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2.1 Introduction 

Let {φn(x)}; 𝑛 = 0,1,2 … be an orthonormal system of functions defined in the interval 

[𝑎, 𝑏]. We shall consider the orthogonal series 

∑ 𝑐𝑛𝜑𝑛(𝑥)

∞

𝑛=0

 ,  (2-1) 

where {cn} is a sequence of real numbers. 

 Let {𝑠𝑛} be the sequence of partial sums of the series (2-1). We may write it as,  

𝑠𝑛(𝑥) = ∑ 𝑐𝑘𝜑𝑘(𝑥)

𝑛

𝑘=0

 . 

The Banach mean,(𝑁, 𝑝𝑛) mean, (�̅�,𝑝𝑛) mean, and  (𝑁, 𝑝𝑛
𝛼, 𝑞𝑛

𝛼) mean of the series (2-

1) are denoted by 

𝑡𝑘
∗(𝑛) =

1

𝑘
∑ 𝑠𝑛+𝜐  ; 𝑘 ∈ 𝑁

𝑘−1

𝜐=0

 

𝑡𝑛(𝑥) =
1

𝑃𝑛
∑ 𝑝𝑛−𝑘𝑠𝑘(𝑥)

𝑛

𝑘=0

 , 

 𝑡�̅�(𝑥) =
1

𝑃𝑛
∑ 𝑝𝑘𝑠𝑘(𝑥),

𝑛

𝑘=0

 

and 

𝑡𝑛
𝑝𝛼,𝑞𝛼

(𝑥) =
1

𝑅𝑛
𝛼 ∑ 𝑝𝑛−𝑟

𝛼

𝑛

𝑟=0

𝑞𝑟
𝛼𝑠𝑟(𝑥) 

respectively. 

We may refer to equations (1-13), (1-16), (1-18), and (1-26) for more information. 

2.2 Absolute Banach Summability of Orthogonal Series 

 

Let 𝑓(𝑡) be a periodic function with period 2𝜋 and Riemann integrable  over  (−𝜋, 𝜋).  

Suppose, 

1

2
𝑎0 + ∑(𝑎𝑛 cos 𝑛𝑡 + 𝑏𝑛 sin 𝑛𝑡)

∞

𝑛=1

≡ ∑ 𝐴𝑛(𝑡)

∞

𝑛=1

 

be the Fourier series of 𝑓(𝑡). Then, the series  

∑(𝑏𝑛 cos 𝑛𝑡 − 𝑎𝑛 sin 𝑛𝑡)

∞

𝑛=1

≡ ∑ 𝐵𝑛(𝑡)

∞

𝑛=1
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be the conjugate Fourier series of 𝑓(𝑡).  

Let 

𝜓(𝑡): =
1

2
{𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)},  

Ψα(𝑡): =
1

Γ(𝛼)
∫(𝑡 − 𝑢)𝛼−1

𝑡

0

 𝜓(𝑢)𝑑𝑢 , 𝛼 > 0,   

 

ψ𝛼(𝑡) = Γ(𝛼 + 1)𝑡−𝛼Ψα(𝑡),   𝛼 ≥ 0,   

 

ψ0(𝑡) = 𝜓(𝑡) 

 

[𝑥] = The greatest integer which does not exceed  𝑥. 

 

Bosanquet, L. et al. 1937 proved the following theorem for absolute Ces�̀�ro 

summability of order  𝛽(0 < 𝛽 < 1) for conjugate Fourier series: 

Theorem 2.1 

If,  0 < 𝛼 < 1 ,  

Ψα(+0) = 0  𝑎𝑛𝑑   ∫
𝑑Ψα(𝑡)

𝑡𝛼
< ∞

𝜋

0

 

then  

∑ 𝐵𝑛(𝑡)

∞

𝑛=1

 

 is summable |𝐶 , 𝛽| at 𝑡 = 𝑥 , 𝛽 > 𝛼.  

In the same direction Swamy, N. et al. 1980 proved the following theorem for 

generalized absolute Cesáro summability of conjugate Fourier series. 

