Chapter III

Absolute Indexed Generalized Nörlund Summability of Orthogonal Series

3.1 Introduction	49
3.2 Absolute Indexed Generalized Nörlund Summability of Orthogonal Series	50
3.3 Proof of Theorems	52
3.4 Proof of Corollaries	54

3.1 Introduction

Let $\{\varphi_n(x)\}$, (n=0,1,2...) be an orthonormal system (ONS) of L^2 integrable functions defined in closed interval [a,b]. We consider the orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x) \tag{3-1}$$

with real coefficients $\{c_n\}$. We also assume that f(x) belong to $L^2(a,b)$ and

$$f(x) \sim \sum_{n=0}^{\infty} c_n \, \varphi_n(x) \tag{3-2}$$

represents an orthogonal expansion of f(x), where

$$c_n = \int_{h}^{a} f(x)\varphi_n(x)dx, \quad n = 0,1,2,...$$

We may denote the partial sum s_n , generalized Nörlund mean i.e. (N, p_n, q_n) mean and generalized (\overline{N}, p_n, q_n) mean by

$$s_n(x) = \sum_{k=0}^{n} c_k \varphi_k(x)$$
$$t_n^{p,q} = \frac{1}{R_n} \sum_{k=0}^{n} p_{n-k} q_k s_k(x)$$

and

$$\bar{t}_n^{p,q} = \frac{1}{\bar{R}_n} \sum_{k=0}^n p_k q_k s_k (x)$$

respectively.

Here, R_n and \bar{R}_n are as follows:

$$R_n = \sum_{k=0}^n p_{n-k} q_k = \sum_{k=0}^n p_k q_{n-k} = (p * q)_n; R_n \neq 0$$
(3-3)

for all n, and

$$\bar{R}_n = \sum_{k=1}^n p_k q_k; \; \bar{R}_n \neq 0$$
 (3-4)

for all n.

We may write,

$$R_n^j = \sum_{v=j}^n p_{n-v} q_v {3-5}$$

$$\bar{R}_n^j = \sum_{v=j}^n p_v q_v \tag{3-6}$$

and

$$R_n^{n+1} = 0, R_n^0 = R_n$$

$$\bar{R}_n^{n+1} = 0, \bar{R}_n^0 = \bar{R}_n$$

Also, we may consider

$$P_n := (p * 1)_n = \sum_{v=0}^n p_v$$
$$Q_n := (1 * q)_n = \sum_{v=0}^n q_v.$$

The series (3.1) is $|\overline{N}|, p, q|_k$; $k \ge 1$ summable if

$$\sum_{n=1}^{n} n^{k-1} \left| \bar{t}_{n}^{p,q} - \bar{t}_{n-1}^{p,q} \right|^{k} < \infty$$

We may refer to equations (1-19) and (1-22) for more details.

3.2 Absolute Indexed Generalized Nörlund Summability of Orthogonal Series

Krasniqi, Xh. Z. 2010 has established the following theorem on the absolute indexed generalized Nörlund summability $|N, p, q|_k$, $k \ge 1$ of (3-1):

Theorem 3.1

If, for $1 \le k \le 2$, the series

$$\sum_{n=0}^{\infty} \left\{ n^{2-\frac{2}{k}} \sum_{j=1}^{n} \left(\frac{R_n^j}{R_n} - \frac{R_{n-1}^j}{R_{n-1}} \right)^2 \left| c_j \right|^2 \right\}^{\frac{k}{2}}$$
 (3-7)

converges, then the orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is summable $|N, p, q|_{k_n}$ almost everywhere.

In this chapter, we have extended the Theorem 3.1 to $|\overline{N}, p, q|_k$, $k \ge 1$ summability of orthogonal series.

Our theorem is as follows:

Theorem 3A

Let $1 \le k \le 2$ and if the series

$$\sum_{n=0}^{\infty} \left\{ n^{2-\frac{2}{k}} \sum_{j=1}^{n} \left(\frac{\bar{R}_{n}^{j}}{\bar{R}_{n}} - \frac{\bar{R}_{n-1}^{j}}{\bar{R}_{n-1}} \right)^{2} \left| c_{j} \right|^{2} \right\}^{\frac{k}{2}} < \infty$$

then, the orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is $|\overline{N}, p, q|_k$ summable almost everywhere.

