -0l <o,
n=1

then, the series (1-12) is said to be absolutely (C,a) summable or | C, | summable,
where, {o¥} is according to (1-15).

If

1.3.5 Euler Summability
(Hardy, G. H. 1949, Bhatnagar, S. C. 1973)

The nt* Euler mean of order g of the series (1-12) is given by
n

1
T = 2 (W) 7 s (1-16)

k=0

The series (1-12) is said to be (E, g) summable to the sum s or Euler summable to
the sum s
If

lim ] = s

n—00

where, s is a finite number.

In particular, if we take g = 1 then (E, q) summablity reduces to (E, 1) summability.

Hence, the series (1-12) is said to be (E, 1) summable to the sum s, if

n
1 n
; a _ 1; —
T = 0, o ;:(k) S = S (1-17)
=0

where s is a finite number.

1.3.6 Absolute Euler Summability
If

(o]

ZlTr? - T#—1| < o,

n=1
then, the series (1-12) is said to be absolutely (E,q) summable or |E, q| summable,
where {T,}} is according to (1-17).



1.3.7 Norlund Summability
(Hille, E. et al. 1932, Norlund, N. 1919, Woroni, G. 1901)

Let {p,} be a sequence of non-negative real numbers. A sequence-to-sequence
transformation given by

n
1

th = P_z Pn-vSy (1_18)
n v=0

withp, > 0,p, =0, and B, =py+p; +p2 + P ;N EN

defines the Norlund mean of the series (1-12) generated by the sequence of
constants {p,}. It is symbolically represented by (N, p,,) mean.

The series (1-12) is said to be N6érlund summable or (N, p,,) summable to the sum s
if

limt, =s

n—-oo

where, s is finite number.

The regularity of Nérlund method is presented by

1.3.8 Absolute Norlund Summability
(Mears, F. et al. 1937)

The series (1-12) is said to be absolutely Nérlund summable or |N,p, | summable if

oo

Z |tn - tn—ll < o,

n=1

where {t,} is according to (1-18).
1.3.9 (N,p,,) Summability or Riesz Summability or (R, p,,) Summability
(Hardy, G. 1949)

Let {p,} be a sequence of non-negative real numbers. A sequence-to-sequence
transformation given by

n

(1-20)

1
th = P_n PvSy
v=0

with p, > 0,p, =0, and B, =py+p, +p, +p,; NEN

10



define the (N, p,) mean of the series (1-12) generated by the sequence of constants

{pn}-

The series (1-12) is said to be (N, p,) summable to the sum s if ,
Jim £, =

where, s is finite number.

1.3.10 Absolute (N,p,,) Summability

The series (1-12) is said to be absolutely (N,p,)) summable or |N,p,| summable if

Z Ifn - En—ll < o,
n=1

where, {t,,} is according to equation (1-20).

1.3.11 Generalized Norlund Summability or (N, p, q) Summability

(Borwin, D. et al. 1968)

Let {p,,} and {q,,} be sequences of non-negative real numbers with p, > 0, p, =0, q, >
0,gp,=0foralmeNandP,=py +p1+p02+ 0, Qu=qo+q1 +q2+ " q;nEN.

A sequence-to-sequence transformation given by

n
1

tg’q = R_E Pn—vquSy (1-21)
n v=0

where,

n
R, = Z Pn-vQu
v=0

defines the (N,p,q) mean of the series (1-12) generated by sequence of coefficients
{pn}and {g,}.

The series (1-12) is said to be generalized Norlund summable or (N, p, q) summable If

lim t?9 = s,

n—-oo

where, s is a finite number and t£? is according to (1-21).
If we take p, =1for alln, then (N,p,q) summability reduces to (R,q,) or (N,qn)
summability.

If we take g, = 1 for all n, then (N, p, q) summability reduces to (N,p,) summability.

1.3.12 Absolute Generalized Norlund Summability or Absolute (N,p,q)
Summability or |N, p, q| summability

11



The absolute generalized N6érlund Summability was introduced by Tanaka, M. (1978).

Let {p,} and {g,,} be sequences of non-negative real numbers with p, > 0, p, =0, qy >
0,q,=0forallme NandP,=py +p1+02+Pn. Qu=qo+q1+q2+--qn;nEN.

A sequence-to-sequence transformation given by

n
1
tg’q = R_Z Pn-vquSy (1_22)
n
v=0
where,
n
R, = z Prn-vqu

defines the (N,p,q) mean of the series (1-12) generated by sequence of coefficients
{pn}and {g,}.