Theorem 2.2 

If, 0 < 𝛼 < 1 , Ψα(+0) = 0  ,            

∫
𝑑Ψα(𝑡)

𝑡𝛼
< ∞

𝜋

0

 

then the conjugate series of the Fourier series of 𝑓(𝑡) is summable |𝐶, 𝛿, 𝛽| at 𝑡 =

𝑥 , 𝛿 > 𝛼. 

Misra, S. et al. 2002 have generalized the Theorem 2.2 on absolute Banach 

Summability. The theorem is as follows: 

 

Theorem 2.3 
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If, 0 < 𝛼 < 1 , Ψα(+0) = 0   

and 

∫
𝑑Ψα(𝑡)

𝑡𝛼
< ∞

𝜋

0

 

then the conjugate series of Fourier series of 𝑓(𝑡) is |𝐵| summable at 𝑡 = 𝑥. 

Moreover, Paikray, S. et al. 2012 have proved the following theorem on absolute 

Banach summability of factored conjugate Fourier series. 

Theorem 2.4 

Let   Ψα(+0) = 0 , 0 < 𝛼 < 1 ,   such that 

∫
𝑑Ψα(𝑢)

𝑢𝛼 log(𝑛 + 𝑈)
< ∞

𝜋

0

 

then the series  

∑
𝐵𝑛(𝑡)

log(𝑛 + 1)

∞

𝑛=1

 

is  |𝐵| summable at 𝑡 = 𝑥 if  

∑ log(𝑛 + 𝑈)𝑘𝛼−1 = 𝑂(𝑈𝛼 log(𝑛 + 2)); 𝑈 = [
1

𝑢
]

𝑘≤
1
𝑢

 

The Theorem 2.1, Theorem 2.2, Theorem 2.3, and Theorem 2.4 are based on 

summability of conjugate Fourier series. 

Tsuchikura, T. 1953, have proved the following theorem on Ces�̀�ro summability of 

order 𝛼 for orthogonal series. 

Theorem 2.5 

Let {φn(x)} be orthonormal system defined in the interval (𝑎, 𝑏) and let  𝛼 > 0 . If the 

series 

∑
1

𝑛1+𝛼
[∑ 𝑘2(𝑛 − 𝑘 + 1)2(𝛼−1)

𝑛

𝑘=1

𝑎𝑘
2]

1
2

+ ∑
|𝑎𝑛|

𝑛𝛼

∞

𝑛=1

∞

𝑛=1

 

converges, then the orthogonal series 
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∑ 𝑎𝑛𝜑𝑛(𝑥)

∞

𝑛=1

 

is summable |𝐶, 𝛼| for almost every 𝑥. 

In this chapter, we have extended the Theorem 2.5 of Tsuchikura, T. 1953 for the 

absolute Banach summability. 

Our theorem is as follows: 

Theorem 2A 

Let {𝜑𝑛(𝑥)}  be an orthonormal system defined in (𝑎, 𝑏). 

If,  

∑
1

𝑘 + 1
{∑ 𝑐𝑛+𝜐

2

𝑘

𝜐=1

}

1
2

< ∞

∞

𝑘=1

 

for all n , then orthogonal series (2-1) is absolutely Banach summable i.e. |𝐵| 

summable for every x . 

2.3 Absolute (𝑵, 𝒑𝒏
𝜶, 𝒒𝒏

𝜶), 𝜶 > −𝟏 Summability of General Orthogonal 

Series 

Strong approximation and strong summability problems were studied by Kantawala, 

P. et al. 1991, Kantawala, P. et al. 1995, Leindler, L. 1966, Leindler, L. 1967, 

Sunouchi, G. 1966,  Sunouchi, G.1967.  

Sunouchi, G. 1966 has proved the following theorem for (𝐶, 𝛼), 𝛼 > 0 summability of 

orthogonal series.  

Theorem 2.6 

 If 

∑ 𝑐𝑚
2 (log 𝑙𝑜𝑔 𝑚)2 < ∞

∞

𝑚=1

 

then, there exists a square integrable function 𝑓(𝑥) such that 

lim
𝑛→∞

1

𝐴𝑛
𝛼 ∑ 𝐴𝑛−𝜈

𝑎−1

𝑛

𝜈=0

|𝑠𝑛𝜈
(𝑥) − 𝑓(𝑥)|

𝑟
= 0 

for any 𝛼 > 0 and 𝑟 > 0 a.e. in [𝑎, 𝑏] and for increasing sequence {𝑛𝜈}. 
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Tiwari. S. et al. 2011, obtained the following result on strong Nӧrlund  summability of 

orthogonal series. 

