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Krupal S Parikh 5.1. INTRODUCTION

Various Euclidean and non Euclidean distance based kernels and their semi definite

properties are discussed in this chapter. Some of the kernels are indefinite kernels

defined in Krěın space which is pseudo Euclidean (pE) space. Classification results

are obtained by using various distance based kernels and also by a novel modified

Gaussian Kernel. With Support Vector Machine (SVM) as classifier, these kernels

are used to diagnose regular skin disorders of Dataset-I and Dataset-II.

Section 5.1, discusses the general introduction of indefinite kernels and various tech-

niques to deal with them. Mathematical formulation of Support Vector Machine

with Indefinite Kernels is discussed in section 5.2. In section 5.3, various distance

based kernels and modified Gaussian kernel are defined, their semi definite prop-

erties are studied using Gram matrix for Dataset-I and Dataset-II. Classification

results obtained using F-score are also discussed. Chapter ends with a summary in

section 5.4.

5.1 Introduction

In classification problem efforts are made to discover structure in the data. Em-

bedding the data in feature space using kernel functions and with regularization

terms, the complexity of the model can be controlled. So, kernels play a vital role in

the classification. They measures the similarities among training data for classifica-

tion and have wide range of applications in many classification problems. Positive

(semi) definite kernels are prevailing in machine learning algorithms. These kernels

are the traditional requirement of classifier such as Support Vector Machines(SVMs)

to achieve global optimum.To get good classification accuracy, sometimes a new ker-

nel required to be determined which may not be positive definite kernel, but it is

indefinite kernel. [95].

Distance between two samples can be used as dissimilarity measures. Many re-

searchers have used distance based kernels, some of which are non Mercer’s kernels,

i.e. they are neither positive definite nor negative definite, though they are giving

good classification accuracy. These kernels are known as indefinite kernels. Train-

ing a kernel based classifier using indefinite kernels is an active field of research in

machine learning. Haasdonk et.al. used tangent distance measure in distance based
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kernels using prior knowledge of transformation invariance into SVM [46]. They have

applied their approach to US-Postal-Service digit dataset and obtained comparable

better classification accuracy. Cortes et. al. used rational kernels, some of which are

non Mercer’s kernels [23]. Suicheng et. al. have used kernel principal component

analysis for spectrum modification and then used SVM as classifier [43]. Canu et.

al. obtained spline solution using indefinite kernels [15]. Luss et. al. penalized the

distance between proxy kernels and in their approach, learning of original indefinite

kernel matrix and support vectors weight learning carried out simultaneously [83].

Techniques to deal with Indefinite Kernel

For indefinite kernels, the optimization problem of SVM becomes non convex and

classifier may terminate at local optimum. To make the optimization problem con-

vex, some researchers used spectrum modification techniques viz., CLIP, SHIFT,

FLIP, SQUARE etc ([20], [83], [89], [103], [112], [140]). Using these techniques

indefinite matrix is converted into definite matrix, which makes the corresponding

optimization problem convex. This problem can be solved by regular solver like

SMO and global optimum can be obtained.

Following are different approaches for spectrum modification:

• CLIP: In this method, negative eigen values of indefinite kernel matrix are

considered as the noise of positive definite matrix and so they are removed.

The new kernel matrix thus obtained becomes positive definite and makes the

optimization problem convex.

• SHIFT: For small negative eigen values, spectrum can be modified with SHIFT

method, in which spectrum is shifted until non negative eigen values are ob-

tained.

• FLIP: In this approach, to remove negative eigen values, absolute value of the

eigen values are used.

• SQUARE: In this technique, to remove negative eigenvalues, square of the

eigen values are used.
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The main drawback of these techniques are, the original kernel change. By removing

the negative eigen values, sometimes the relevant information of the Dataset might

be lost. Laub et. al. discussed that negative eigenvalues also contain some informa-

tion about the structure in the data [73]. Loosli et. al. in have done decomposition

of kernel matrix and claimed that the negative part of the kernel can improve the

SVM performance [81].

In another approach to deal with indefinite kernels, instead of modifying spectrum,

the classifier directly deals with indefinite kernels. For these types of kernels the

feature space is not a Hilbert space but it is a pseudo Euclidean space where in-

ner product may not be positive definite. In this approach instead of minimizing

the objective function, the emphasis is given to stabilize the optimum value. Some

researchers are using the approach in which indefinite kernel matrix is directly con-

sidered by the solver without any modification of the spectrum. The resulting opti-

mization problem becomes non convex, which can be solved by solver like LIBSVM.

Lin & Lin have used SMO type decomposition method to solve non convex dual

problem for indefinite kernels [78]. Haasdonk has solved the non convex optimization

problem of indefinite kernels by minimizing distance between two convex hulls [47].

Loosli et. al. have discussed two methods to stabilize the objective function for

indefinite kernel. One method is eigen decomposition using SVM (ESVM) in which

exact solution is obtained but computational cost of pre-calculation of the whole

kernel matrix is high. In the other method instead of eigen value decomposition,

emphasis is given on stabilization of optimization problem [81]. In this method,

instead of Hilbert space, the feature space is Krěin space. This method reduces

computational cost of pre-computing kernel matrix but less efficient than ESVM, as

in ESVM exact solution is obtained, while in this approach approximate solution is

obtained.