If

(00
D le = e < oo
n=1

then the series (1-12) is said to be absolutely generalized N6rlund summable or
absolutely (N,p,q) summable or |N,p,q| summable, where, t}'? is according to (1-
22).

1.3.13 (N, p, q) Summability
Let {p,} and {q,,} be sequences of non-negative real numbers with p, > 0, p, =0, q, >
0,gp,=0foralme Nand P, =py +p1+p02+pPn, Qu=qo+q1 +q2+ " qu;nEN.

A sequence-to-sequence transformation given by

n

_ 1

tﬁjq = ﬁ_z PvqvSy (1'23)
n v=0

where,

n
En = z Pvqy
v=0

defines the (N,p,q) mean of the series (1-12) generated by sequence of coefficients
{pn}and {g,}.

The series (1-12) is said to be (N, p, q) summable if

lim 79 = s

n—0oo

12



where, s is a finite number and £} is according to (1-23).
If we take p,, = 1 for alln, then (N,p, q) summability reduces to (N, q,) summability.

If we take q,, = 1 for all n, then (N, p, q) summability reduces to (N,p,) summability.

1.3.14 Absolute (N, p, q) Summability or |N,p, q| Summability

Let {p,} and {g,,} be sequences of non-negative real numbers with p, > 0, p,, =0, g, >
0,g,=0forallme NandP,=py +p1+p0,+Pn. Qu=qo+q1+q, +:--qn;nEN.

A sequence-to-sequence transformation given by

n

_ 1

tﬁjq = E_Z PvqvSy (1-24)
n

where,

defines the (N, p,q) mean of the series (1-12) generated by sequence of coefficients
{pn}and {g,}.

If

[ee]
P CARAARE
n=1

then the series (1-12) is said to be absolutely (N,p,q) summable or |N,p,q|
summable, where, 5% is according to (1-24).

1.3.15 Indexed Summability methods

1.3.15.1 |N, p,|x Summability

Let {p,,} be sequence of non-negative real numbers, with p, > 0,p,, = 0

Ph=potp1+-+py;nEN

o)

Z nk_lltn - tn—llk_l < ©

n=1
where, {t,,} is according to (1-18), then the series (1-12) said absolute Nérlund
summable with index k = 1 or |N, p,|k-

If k =1, [N, p,|l;, summability reduces to |N, p,| .

13



1.3.15.2 |N,p,lx Summability

Let {p,,} be sequence of non-negative real numbers, with p, > 0,p, = 0

P,=po+p1+-+p,;mEN
P AN L
n=1

when {t, } is according to (1-20), then the series (1-12) is said to be absolutely
(N,p,) summable with index k > 1 or [N, p, |-

If k = 1, then |N, p,|, summability reduces to |N, p,,|.

1.3.15.3 |N, p,, qnlx Summability

Let {p,,} and {q,,} be sequences of non-negative real numbers with p, > 0, p, =0, q, >
0,g,=>0forallmeNandP, =py +p1 +p2+Pn, Qu=qo+q1 +q2+--q,;n EN.

A sequence-to-sequence transformation given by

n
1

tg’q = R_E Pn—vquSy (1-25)
n v=0

where,

n
R, = Z Pn-vQu
v=0

defines the (N,p,q) mean of the series (1-12) generated by sequence of coefficients
{pn}and {g,}.

If

o)

> - 2 < o

n=1
then the series (1-12) is summable to be |N,p,, g, for k = 1 ,where t£9 according
to (1-25).

If we take p,, = 1for all n, then |N,p,ql, summability reduces to |R,q,|;x OF |N,q,lx
summability.

If we take gq,, = 1 for all n, then |N, p, q|, method reduces to |N, p,, |, Ssummability.

14



1.3.15.4 N, pp Qulx Summability

Let {p,} and {g,,} be sequences of non-negative real numbers with p, > 0, p, =0, qy >
0,qg,=0foralmeNandP,=py +p1 +p2+pPn. Qu=qo+q1 +q2+--q,;n EN.

A sequence-to-sequence transformation given by

n

_ 1

tﬁjq = E_Z PvqvSy (1_26)
n

where,

defines the (N, p,q) mean of the series (1-12) generated by sequence of coefficients
{pn}and {g,}.

If

o)

D B = B < e

n=1
then the infinite series (1-12) is said to be |N, p, g, |, for = 1, where £/'? according to
(1-26).

If we take p, = 1for all n, then |N, p, q|, summability reduces to |N, g, |, summability.
If we take q,, = 1 for all n, then |N, p, q|, summability reduces to |N, p,,|, summability.