Theorem 2.7  

If the series 

∑ {∑ (
𝑅𝑛

𝑗

𝑅𝑛
−

𝑅𝑛−1
𝑗

𝑅𝑛−1
)

2

|𝑎𝑗|2

𝑛

𝑗=1

}

1
2∞

𝑛=1

 

converges, then the orthogonal series (1-8) is summable |N,𝑝𝑛, 𝑞𝑛| almost 

everywhere. Refer to equations (3-3) and (3-5) for 𝑅𝑛 and 𝑅𝑛
𝑗
 respectively. 

We have generalized the Theorem 2.7 for |𝑁, 𝑝𝑛
𝛼, 𝑞𝑛

𝛼|, 𝛼 > −1 summability of an 

orthogonal series. Our theorem is as follows: 

Theorem 2B   

If the series 

∑  { ∑ (
𝑅𝑛

𝛼𝜈

𝑅𝑛
𝛼 −

𝑅𝑛−1
𝛼𝜈

𝑅𝑛−1
𝛼 )

2𝑛

𝜈=1

 |𝑐𝜈|2}

1
2

  

∞

𝑛=1

 

converges, then the orthogonal expansion 

∑ 𝑐𝜈

∞

𝜈=0

𝜑𝜈(𝑥) 

is summable |𝑁, 𝑝𝑛
𝛼, 𝑞𝑛

𝛼|, 𝛼 > −1 almost everywhere. 

The corollary related to Theorem 2B is as follows: 

Corollary 2B   

If the series,    

∑
𝑝𝑛

𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼 {∑ (
𝑃𝑛

𝛼

𝑝𝑛
𝛼 −

𝑃𝑛−𝜐
𝛼

𝑅𝑛−𝜐
𝛼 )

𝑛

𝜐=1

2

𝑃𝑛−𝑣
𝛼 2|𝑐𝜐|2}

1
2∞

𝑛=1

 

converges, then orthogonal series 

∑ 𝑐𝑛

∞

𝑛=0

𝜑𝑛(𝑥) 

is summable (𝑁, 𝑝𝑛
𝛼) almost everywhere. 

 

2.4 Proof of Theorems  

We shall use the following lemma to prove Theorem 2A; 
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Lemma 2A (Paikray, S. et al. 2012) 

Let  

∑ 𝑢𝑛

∞

𝑛=0

 

be an infinite series and {𝑠𝑛} be a sequence of its partial sums. Let {𝑡𝑘
∗(𝑛)} be a 

sequence defined by  

𝑡𝑘
∗(𝑛) =

1

𝑘
∑ 𝑠𝑛+𝜐 ;   𝑘 ∈ 𝑁

𝑘−1

𝜐=0

 

then,                                                                    

𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛) =
−1

𝑘(𝑘 + 1)
∑ 𝑣𝑢𝑛+𝑣

𝑘

𝑣=1

 (2-2) 

Proof of Theorem 2A 

Now, 

𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛) =
−1

𝑘(𝑘 + 1)
∑ 𝑣𝑢𝑛+𝑣

𝑘

𝑣=1

 

where, 𝑢𝑛+𝑣 = 𝑐𝑛+𝑣𝜑𝑛+𝑣 

                                         =
−1

𝑘(𝑘 + 1)
∑ 𝑣𝑐𝑛+𝑣

𝑘

𝑣=1

𝜑𝑛+𝑣 

Now 

∑ ∫|𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛)|𝑑𝑥 = ∑ ∫ 1 ∙ |𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛)|

𝑏

𝑎

∞

𝑘=1

𝑏

𝑎

∞

𝑘=1

𝑑𝑥 

 

Hence, by Schwarz’s inequality, 

 

