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This chapter provides some basic definitions and theorems.

2.1 Linear Algebra

Definition 2.1.1. (Inner Product) [118] Let V be a vector space over the field

K = R or C. An inner product on a vector space V is a function 〈·, ·〉 : V x V→ K,

satisfying the following axioms.
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For u1,u2,u3 ∈ V and α ∈ K,

• 〈u1,u2〉 = 〈u2,u1〉

• 〈u1 + u2,u3〉 = 〈u1,u3〉+ 〈u2,u3〉

• 〈αu1,u2〉 = α〈u1,u2〉

• 〈u1,u1〉 ≥ 0 and 〈u1,u1〉 = 0⇔ u1 = 0.

Definition 2.1.2. (Inner Product Space) [118]

Let V be a vector space over the field K. The vector space V with an inner product

〈·, ·〉 is called an inner product space.

Definition 2.1.3. (Norm)[71]

Let V be a vector space over the field K. Then the norm of a vector u in V is a real

number denoted by ‖u‖ and defined as

‖u‖ = 〈u,u〉
1
2 .

A norm satisfying the following properties:

1. ‖u‖ = 0 if and only if u = 0

2. ‖λu‖ = |λ|‖u‖, ∀λ ∈ K,∀u ∈ V

3. ‖u + v‖ ≤ ‖u‖+ ‖v‖, ∀u,v ∈ V

The norm ‖ · ‖ induces a metric. i.e. distance on V is defined as:

d(u,v) = ‖u− v‖. (2.1.1)

Definition 2.1.4. (Dot Product) [118]

Let f(·) =
m∑
i=1

αik(·, xi) and g(·) =
n∑
j=1

βjk
(
·, x′j

)
be K- valued functions. Then the

dot product between f and g is defined as 〈f, g〉 =
m∑
i=1

n∑
j=1

αi βjk
(
xi, x

′
j

)
.

The dot product 〈f, g〉 is symmetric and positive definite.
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Definition 2.1.5. (Quadratic Form) [92]

For an n × n real symmetric matrix A and an n-dimensional vector x, the form

xTAx =
n∑
i=1

n∑
j=1

aijxixj, aij = aji

is called a real quadratic form or quadratic form, denoted by Q(x).

For an Hermitian matrix A and a complex n-dimensional vector x, the form

x∗Ax =
n∑
i=1

n∑
j=1

aijx̄ixj, aij = āji

is called a complex quadratic form.

Definition 2.1.6. (Definite and Semidefinite Quadratic Form) [92]

A Definite Quadratic form xTAx, where A is a real symmetric matrix (or x∗Ax

where Ais a Hermitian matrix), is said to be

• positive definite if

xTAx > 0, (or x∗Ax > 0), for x 6= 0 (2.1.2)

xTAx = 0, (or x∗Ax = 0), for x = 0 (2.1.3)

• positive semidefinite if

xTAx ≥ 0, (or x∗Ax ≥ 0), for x 6= 0 (2.1.4)

xTAx = 0, (or x∗Ax = 0), for x = 0 (2.1.5)

• negative definite if

xTAx < 0, (or x∗Ax < 0), for x 6= 0 (2.1.6)

xTAx = 0, (or x∗Ax = 0), for x = 0 (2.1.7)

• negative semidefinite if

xTAy ≤ 0, (or x∗Ay ≤ 0), for x 6= 0 (2.1.8)

xTAy = 0, (or x∗Ay = 0), for x = 0 (2.1.9)
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• indefinite if for some x ∈ V, the quadratic form

xTAy ≥ 0, (or x∗Ay ≥ 0)

and for some x ∈ V, the quadratic form

xTAy ≤ 0, (or x∗Ay ≤ 0)

Definition 2.1.7. (Non-Degenerate Quadratic Form) [40] A quadratic form is said

to be non degenerate quadratic form if Q(x) = 0⇒ x = 0.

Definition 2.1.8. (Moore Penrose Inverse) [55]

Let A be an m×n matrix, then the Moore Penrose Inverse of A is the unique n×m
matrix B with the following properties:

• ABA=A

• BAB=B

• (AB)T = AB

• (BA)T = BA.

Definition 2.1.9. (Gram Matrix) [118]

Let χ be a nonempty subset of Rn. k : χ × χ → K where K = R or C be given

function and x1, x2, ...xn ∈ χ. Then the n×nmatrix K with elementsKij = k (xi, xj)

is called Gram matrix of k with respect to {x1, x2, ...xn}.

2.2 Optimization

Definition 2.2.1. (Convex Set and Convex Function) [107]

The set T = {x1, x2, ...xm} in a vector space over Rn is said to be a convex if

the line segment joining any two points of T lies entirely in T. i.e. for x1, x2 ∈ T,

x = λx1 + (1− λ)x2 ∈ T , where 0 ≤ λ ≤ 1.