1.3.15.5 (N, p%) Summability

We shall restrict ourselves to Norlund method (N, p,,) for which p, > 0; p, = 0.

Let,

)

n+a>

e =1, e = ( n

Given any sequence {v,} we use the following notation:

n
@) Z & W =V
r=0

. 1
(ii) Ay, = —~

n

The following identities are immediate:

15



Now, we shall consider (N, p5y) summability for « > —1, and, when p,, # 0 for all
values of n, we shall allow for a = —1.

When p, = 1,p,, = 0 for n > o; p% = £ 1,s0 that (N, p¥) method is (¢, @) mean.
We say that (1-12) is said to be (N,p%) summable if

limtf =s

n—->oo

where,
n
a 1 a
tn - P_Tixzopn—vsv (1-27)
v=

1.3.15.6 |N, p%| Summability

We shall restrict ourselves to Norlund method (N, p,,) for which p, > 0; p, = 0.

Let,

)

TL+C¥>

=1 e = ( n

Give any sequence {v,} we use the following notation:

n
Q) Z Eg_lvn—r = ‘Uff
r=0

. 1
(ii) Ay, = —

n

The following identities are immediate:

Now, we shall consider (N, ps) summability for « > —1, and, when p,, # 0 for all
values of n, we shall allow for « = —1.

When p, = 1,p, = 0 forn > o; pg = €271 so that (N, p%) method is (C, @) mean.

16



We say that (1-12) is said to be absolutely (N,pgZ) or |N,pZ| summable if

[00]
Dl — il <o
n=1

where, {t;} is according to (1-27).

1.3.15.7 (N, py, q%) Summability

We shall restrict ourselves to
No6rlund method (N, p,,, g,,) for whichp, >0; p,, =0, g, >0; g, =0
Let,

)

n+a
=1 &5 = ( )

n

Give any sequence {v,} we use the following notation:

n
(i) Z Sg_lvn—r = v,ﬁ’
r=0

(i) Av, = Ui

n

The following identities are immediate:

n

B-1_a _  a+B
Z & Un—r = VUp
r=0

n
Py =pptt = Zpﬁ‘-
r=0

0% = a§ =) af.

r=0
Now, we shall consider (N, ps, q5) summability for « > —1, and, when p,, # 0 for all

values of n, we shall allow for o = —1

We say that (1-12) is (N, p%, %) summable if 79" > s asn - oo

a ,a 1
trzz A= FZ Pr—r 4r Sr (1-28)
n

where,

17



1.3.15.8 Absolute (N, p3, q5) Summability

We shall restrict ourselves to Norlund method (N, p,,, q,,) for which p, > 0; p, =
0,Go>0;q,=0

Let,

)

n+a>

&e=1 &5 = ( n

Given any sequence {v,} we use the following notation:

n
(i) Z Sg_lvn—r = v,ﬁ’
r=0

(i) Av, = Ui

n

The following identities are immediate:

r=0
n
a — a+l a
B =py = E pr
r=0
n
a — ,a+l _ a
Qn =qn = E qr
r=0

Now, we shall consider (N, pys, q5) summability for « > —1, and, when p,, # 0,q,, #
0 for all values of n, we shall allow for a = —1

We say that (1-12) is summable |N, pZ, g%| if

[ee]

p%q% _ p%q®
S [ - | < o
n=1

where

1 n
p%q% _ a a
tn - a pn—r Qr Sr
Ry Z
r=0

n
RE =) pi,af
r=0

18



1.3.15.9 |A|x; k = 1 Summability

Let A = (4,,) be a normal matrix. i.e. lower triangular matrix of non zero diagonal
entries. Than A defines the sequence-to-sequence transformation, mapping to a

sequence s = {s,} to As = {A,,(s)} where
n
A, (s) = Z Anpsy; n =012, .. (1-29)
v=0

The series (1-12) is said to be summable |A|,; k > 1 if

o)

Z %=1 |AA, (s)]* < oo

n=1
EAn (s) = An(s) — Ap-1(s)
1.3.15.10|A; 8|y, k = 1,8 = 0 Summability

We say that series (1-12) is |A, §|;, summable, where k>1,6 >0, if

o

Zn5k+k—1 1BA,,(s)]* < o

n=1

1.3.15.11 & — |A; 6|, k = 1 Summability

Let {®,,} be sequence of positive real numbers. We say that series (1-12) is

® —|A, 5], summable, where k>1,6§>0, if

o)