       ≤ ∑ {∫ 12𝑑𝑥

𝑏

𝑎

}

1
2

{∫|𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛)|2𝑑𝑥

𝑏

𝑎

}

1
2∞

𝑘=1

 

= √𝑏 − 𝑎 ∑ {∫|𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛)|2𝑑𝑥

𝑏

𝑎

}

1
2∞

𝑘=1

 

                       = √𝑏 − 𝑎 ∑ {∫
1

𝑘2(𝑘 + 1)2
(∑ 𝑣𝑐𝑛+𝑣𝜑𝑛+𝑣(𝑥)

𝑘

𝑣=1

)

2

𝑑𝑥

𝑏

𝑎

}

1
2∞

𝑘=1

 

 
    Hence, by

 
orthonormality

  
we

 
have

 

 



44 
 

  ∑ ∫|𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛)|

𝑏

𝑎

∞

𝑘=1

𝑑𝑥 ≤ √𝑏 − 𝑎 ∑
1

𝑘(𝑘 + 1)
{∫ (∑ 𝑣𝑐𝑛+𝑣𝜑𝑛+𝑣(𝑥)

𝑘

𝑣=1

)

2

𝑑𝑥

𝑏

𝑎

}

1
2∞

𝑘=1

 

                  = √𝑏 − 𝑎 ∑
1

𝑘(𝑘 + 1)
{∑ 𝑣2𝑐𝑛+𝑣

2

𝑘

𝑣=1

}

1
2∞

𝑘=1

    

    ≤  √𝑏 − 𝑎 ∑
1

(𝑘 + 1)
{∑ 𝑐𝑛+𝑣

2

𝑘

𝑣=1

}

1
2∞

𝑘=1

 

= 𝑀 ∑
1

(𝑘 + 1)
{∑ 𝑐𝑛+𝑣

2

𝑘

𝑣=1

}

1
2∞

𝑘=1

  

        

where, 𝑀 ≔ √𝑏 − 𝑎 is some constant. 

Hence, by hypothesis of Theorem 2A 

∑ ∫|𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛)|

𝑏

𝑎

∞

𝑘=1

𝑑𝑥 < ∞ 

Therefore, by Beppo Levi’s Theorem 

∑|𝑡𝑘
∗(𝑛) − 𝑡𝑘+1

∗ (𝑛)|

∞

𝑘=1

< ∞ 

This completes the proof of theorem. 

Proof of Theorem 2B 

Now,  𝑡𝑛
𝑝𝛼,𝑞𝛼

(𝑥) be the (𝑁, 𝑝𝑛
𝛼 , 𝑞𝑛

𝛼) mean of the series (2-1). 

Therefore, 

𝑡𝑛
𝑝𝛼,𝑞𝛼

(𝑥) =
1

𝑅𝑛
𝛼 ∑ 𝑝𝑛−𝑘

𝛼 𝑞𝑘
𝛼𝑠𝑘(𝑥)

𝑛

𝑘=0

 

                                =
1

𝑅𝑛
𝛼 ∑ 𝑝𝑛−𝑘

𝛼 𝑞𝑘
𝛼

𝑛

𝑘=0

 ∑ 𝑐𝜐

𝑘

𝜐=0

𝜑𝜐(𝑥) 
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                              =
1

𝑅𝑛
𝛼  ∑ 𝑐𝜐

𝑛

𝜐=0

𝜑𝜐(𝑥) ∑ 𝑝𝑛−𝑘
𝛼 𝑞𝑘

𝛼

𝑛

𝑘=𝜐

 

                   =
1

𝑅𝑛
𝛼  ∑ 𝑅𝑛

𝛼𝜈𝑐𝜐

𝑛

𝜐=0

𝜑𝜐(𝑥),    

where, 

 𝑅𝑛
𝛼𝜐 = ∑ 𝑝𝑛−𝑘

𝛼 𝑞𝑘
𝛼

𝑛

𝑘=𝜐

 