If f ∈ Rn such that f (λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), where 0 ≤ λ ≤ 1,

then f is said to be a convex function.
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Definition 2.2.2. (Convex Hull) [132]

Convex hull C of the set of points T = {x1, x2, ...xm} is the intersection of all

convex sets containing T and is given by C ≡ a1x1+a2x2+...+amxm , where ai ≥ 0,

i=1,2,...,m and
m∑
i=1

ai = 1

Figure 2.1: Convex Hull

Definition 2.2.3. (Reduced/Soft Convex Hull) [47]

Reduced convex hull of the sample points {x1, x2, ...xm} is convex combination

a1x1+a2x2+...+amxm such that
m∑
i=1

ai = 1 and 0 ≤ ai ≤ µ, where 1
m
≤ µ ≤ 1.

If µ = 1 then it is usual convex hull.

Figure 2.2: Reduced Convex Hull

Definition 2.2.4. (Hessian Matrix) [107] Square matrix of second order partial

derivatives of a scaler valued function f is called Hessian Matrix of f which is defined

as: 

∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n


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Precursory 2.2.1. Karush-Kuhn-Tucker(KKT) conditions [41]

Consider optimization problem:

min
{x∈Rn}

f(x) (2.2.1)

subject to constraints,

gi(x) ≤ 0, i = 1, 2, ...,m

hj(x) = 0, j = 1, 2, ..., r.

Define the generalized Lagrangian,

L(x, α, β) = f(x) +
m∑
i=1

αigi(x) +
r∑
j=1

βjhj(x)

where α and β are Lagrange’s multiplier.

The Karush-Kuhn-Tucker (KKT) conditions are as follows:

∂

∂xi
L(x∗, α∗, β∗) = 0, i = 1, 2, ..., n (stationarity)

∂

∂βi
L(x∗, α∗, β∗) = 0, i = 1, 2, ..., r (stationarity)

α∗i gi(x
∗
i ) = 0, i = 1, 2, ....,m (Complementary slackeness)

gi(x
∗) ≤ 0, i = 1, 2, ...,m (primal feasibility)

α∗ ≥ 0, i = 1, 2, ...,m. (dual feasibility)

where, x∗, α∗ and β∗ are the values of x, α, β satisfying the KKT conditions. For

convex optimization problem KKT conditions are necessary and sufficient for global

minimum.

Precursory 2.2.2. Grid Search Method [107] This method involves setting up

grid in the design space. Let the lower and upper bound of the design variable xi

be li and ui respectively. Divide the range (li, ui) into pi−1 equal parts, so that

x
(1)
i , x

(2)
i , ..., x

(pi)
i are grid points along xi-axis, i = 1, 2, ...n. Therefore, p1p2...pn grid

points are there in the design space. In this method objective function is evaluated

at each of these grid points.

When number of design variables is small, this method can be conveniently used to

find an approximate optimum value.
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2.3 Functional Analysis

Definition 2.3.1. (Cauchy Sequence) [77]

A sequence (xn) of a metric space X is said to be Cauchy if for every ε > 0, there is

some N0, such that d(xn, xm) < ε for all n,m ≥ N0.

Definition 2.3.2. (Completeness, Hilbert Space) [118]

Let X be an inner product space. If every cauchy sequence in X is convergent then

X is called a complete inner product space. A complete inner product space is called

a Hilbert space.

Definition 2.3.3. (Kernel Function) [118]

Let χ be a nonempty subset of Rn. A function k : χ × χ→ R , such that k(x, x′)

returns a real number giving the similarity between two patterns x and x′ is called

a kernel function.

Theorem 2.3.1. (Mercer’s Theorem) [91]

Let χ be a closed subset of Rn, n ∈ N. Let k : χ × χ→ R be a symmetric function,

i.e. k(x, x′) = k(x′, x) where x ∈ Rn then k to be a valid kernel called Mercer’s

kernel, it is necessary and sufficient that for any finite set of points {x1, x2, ..., xm}
and real numbers {a1, a2, ...., am},

m∑
i,j

aiajk (xi, xj) ≥ 0, i.e. the corresponding kernel

matrix K is symmetric positive semi definite (definition 2.1.6).

Definition 2.3.4. (Reproducing Kernel) [118]

Let k be the real valued positive definite kernel and χ be a non empty subset of Rn.

Define the non linear function φ : χ→ Rχ such that it maps x to k(·, x) :

φ : x→ k(·, x)

and Rχ be the space of functions from χ to R, viz.

Rχ := {φ : χ→ R} ∈ Rχ. (2.3.1)

Construct a vector space containing the images of input patterns under the mapping

φ, as

f(·) =
m∑
i=1

αik(·, xi) (2.3.2)

16



Krupal S Parikh 2.3. FUNCTIONAL ANALYSIS

where m ∈ N, αi ∈ R and xi, x2, ...., xm ∈ χ are arbitrary.

The vector space is:

Span ({φ(x) : x ∈ χ}) =

{
f(·) =

m∑
i=1

αik(·, xi) : m ∈ N, xi ∈ χ, αi ∈ R

}

Let two functions f(·) =
∑m

i=1 αik(·, xi) and g(·) =
∑m′

j=1 βjk(·, x′j), and define the

inner product,

〈f, g〉Hk =
m∑
i=1

m′∑
j=1

αiβjk(xi, x
′
j) (2.3.3)

It is a valid inner product, as

• It is symmetric, since k is symmetric:

〈g, f〉Hk =
m′∑
j=1

m∑
i=1

βjαik(x′j, xi) = 〈f, g〉Hk

• It is bilinear:

〈f, g〉Hk =
m∑
i=1

βj

m′∑
j=1

αik(xi, x
′
j)

=
m′∑
j=1

βjf(x′j).