> gL B, ()] < oo

n=1

1.3.15.12 The product summability: |(N,pn @) (N, @n, Pl k = 1,
Let {p,,} and {q,,} be two sequences of real numbers and let

n
Pn=po+p1+---+pn=2pv

v=0
n
Qn:q0+q1+"'+Qn:ZQV
v=0

Let p and g represents two sequences {p,,} and {q,,} respectively.
The convolution between p and g is denoted by (p * q),, and is defined by

n n
Ry = (p * Q)n = Z Pn—vqQu = Z Pvqn—v
v=0 v=0

Define

19



n
Rrjl = z Pn-vqQu
v=j

The generalized Norlund mean of series (1-12) is defined as follows and is denoted
by tP9(x).

n
1
tﬁ’q = _z Pn-vquSy (X)
R, 4 (1-30)
v=

where, R,, # 0 for all n.
The series (1-12) is said to be absolutely summable (N, p, q) i.e.|N, p,q| summable, if
the series

oo
Dl e <o
n=1

If we take p, = 1for all n then, the sequence-to-sequence transformation t2¢
reduces to (N, g,,) transformation
n Qn L quv

If we take g, = 1for all n then, the sequence- to- sequence transformation t5
reduces to (N, p,,) transformation
1
t, = P—nZ vaU

v=0
(See Krasniqi, Xh. Z.2013(2))

Das, G. 1969 defined the following transformation

n v
1 NP
Up =5 ) —— S;

The infinite series (1-12) is said to be summable|(N, p)(N, q)|, if the series

o)

ZlUn - Un—1| <o

n=1

Later on, Sulaiman, W. 2008 considered the following transformation:
n v
1 q
V = —_— v p-S‘
" Qn;Pv; I (1-32)

The infinite series (1-12) is said to be summable|(N, ¢,)(N,p) |, k = 1, if

[oe]
2 51V, = Voo |F < oo

n=1

20



Krasniqi, Xh. Z. 2013(2) have defined the transformation which is as follows:
n v
D = izpn—v(th _—
n = jAv-jSj » ]
R, ~ R, = (2-33)

The infinite series (1-12) is said to be [(N,pn, gn)(N, qn, P)lx, k = 1, if

o)

Z nk_lan - Dn—llk < ®

n=1
We have defined the transformation as follows:
n v
1 Pvdy
Ey == ) —— ) pjq;Sj (1-34)
Ry R, 4
v=0 Jj=0

1.3.15.13 The product summability |(N,Pn 4.)(N, qn )ik, k=1

The infinite series (1-12) is said to be summable |(N, pn, ) (N, @, D) li, k = 1, if

(0]

z n*E, —E,_1|¥ < o

n=1

1.3.16 Lambert Summability

The series (1-12) is said to be Lambert summable to s
if
- nu,x"

1—xn
n=1

lim (1 —x) =s
x—-1_

1.3.17 Generalized Lambert Summability

The series (1-12) is said to be generalized Lambert summable to s
if

1.4 Absolute Summability of Double Orthogonal Series

Consider
Z Z Gmn (1-35)

m=0n=0

be a given double infinite series. Suppose {s,.,} be a sequence of partial sums of the
series (1-35). Suppose the sequence {p,} and{q,} are denoted by p and g¢q
respectively. Then the convolution of p and g denoted by (p *q),, and defined as
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follows:
m

n m n
Ripn = (@ * @Q)n = z Z Pm-in—jqij = Z Z Di,j9m—in-j

i=0 j=0 i=0 j=0
The following notations were used by Krasniqgi, Xh. Z. 2011(2) while estimating the
Norlund summability of double orthogonal series:
m n

un — pun -0 - .
mn-1~— “‘m-1,n-1 — 0;0<v=m
mu — pmu -0 - .
Rm,n—l - Rm—l,n—l =0;0< p=n

v v v vu v
E Rmn _ Rm,n Rm—l,n Rm,n—l Rm—l,n—l
11 = - - +

Rmn Rm,n Rm—l,n Rm,n—l Rm—l,n—l

The generalized ( N, p,, q,,) transform of the sequence {s,,,} is th1 and is defined by

m n
tpq — 1 i (S
mn — R Zzpm—l,n—]qusu (1-36)
mni=o j=o

We define the following

We use the following notations:

m n
pVU  _
Rmn - z z pi]QL] ’
i=v j=p
00 _—
Rmn - Rmn'

R;Jnr,ln—l = R;Jnn—1,n—1 =0;0<5v<m
pmuy _ pmu —n. )
Rm.n—l - Rm—l,n—1 =0;0<u<sn
pUU SUU SUU SUU suu
A <Rmn> _ Rm.n _ Rm—l,n _ Rm,n—l + Rm—1,n_1
Rm—l,n Rm,n—l Rm—l,n—l

The generalized ( N, p,, q,,) transform of the sequence {s,,,} is th% and is defined by

1 m n
b = R Z Z Pi,jqijSij (2-37)
mn

i=0 j=0

Rm,n

141 |N®,p,q|, for k= 1Summability
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The series (1- 35) is |N(2),p,q| for k > 1, if the series

k— p.q p.q
ZZ(’”") 1|t —ln1in —tmn 1+tm 1,n—1 <°°

m=1n=

with the condition
thd =t =tPl =0, mn=0]1,..