Now, 

𝑡𝑛
𝑝𝛼,𝑞𝛼

(𝑥) − 𝑡𝑛−1
𝑝𝛼,𝑞𝛼

(𝑥) =
1

𝑅𝑛
𝛼  ∑ 𝑅𝑛

𝛼𝜐𝑐𝜐

𝑛

𝜐=0

𝜑𝜐(𝑥) −
1

𝑅𝑛−1
𝛼  ∑ 𝑅𝑛−1

𝛼𝜐 𝑐𝜐

𝑛−1

𝜐=0

𝜑𝜐(𝑥) 

= ∑ (
𝑅𝑛

𝛼𝜐

𝑅𝑛
𝛼 −

𝑅𝑛−1
𝛼𝜐

𝑅𝑛−1
𝛼 )

𝑛

𝜐=1

𝑐𝜐𝜑𝜐(𝑥) 

∑ ∫ |𝑡𝑛
𝑝𝛼𝑞𝛼

− 𝑡𝑛−1
𝑝𝛼𝑞𝛼

|

𝑏

𝑎

∞

𝑛=1

𝑑𝑥 = ∑ ∫ |∑ (
𝑅𝑛

𝛼𝜐

𝑅𝑛
𝛼 −

𝑅𝑛−1
𝛼𝜐

𝑅𝑛−1
𝛼 )

𝑛

𝜐=1

𝑐𝜐𝜑𝜐(𝑥)|

𝑏

𝑎

∞

𝑛=1

 𝑑𝑥 

                                                    = ∑ {∫ ∑ ((
𝑅𝑛

𝛼𝜐

𝑅𝑛
𝛼 −

𝑅𝑛−1
𝛼𝜐

𝑅𝑛−1
𝛼 ) 𝑐𝜐𝜑𝜐(𝑥))

2𝑛

𝜐=1

𝑏

𝑎

}

∞

𝑛=1

1/2

 

By Schwarz’s inequality and orthonormality gives 

= √𝑏 − 𝑎  ∑ {∑ (
𝑅𝑛

𝛼𝜐

𝑅𝑛
𝛼 −

𝑅𝑛−1
𝛼𝜐

𝑅𝑛−1
𝛼 )

𝑛

𝜐=1

2

|𝑐𝜐|2}

1/2
∞

𝑛=1

 

= 𝑀 ∑ {∑ (
𝑅𝑛

𝛼𝜐

𝑅𝑛
𝛼 −

𝑅𝑛−1
𝛼𝜐

𝑅𝑛−1
𝛼 )

𝑛

𝜐=1

2

|𝑐𝜐|2}

1/2
∞

𝑛=1

 

Hence, by hypothesis of Theorem 2B 

∑ ∫ |𝑡𝑛
𝑝𝛼𝑞𝛼

− 𝑡𝑛−1
𝑝𝛼𝑞𝛼

|

𝑏

𝑎

𝑑𝑥 < ∞

∞

𝑛=1

 

Hence, by Beppo Levi’s Theorem 

∑ |𝑡𝑛
𝑝𝛼𝑞𝛼

− 𝑡𝑛−1
𝑝𝛼𝑞𝛼

| < ∞

∞

𝑛=1
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Hence, series (2-1) is summable |𝑁, 𝑝𝑛
𝛼, 𝑞𝑛

𝛼| almost everywhere. 

2.5 Proof of Corollaries 

Proof of Corollary 2B 

Let 𝑞𝑛
𝛼 = 1 and we may use our Theorem 2B to prove the Corollary. 

Now, 

𝑅𝑛
𝛼𝜐

𝑅𝑛
𝛼 −

𝑅𝑛−1
𝛼𝜐

𝑅𝑛−1
𝛼 =

𝑃𝑛−𝜐
𝛼

𝑃𝑛
𝛼 −

𝑃𝑛−1−𝜐
𝛼

𝑃𝑛−1
𝛼  

    =
1

𝑃𝑛
𝛼𝑃𝑛−1

𝛼 (𝑃𝑛−𝜐
𝛼 𝑃𝑛−1

𝛼 − 𝑃𝑛−1−𝜐
𝛼 𝑃𝑛

𝛼) 

 =
1

𝑃𝑛
𝛼𝑃𝑛−1

𝛼 (𝑃𝑛−𝜐
𝛼 𝑃𝑛

𝛼 − 𝑃𝑛−𝜐
𝛼 𝑝𝑛

𝛼 − 𝑃𝑛−𝜐
𝛼 𝑃𝑛

𝛼 + 𝑝𝑛−𝜐
𝛼 𝑃𝑛

𝛼) 