Corollary 3A1

If the series

$$\sum_{n=0}^{\infty} \left\{ \sum_{j=1}^{n} \left(\frac{\overline{R}_{n}^{j}}{\overline{R}_{n}} - \frac{\overline{R}_{n-1}^{j}}{\overline{R}_{n-1}} \right)^{2} \left| c_{j} \right|^{2} \right\}^{\frac{1}{2}}$$

converges, then the orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is summable $|\overline{N}, p, q|$ almost everywhere.

Corollary 3A2

Let $1 \le k \le 2$ and the series

$$\sum_{n=0}^{\infty} \left(\frac{n^{1-\frac{1}{k}} p_n}{P_n P_{n-1}} \right)^k \left\{ \sum_{j=1}^n p_{j-1}^2 \left| c_j \right|^2 \right\}^{\frac{k}{2}} < \infty$$
 (3-8)

then, orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is summable $|\overline{N}, p|_k$ almost everywhere.

Corollary 3A3

Let $1 \le k \le 2$ and the series

$$\sum_{n=0}^{\infty} \frac{p_n}{P_n P_{n-1}} \left\{ \sum_{j=1}^{n} p_{j-1}^2 \left| c_j \right|^2 \right\}^{\frac{k}{2}}$$

converges, then orthogonal series

$$\sum_{n=0}^{\infty} c_n \varphi_n(x)$$

is summable $|\overline{N}, p|$ almost everywhere.

3.3 Proof of Theorems

Proof of Theorem 3A

Let $\bar{t}_n^{p,q}$ be the (\bar{N},p,q) mean of the orthogonal series (3-1). Now,

$$\bar{t}_n^{p,q} = \frac{1}{\bar{R}_n} \sum_{k=0}^n p_k q_k \, s_k(x)$$

$$= \frac{1}{\bar{R}_n} \sum_{k=0}^n p_k q_k \sum_{j=0}^k c_j \varphi_j(x)$$

$$= \frac{1}{\bar{R}_n} \sum_{j=0}^n c_j \varphi_j(x) \sum_{k=j}^n p_k q_k$$

$$= \frac{1}{\bar{R}_n} \sum_{j=0}^n c_j \varphi_j(x) \, \bar{R}_n^j$$

Hence,

$$\Delta \bar{t}_{n}^{p,q}(x) = \bar{t}_{n}^{p,q}(x) - \bar{t}_{n-1}^{p,q}(x)$$

$$= \frac{1}{\bar{R}_{n}} \sum_{j=0}^{n} c_{j} \varphi_{j}(x) \, \bar{R}_{n}^{j} - \frac{1}{\bar{R}_{n-1}} \sum_{j=0}^{n} c_{j} \varphi_{j}(x) \, \bar{R}_{n-1}^{j}$$

$$= \sum_{j=0}^{n} \left(\frac{\bar{R}_{n}^{j}}{\bar{R}_{n}} - \frac{\bar{R}_{n-1}^{j}}{\bar{R}_{n-1}} \right) c_{j} \varphi_{j}(x)$$
(3-9)

Now,

$$\int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx = \int_{a}^{b} 1 \cdot \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx$$

Using Hölder's inequality

$$\int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx \le \left(\int_{a}^{b} (1)^{\frac{2}{2-k}} dx \right)^{1-\frac{k}{2}} \left\{ \int_{a}^{b} \left(\left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} \right)^{\frac{2}{k}} dx \right\}^{\frac{k}{2}}$$

$$= (b-a)^{1-\frac{k}{2}} \left\{ \int_{a}^{b} \left(\left| \Delta \bar{t}_{n}^{p,q}(x) \right| \right)^{2} dx \right\}^{\frac{k}{2}}$$

Hence, by orthonormality relation, we have

$$= (b-a)^{1-\frac{k}{2}} \left\{ \sum_{j=0}^{n} \left(\frac{\overline{R}_{n}^{j}}{\overline{R}_{n}} - \frac{\overline{R}_{n-1}^{j}}{\overline{R}_{n-1}} \right)^{2} |c_{j}|^{2} \right\}^{\frac{k}{2}}$$