1.4.2 |1V(2),p,q|k for k > 1Summability

The series (1-35) is |1V(2),p,q| for k > 1, if the series
Z Z(mn)k e = B — B B[ < o0
m=1n=

with the condition
Eg”l',q—l = Eg’1q.n = E8'1‘1,—1 =0, mn=20,1,..

1.5 History related to Convergence of an Orthogonal Series

The thesis focuses on convergence and summability of general orthogonal series

[0e]

Z Cn@n (X)

n=0

where, {c, } is any arbitrary sequence of real numbers. It can be seen that

co
Dlenl < o
n=0

(1-38)

(1-39)

implies the absolute convergence of series (1-38) almost everywhere in the interval
of orthogonality. On the other hand, it has been shown through example of a series

of Rademacher functions that the condition.

(o]

S <o

n=0

(2-40)

is necessary condition for the convergence of series (1-38) almost everywhere in the
interval of orthogonality. It is reasonable to say that the useful condition for the

convergence of series (1-38) lies between (1-39) and (1-40).

The question of convergence of orthogonal series was originally started by Jerosch,

F. et al. 1909, Weyl, H. 1909 who pointed out that the condition:
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3
cn=0(n_1_6),e>0
is sufficient for the convergence of series (1-38).

Further, Weyl, H. 1909, has improved the condition by showing that the condition

o

Z¢ﬁ<m

n=1

is sufficient for convergence of series (1-28). Later on Hobson, E. 1913, modified the
Weyl’s condition which is of the form

z c2n® < o0; €>0
n=1
and Plancherel, N. 1910 has also modified the condition

(00}
Zcﬁlog% < oo,

n=2

In this direction, many attempts have been made to improve the condition of
convergence of series (1-38). Finally, important contribution was put forwarded by
Rademacher, H. 1922 and by Menchoff, D. 1923, simultaneously and independently
of one another for convergence of an orthogonal series (1-38). They have shown
that the series (1-38) is convergent almost everywhere in the interval of
orthogonality, if

(o]

Zc,zllogzn <

n=1
is satisfied.

Later on Gaposkin, V. 1964, Salem, R. 1940, Talalyan, A. 1956, and Walfisz, A.
1940 generalized the above theorem.

The theorem of Rademacher, H. and Manchoff, D. is the best of its kind which is
obvious from the below theorem of convergence theory given by Manchoff, D..

If w(n) is an arbitrary positive monotone increasing sequence of numbers
with w(n) = o(log |n|), then there exist an everywhere divergent orthogonal series,

o)

> ntin ()

n=0

whose coefficients satisfy the condition
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o

Zcﬁwﬁ <

n=1

Tandori, K. 1975 proved that if {c,} is positive monotone decreasing sequence of
number for which,

(0]

Z clog’n = o

n=1

holds true then there exists in (a,b) an orthonormal system, {{,,(x)} dependent on
¢, such that the orthogonal series

o)

> et ()

n=0

is convergent almost everywhere.

1.6 Summability of Orthogonal Series

It was first shown by Kaczmarz, S. 1925 that under the condition

(0]

S <o

n=0
the necessary and sufficient condition for general orthogonal series (1-38) to be
(C,1) summable almost everywhere is that there exist a sequence of partial sums
{Sv, ()} 1l<sq < % < r convergent everywhere in the interval of orthogonality. The
n

same result was extended by Zygmund, A. 1927, Zygmund, A. 1959, for (C,a),a > 0
summability.

The classical result of H. Weyl, H. 1909 for (C,1) summability reads as follows;

The condition

o)

Zcrzllogn < o

n=2
is sufficient for (C,1) summaubility of (1-38).