Therefore,

〈f1 + f2, g〉 =
m′∑
j=1

βj(f1(x
′
j) + f1(x

′
j))

=
m′∑
j=1

βjf1(x
′
j) +

m′∑
j=1

βjf2(x
′
j)

=
m′∑
j=1

βjf1(x
′
j) +

m′∑
j=1

βjf2(x
′
j)

= 〈f1, g〉Hk + 〈f2, g〉Hk
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Similarly, we can show that

〈f, (g1 + g2) = 〈f, g1〉Hk + 〈f, g2〉Hk〉

Then for all functions (2.3.2), we have 〈k (., x) , f〉 = f (x) where k is positive defi-

nite kernel and is called the reproducing kernel.

Definition 2.3.5. (Reproducing Kernel Hilbert Space(RKHS)) [118]

Let χ be a nonempty set. Rχ be a Hilbert space of functions f : χ → R define as

(2.3.1), endowed with the dot product 〈·, ·〉 (definition 2.1.4) and the norm ‖f‖ =√
〈f, f〉 and let k : χ x χ → R be a reproducing kernel, i.e. 〈f, k (x, .)〉 = f (x) for

all f ∈ H and k span Rχ, then Rχ is called Reproducing Kernel Hilbert Space.

2.4 Machine Learning

Precursory 2.4.1. One-to-One Algorithm

• Let there be K classes in a multiclassification problem.

• Divide the K classes in to K(K−1)
2

binary classes.

• Train each of these binary classes and set parameter values.

• Test the unknown data sample to all these binary classifiers.

• The class that gets the highest number of positive prediction, is predicted as

the class of unseen data sample.
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Precursory 2.4.2. Confusion Matrix

Confusion matrix gives error of classifier model and also types of the error.

Table 2.1: Confusion Matrix for Binary Class

Predicted

Positive Negative

Actual
Positive TP FP

Negative FN TN

where,

• TP : number of correctly classified samples from positive class.

• TN : number of correctly classified samples from negative class.

• FP : number of wrong classified samples from positive class.

• FN : number of wrong classified samples from negative class.

Precursory 2.4.3. (Accuracy)

Accuracy is an important evaluation for evaluating any classifier. The accuracy of

a classifier is also called predicted positive condition rate. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

Precursory 2.4.4. (Precision) [30]

Precision or true positive rate measures that, among all positive predicted samples

how many samples are actually positive. i.e. proportion of positive that are correctly

identified and define as:

Precision =
TP

TP + FP

Precursory 2.4.5. (Recall)[30]

Recall measures that, among all the samples which are actually positive, what frac-

tion are detected as positive and it is define as:

Recall =
TP

TP + FN
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For imbalanced dataset if classification accuracy is measured according to definition

(2.4.3), then the classifier can predict the value of the majority class for all predic-

tions and achieve high classification accuracy which is not correct. This drawback

can be overcome by measuring the classification accuracy using F-Score.

Precursory 2.4.6. (F-Score) [105]

F-score is the balance between Precision and Recall, it is the harmonic mean of

Recall and Precision and is defined as:

F-Score =
2 · (Precision · Recall)

Precsion + Recall
(2.4.1)

Precursory 2.4.7. (G-Score) [105]

G-score is another measure of accuracy which also do not account the size of positive

and negative classes and provide a fair comparison. It is geometric mean of Precision

and Recall and is defined as:

G-Score =
√

Precision · Recall (2.4.2)

Precursory 2.4.8. (K-fold Cross Validation)

K-fold validation is a technique to validate model during training phase. Following

are the steps for the K-fold cross validation technique:

1. Partition the training data set into k equal part, where each partition is called

a fold.

2. for i = 1 to k

• Take ith fold as validation set (testing set) and remaining k − 1 folds in

the Cross validation set (training set).

• Train classifier using k− 1 training set and calculate the accuracy of the

model obtained by temporary training-testing set.

• end

• Estimate the accuracy of the classifier by averaging the accuracies ob-

tained from all k folds of cross validation.

In the k-fold cross validation technique, all the samples of the original training data

set are used for both training as well as for validation. Also, each sample is used for

validation just once.
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Theorem 2.4.1. (Universal Approximation Theorem) [27, 26]

Let φ(·) be any non constant, bounded and monotonically increasing continuous func-

tion. Let In, the n-dimensional unit hypercube [0, 1]n. Then ∀f ∈ C(In), and ∀ε > 0,

∃p ∈ N ,sets of real constants αj, θj ∈ R,wij where i = 1, 2, ..., n and j = 1, 2, ..., p

such that G(x) =
p∑
j=1

αjφ(
n∑
i=1

wTijxi − θj) x ∈ In, w ∈ Rnxp as an approximation of

function f(·) independent of φ, that is for x ∈ Im, |G(x)− f(x)| < ε for all x ∈ Im
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