=  
𝑝𝑛

𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼 (
𝑃𝑛

𝛼

𝑝𝑛
𝛼 −

𝑃𝑛−𝑣
𝛼

𝑝𝑛−𝜐
𝛼 ) 𝑝𝑛−𝜐

𝛼  

Now, 

∫ |𝑡𝑛
𝑝𝛼,𝑞𝛼

(𝑥) − 𝑡𝑛−1
𝑝𝛼,𝑞𝛼

(𝑥)| 𝑑𝑥
𝑏

𝑎

= ∫ |∑ (
𝑅𝑛

𝛼𝜐

𝑅𝑛
𝛼 −

𝑅𝑛−1
𝛼𝜐

𝑅𝑛−1
𝛼 ) 𝑐𝜐𝜑𝜐(𝑥)

𝑛

𝜐=1

| 𝑑𝑥

𝑎

𝑏

 

                                                                         =    ∫ |∑ (
𝑝𝑛

𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼 (
𝑃𝑛

𝛼

𝑝𝑛
𝛼 −

𝑃𝑛−𝑣
𝛼

𝑝𝑛−𝜐
𝛼 ) 𝑝𝑛−𝜐

𝛼 ) 𝑐𝜐𝜑𝜐(𝑥)

𝑛

𝜐=1

| 𝑑𝑥

𝑎

𝑏

 

Hence, Schwarz’s inequality, and orthonormality gives 

≤ √𝑏 − 𝑎 {∑
𝑝𝑛

𝛼2
𝑝𝑛−𝜐

𝛼2

𝑃𝑛
𝛼2

𝑃𝑛−1
𝛼2 (

𝑃𝑛
𝛼

𝑝𝑛
𝛼 −

𝑃𝑛−𝜐
𝛼

𝑝𝑛−𝜐
𝛼 )

2

|𝑐𝜐|2

𝑛

𝑣=1

}

1/2

 

∑ ∫ |𝑡𝑛
𝑝𝛼,𝑞𝛼

(𝑥) − 𝑡𝑛−1
𝑝𝛼,𝑞𝛼

(𝑥)|

𝑏

𝑎

𝑑𝑥 ≤  √𝑏 − 𝑎

∞

𝑛=1

∑ {∑
𝑝𝑛

𝛼2
𝑝𝑛−𝜐

𝛼2

𝑃𝑛
𝛼2

𝑃𝑛−1
𝛼2 (

𝑃𝑛
𝛼

𝑝𝑛
𝛼 −

𝑃𝑛−𝜐
𝛼

𝑝𝑛−𝜐
𝛼 )

2

|𝑐𝜐|2

𝑛

𝜐=1

}

1
2∞

𝑛=1

 

= 𝑀 ∑
𝑝𝑛

𝛼

𝑃𝑛
𝛼𝑃𝑛−1

𝛼 {∑ (
𝑃𝑛

𝛼

𝑝𝑛
𝛼 −

𝑃𝑛−𝜐
𝛼

𝑅𝑛−𝜐
𝛼 )

𝑛

𝜐=1

2

𝑃𝑛−𝑣
𝛼 2|𝑐𝜐|2}

1/2
∞

𝑛=1

 

Hence by hypothesis of Corollary 2B 

∑ ∫ |𝑡𝑛
𝑝𝛼,𝑞𝛼

(𝑥) − 𝑡𝑛−1
𝑝𝛼,𝑞𝛼

(𝑥)|

𝑏

𝑎

𝑑𝑥 < ∞ 

∞

𝑛=1

 

Hence by Beppo Levi’s Theorem  
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∑ |𝑡𝑛
𝑝𝛼,𝑞𝛼

(𝑥) − 𝑡𝑛−1
𝑝𝛼,𝑞𝛼

(𝑥)| 𝑑𝑥 < ∞

∞

𝑛=1

 

Therefore, series (2-1) is  absolutely  (𝑁, 𝑝𝑛
𝛼) summable almost everywhere. 

 