Again Borgen, S. 1928, Kaczmarz, S. 1927, Menchoff, D. 1925, and Menchoff, D.
1926, have refined the same condition and established an analogous of
Rademacher-Menchoff theorem for (C, @), summability;

which shows that
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oo

Z cn(log(logn))? < oo

n=3
implies (C,a > 0) summability of series (1-38).
1.7 Absolute Summability of Orthogonal Series: Banach and
Generalized Norlund Summabilty

The absolute summability of an orthogonal series has been studied by many
mathematicians like Bhatnagar, S. 1973, Grepacevskaja, L. 1964, Kantawala, P.
1986, Krasniqi, Xh. Z. 2010, Krasniqi, Xh. Z. 2011(1), Krasniqi, Xh. Z. 2011(2),
Krasniqi, Xh. Z. 2011(3), Krasniqi, Xh. Z. 2012(1), Krasniqi, Xh. Z. 2012(2), Leindler,
L. 1961, Leindler, L.1981, Leindler, L. 1983, Leindler, L.1995, Okuyama, Y. et. al.
1981, Patel, D. 1990, Patel, R. 1975, Spevekov, et al. 1977, Shah, B. 1993, Tandori,
K. 1971.

Paikray, S. et al. 2012 have proved the following theorem:
Theorem 1.1
Let

¥Y,(+0) =0, 0<ax<1
and

f" dWq(u)
_— < [0'e)
o u*log(n+U)

then, the series

Bn(t)
] log(n+1)

is |B| summable at t=x
if

Z logln+ k* 1 =0WU%log(n+2)) ;U= E]

1
kSa

Tsuchikura, T. et al. 1953, have proved the following theorem on Cesaro

summability of order a for orthogonal series.

Theorem 1.2

Let {¢,(x)} be orthonormal system defined in the interval (a, b) and let a > 0. If the
series
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1
® 2

n
1
Z nita [ k2(n—k +1)2@ Vg2
k=1

n=1

Z an
n“

n=1

converges, then the orthogonal series

o)

3 a0

n=1

is summable |C, a| for almost every x.

In Chapter-1l, we have extended the Theorem 1.2 of Tsuchikura, T. 1953 for the
Banach summability. Our theorem is as follows:
Theorem 1A

Let {¢,,(x)} be an orthonormal system defined in (a, b).
If

1

%) k 2
L C2 <OO
k+1 n+v
k=1 v=1

for all n, then orthogonal series (1-28) is absolutely Banach summable i.e. |B]|

summable for every X.

Tiwari, S. et al. 2011, obtained the following result on strong Norlund summability of
orthogonal series.

Theorem 1.3

If the series

converges, then the orthogonal series (1-8) is summable |N,p, g.| almost
everywhere.

Refer to equations (3-3) and (3-5) for R,, and R,’; respectively.

In chapter-ll, we have generalized the Theorem 1.3 for |N,pf,q%|,a > —1
summability of an orthogonal series.

Our result is as follows:
Theorem 1B

If the series
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1

® { n <Rav av1>2 2
2 n n—
:E: - |Cv|2
a a
n=1 \v=1 Rn Rn—l

converges, then the orthogonal expansion

o

RNES

v=0
is summable |N, pg,q%|, « > —1 almost everywhere.

Krasniqi, Xh. Z. 2010 has discussed some general theorem on the absolute indexed

generalized |[N,p,qlx,k =1 of

oo

D anpn ()

n=0

The theorem is as follows:

Theorem 1.4

If, for 1 < k < 2, the series

513 (82 |

converges, then the orthogonal series

(0]

PR

n=0
is summable |N,p, ql,, k = 1 almost everywhere.

In chapter-lll, we have extended the Theorem 1.4 to |N,p,qly, k = 1 summability of
series (1-8), which as follows:

Theorem 1C
Let 1 < k <2 and if the series
k
oo n = j j 2 2
Sk (221 gl <o
Li\R, Rny) '’
n=0 Jj=1
then, the orthogonal series
PR
n=0

is |N,p,qlr, k =1 summable almost everywhere.

Chapter Il also contains five important corollaries:
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Corollary 3A says that for k = 1, our Theorem 1C reduces to |N,p, q| summability of
(1-8)

Corollary 3B says that for g,, = 1, our Theorem 1C reduces to |N, p,,|, summability
of (1-8)

Corollary 3C says that for p,, = 1, our Theorem 1C reduces to|N, q,|, summability
of (1-8)

Corollary 3D says that for k = 1, Corollary 3B reduces to |N, pnl summability of  (1-

8)

Corollary 3E say that for k = 1, Corollary 3C reduces to |1TI, qnl summability of (1-8)
1.8 Matrix Summability of an Orthogonal Series

Based on definition of Flett, T. et al. 1957, Krasniqi, Xh. Z. et. al. 2012 has proved
the following theorems:

Theorem 1.5

If the series
k

n 2

2
n2% ) Jan |||

1 =0

NgE

S
1l

converge for 1 < k < 2, then the orthogonal series

o

> @

n=0

is |A|; summable almost everywhere.