Hence,

$$\sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx \leq \sum_{n=1}^{\infty} n^{k-1} \left(b - a \right)^{1 - \frac{k}{2}} \left\{ \sum_{j=0}^{n} \left(\frac{\overline{R}_{n}^{j}}{\overline{R}_{n}} - \frac{\overline{R}_{n-1}^{j}}{\overline{R}_{n-1}} \right)^{2} \left| c_{j} \right|^{2} \right\}^{\frac{k}{2}}$$

$$= (b - a)^{1 - \frac{k}{2}} \sum_{n=1}^{\infty} n^{k-1} \left\{ \sum_{j=1}^{n} \left(\frac{\overline{R}_{n}^{j}}{\overline{R}_{n}} - \frac{\overline{R}_{n-1}^{j}}{\overline{R}_{n-1}} \right)^{2} \left| c_{j} \right|^{2} \right\}^{\frac{k}{2}}$$

$$= (b - a)^{1 - \frac{k}{2}} \sum_{n=1}^{\infty} \left\{ n^{\left(2 - \frac{2}{k}\right)} \sum_{j=1}^{n} \left(\frac{\overline{R}_{n}^{j}}{\overline{R}_{n}} - \frac{\overline{R}_{n-1}^{j}}{\overline{R}_{n-1}} \right)^{2} \left| c_{j} \right|^{2} \right\}^{\frac{k}{2}}$$

$$= M_{1} \sum_{n=1}^{\infty} \left\{ n^{\left(2 - \frac{2}{k}\right)} \sum_{j=1}^{n} \left(\frac{\overline{R}_{n}^{j}}{\overline{R}_{n}} - \frac{\overline{R}_{n-1}^{j}}{\overline{R}_{n-1}} \right)^{2} \left| c_{j} \right|^{2} \right\}^{\frac{k}{2}}$$

where $M_1 := (b-a)^{1-\frac{k}{2}}$

Using condition (3-7), we have

$$\sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx < \infty$$

Therefore, according to Beppo Levi's theorem

$$\sum_{n=1}^{\infty} n^{k-1} \left| \Delta \bar{t}_n^{p,q}(x) \right|^k < \infty$$

Hence (3-1) is summable $|\overline{N}, p, q|_{k,}$ $1 \le k \le 2$.

3.4 Proof of Corollaries

Proof of Corollary 3A1

If we put k = 1 in Theorem 3A, we obtain the corollary 3A1 immediately.

Proof of Corollary 3A2

We have

$$\frac{\bar{R}_{n}^{j}}{\bar{R}_{n}} - \frac{\bar{R}_{n-1}^{j}}{\bar{R}_{n-1}} = \frac{P_{j-1}p_{n}}{P_{n}P_{n-1}}$$

Now, we shall take $q_n = 1$ in Theorem 3A. Hence,

$$\int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx \leq (b-a)^{\frac{k}{2}} \left(\frac{p_{n}}{P_{n} P_{n-1}} \right)^{k} \left\{ \sum_{j=1}^{n} P_{j-1}^{2} \left| c_{j} \right|^{2} \right\}^{1/2}$$

So,

$$\int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx \leq (b-a)^{\frac{k}{2}} \left\{ \sum_{j=1}^{n} \left(\frac{P_{j-1} p_{n}}{P_{n} P_{n-1}} \right)^{2} \left| c_{j} \right|^{2} \right\}^{\frac{k}{2}}$$

Hence,

$$\sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx \leq (b-a)^{\frac{k}{2}} \sum_{n=1}^{\infty} \left(\frac{n^{1-\frac{1}{k}} p_{n}}{P_{n} P_{n-1}} \right)^{k} \left\{ \sum_{j=1}^{n} P_{j-1}^{2} \left| c_{j} \right|^{2} \right\}^{k/2}$$

So,

$$\sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} dx \leq M_{1} \sum_{n=1}^{\infty} \left(\frac{n^{1-\frac{1}{k}} p_{n}}{P_{n} P_{n-1}} \right)^{k} \left\{ \sum_{j=1}^{n} P_{j-1}^{2} \left| c_{j} \right|^{2} \right\}^{k/2}$$

Using (3-8), we have

$$\sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b} \left| \Delta \bar{t}_{n}^{p,q}(x) \right|^{k} < \infty$$

Hence, according to Beppo Levi's theorem,

$$\sum_{n=1}^{\infty} n^{k-1} \left| \Delta \bar{t}_n^{p,q}(x) \right|^k < \infty$$

Hence, the proof follows.

Proof of Corollary 3A3

If we put k = 1 in corollary 3A2, our result follows immediately.