Theorem 1.6
Let 1 <k <2 and{2(n)} be a positive sequence such that {M} iS non-increasing

Z n.()l(n)

n=1

sequence and the series

converges. If the following series

(o]

2
> Ik )@ ® (45m)

n=1

converges, then the orthogonal series

o)

> g € 14,

n=1
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almost everywhere.

In chapter IV, we have extended the two theorems of Krasniqgi, Xh. Z. et. al. 2012,
which are as follows:

Theorem 1D

If the series
2

k/
2 n
2 2
¢n25+2 kz Ian,jlz |cj|

n=1 Jj=0
converges for1 < k < 2 ,then orthogonal series

Z%%m

n=0
is @ — |A: 5|, summable almost everywhere.

Theorem 1E
1<k<2 and {Q(n)} be a positive sequence such that {q() )} iS non-increasing

nZ: d,0(n)

sequence and the series

converges.
If

Z|cn| (ﬂ(n))"1 w®(4,8; )

converges, then the orthogonal series

[0e]

Z Cn@n ()

n=1

is @ —|4; 8|, summable almost everywhere, where w® (4,5 ; ®,) is

> [0, D)]a, |
[@]F " 7=

w®(4,8; &) =

1.9 Approximation by Norlund Means of an Orthogonal Series

Mdricz, F. et. al. 1992 have studied the rate of approximation by Nérlund means for
Walsh-Fourier series. He has proved the following theorem:

Theorem 1.7
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Let feLP,1<p<oo,letn=2"+k, 1<k<2™,m=>1andlet {q,;k >0} be a

sequence of non-negative numbers such that

n-1

y-1
nQy Z CI;(/ =0(1)

k=0

forsomel <y <2

If {qx } is non-decreasing, then

m-—

1

5 . .

1a ) = fllp < 55~ ), o wp(f,277) + 0{wp(f,27™)}
j=o

If {qx } is non-increasing then

m—1
5 .
tn(f) = fllp < Z_Qn Z (Qn—21'+1 - Qn—2f+1+1) “)p(f' 2_]) + 0{w,(f,27™)}
j=o

Moricz, F. et al. 1996 proved the following theorem:
Theorem 1.8

LetfelP,1<p<oo,letn=2"+k, 1<k<2™,m>=1andlet{qy;k >0} bea

sequence of non-negative numbers.

If {px } Is non-decreasing and satisfies the conditions

np,
— =001
5 =0

then

m—1
_ 3 . .
Ea(F) = Fllp S = " 2Ipgieay 0p(£,277) + 0fwp (f,27™)
j=o

If {px} is non-increasing then

] 3% .
IE(H) = Flly <5 Y. 27151 0,(£,277) + 0w, (£,2°™)
j=o

We have generalized the result of Moricz, F. et al. 1992 and Moricz, F. et al. 1996 for

(E, 1) summability. Our result is as follows:
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Theorem 1F

LetfeLP,1<p<oo,letn:=2"+k, 1<k<2™,m=>1 then

m-1

3
TP = Fllp < 5 > 20 (o1 _ 1) @p(£,27) + Ofwp(£,27™)

j=o0
1.10 Absolute Generalized Norlund Summability of Double
Orthogonal Series

Krasniqi, Xh. Z 2011(2) has proved the theorem on absolute generalized Noérlund
summability of double orthogonal series. Some of the important contributions for
absolute summability of an orthogonal series are due to Fedulov, V. 1955, Mitchell,
J. 1949, Patel, C.M. 1967 and Sapre, A. 1971.

Okuyama, Y. 2002 has developed the necessary and sufficient condition in which the

double orthogonal series is |N, p, g| summable almost everywhere.

Theorem 1.9

If the series

[e%) : : 2 2
Rr]l Riz—l 2
R R <]
n=o (=1 n n-1

converges then the orthogonal series

oo

D ena)

n=0
is summable |N,p, q| almost everywhere.

Krasniqgi, Xh. Z. 2011(2) have proved the following theorem for absolute No6rlund
summability with index for double orthogonal expansion.

Theorem 1.10
If

N &

55 {5 [ ()] ]

m=1n=1 v=1
k
o) 00 n _ ou .2 2
k-1 A Rmn 2( .
(mn) 1\ p |a0u| ;
L mn/ |
m=1n=1 H=1



and

is [N®, p, q|k summable almost everywhere.

In Chapter VI, we have extended the theorem of Krasniqi Xh. Z. 2011 for
IN®,p, q|, for k = 1which is as follows:

Theorem 1G
If
k
o r m R;JTI.OTI 2 12
> nnye {A( )} evol?|
m=1n=1 lv=1 mn
_ Jk
o) o) n —ou 2 2
R 2
Z Z(mn)k_l Z{All <Emn)} |C0u| )
m=1n=1 | u=1 mn
and
k
o oo m n EUH 2 2
2
> S ot |3 (o (22} e
m=1n=1 v=1pu=1 mn

converges for 1 < k < 2, then the orthogonal series

i i Cmn Pmn (X)

m=0n=0

is |1V(2),p,q|k summable almost everywhere.

1.11 General Lambert Summability of Orthogonal Series

Let {¢,(0)},n =0,1, ... be an orthonormal system defined in (a, b). Let

co

> ()

n=0

be an orthogonal series, where {c,} be a sequence of real numbers.
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Let £(0) € L?(a, b); then

o)

f~ Z CnPn (6) (1-41)

n=0

be an orthogonal expansion of f(8), where

b
- [ r@0.@d0;

Bellman, R. 1943 has proved that Lambert summability of an orthogonal expansion
(1-41)

Theorem 1.11

Lambert summability of an orthogonal expansion (1-41) implies the convergence of
partial sums S,»(6) of orthogonal expansion (1-41).

In Chapter VII, we have generalized the Theorem 1.11 for generalized Lambert
summability which is as follows:

Theorem 1H

Generalized Lambert summability of orthogonal expansion (1-41) implies the
convergence of partial sums S,n(0) of orthogonal expansion (1-41).

1.12 Generalized Product Summability of an Orthogonal Series

The product summability was introduced by Kransniqi, Xh. Z. 2013.

Okuyama, Y. 2002 has proved the following two theorems:

Theorem 1.12
If the series

S{3- ]

converges, then the orthogonal series

(o]

z Cj<.0j(x)

Jj=0
is summable |N,p, q| almost everywhere.

Theorem 1.13
Let {2(n)} be a positive sequence such that { B )} IS a non-increasing sequence and
the series
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nZl n.()l(n)

converges. Let {p,} and {q,,} be non-negative sequences. If the series

(0]

> lename® )

n=1

converges, then the orthogonal series

(0]

Z Cj‘Pj(x)

j=0
is |N,p,q| summable almost everywhere, where w® (n) is defined by
o : ; 2
. R, R
W (7 e -1 Z 2(2n_ Bt
@ (]) J .n <Rn Rn—l)
n=j

Krasniqi, Xh. Z. 2013(2) has proved the following theorems:

Theorem 1.14

If for1 < k < 2, the series
k
2

o0 n s~
.25 (RiR, R, 1Rn 1
n- k - |]|
R,

n=1 i=1

converges, then the orthogonal series

oo

PN

n=0

is summable |(N, p,, 4,) (N, g, P2) |k, kK = 1 almost everywhere.

Theorem 1.15
Let 1 < k <2 and 2(n) be a positive sequence such that { (o )} iS a non-increasing
sequence and the series

oo

( )
n=1

Let {p,,} and {q,,} be non-negative sequences.
If the series

> 2
D Ik (RW ()
n=0
converges, then the orthogonal series,
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oo

D nal)

n=1
iS |(N, pn, 4n) (N, g, Pn) | Summable almost everywhere, where

o i . i 2
2 i P sl
RK) (i) = 21 Z nk RwRy, _ Rn_1Rn—1
iE_l = Rn Rn—l

n

In this chapter, we prove and extend the result of Krasnigi, Xh. 2013 to |N, p,, ¢k,
k = 1 summability.
Our theorems are as follows:

Theorem 1|

If for 1 < k < 2, the series
k
2

Z°° zz" RE B_R\

= - - 2

nz % i n_ n_l n—1 |Cj| < o
Rn Rn—l

n=1 i=1

converges, then the orthogonal series

(0]

PN

n=0
is summable |(N, pn, G2) (N, gn, Pn)lx, @lmost everywhere.
Theorem 1J

Let 1 <k <2 and 2(n) be a positive sequence such that {@} IS @ non-increasing

sequence and the series

o

Z nﬂtn)

n=1

converges.
Let {p,,} and {q,,} be non-negative sequences. If the series

o ) _
D Ik FD () < o0
n=1

then the series,

oo

> @

n=1
is |(N, Pn, ) (N, @, )| Summable almost everywhere, where R®)(n) is defined

by
2

=L 5 (L Bl

En Rn—l
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