5.2 Kreı̌n Space: A pseudo-Euclidean(pE) Space

When dataset contains non linearity, it is necessary to use kernels to classify data by

linear classifier. If these kernels are indefinite, then instead of Hilbert Space, they

are defined in pseudo-Euclidean(pE) space. The space is endowed with a Hilbert

topology, called Krěın space. Krěın space is an indefinite inner product space.
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Let R(p,q), be the pE space with signature (p, q), where p, q ∈ N0 with p + q = n,

n is the dimension of the pE space. The inner product in pE space is not positive

definite but indefinite and defined as follows:

Definition 5.2.1. (Indefinite inner product) [47]

For x = (xTp ,x
T
q ) ∈ R(p,q), the inner product is defined as, 〈x,y〉pE = xTp yp − xTq yq

= xTPy, where P = diag(1p,−1q). So, indefinite inner product is the difference of

two standard inner products.

Definition 5.2.2. (pseudo-Euclidean Space)[67]

The pseudo-Euclidean Space is a finite dimensional(n-dimension) real coordinate

vector space with an indefinite non-degenerate quadratic form (definition 2.1.7),

where inner product is indefinite(definition 5.2.1).

Some basic concepts about Pseudo Euclidean Space.

Following points are discussed in the Encyclopedia of Mathematics [124]:

(a) The norm in pE space is not induced by inner product.

(b) The modulus, |a| of a vector a ∈ R(p,q) in pE space is a non negative square root√
|〈a, a〉|, where 〈a, a〉pE defined as (definition 5.2.1), which may be positive

or negative.

(c) The number of independent vectors with |〈a, a〉| > 0 is equal to p and with

|〈a, a〉| < 0 is equal to q. i.e. p + q = n, where n is the dimension of the

vector.

The quadratic form in pE space is given by

q(x) = (x21 + x22 + ...+ x2p)− (x2p+1 + x2p+2 + ...+ x2p+q)

(d) The distance between two points A(x) and B(y) in pE space is taken to be the

modulus of the vector AB and is computed as follows:

|AB|2 = |y− x|2 = |〈y− x,y− x〉| = ‖xp − yp‖2 − ‖xq − yq‖2.

52
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Some Observations:

1. The square distance between two points in pE space is the difference of

the square distance in the real and imaginary directions, which can be

negative. So, real square root can not be determined.

2. In pE space there are three types of straight lines:

Euclidean with |〈a, a〉| > 0, pseudo-Euclidean |〈a, a〉| < 0 and isotropic

for which |〈a, a〉| = 0.

3. There are non zero points such that, 〈x, x〉 = 0. i.e. there are non-zero

points which are orthogonal to themselves. These are called isotropic

points and they form isotropic cone. Isotropic cone separates two regions:

positive squared norm and negative squared norm. (figure 5.1).

Figure 5.1: Divisions of pE spaces by isotropic cones

(e) pE space is not a metric space as the triangular inequality |a+ b| ≤ |a|+ |b| is

not satisfied.

(f) 1. pE is generalised Euclidean space. In particular, pE space with signature

(n,0) is Euclidean space.

2. Minkowski space is an example of pE space. It is a space R(1,3) with

q (x0, x1, x2, x3) = x20−x21−x22−x23 , where in physics x0 is ct- coordinate,

where c is the speed of light and t is time.

3. The plane z = x + yi, consisting of complex numbers equipped with the

quadratic form zz∗ = x2 − y2.
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4. Krěın Space which is indefinite inner product space is also pE space.

Definition 5.2.3. (Krěin space)[95]

Krěin space K is an indefinite inner product space spanned by two Hilbert spaces

H+ and H− such that

1. ∀f ∈ K, f = f+ − f− , where f+ ∈ H+ and f− ∈ H−

2. ∀f, g ∈ K, 〈f, g〉 = 〈f+, g+〉 − 〈f−, g−〉

Definition 5.2.4. (Indefinite Kernel in Krěın Space)[47]

Let χ be a non empty subset of Rn and {x1,x2, ...,xm} ∈ χ be a finite set of m

data points. Function k : χ × χ → R is called a Indefinite kernel function, if

for some v ∈ χ, vTKv > 0 and for some v ∈ χ, vTKv < 0, where K = k(xi, xj),

i, j = 1, 2, ...,m.

5.3 Classification with Indefinite Kernel

In this section the mathematical formulation of classification problem with Indefinite

kernel in pE space as well as the Support Vector Machine (SVM) with indefinite

kernels is discussed.

When indefinite kernel is used in SVM, the corresponding optimization problem

of SVM becomes non convex. Haasdonk has interpreted SVM as optimal hyper

plane classifier by minimizing the distance between two convex hulls in pseudo Eu-

clidean Space instead of by maximizing margin [47]. He suggested that for appropri-

ate choice of parameters (low value of regularization term) global optimum can be

achieved. In their formulation, they have included only distances and avoided the

kernel functions, which induces the distance. Instead of finding global minimum,

the emphasis is given on stabilisation. Finding the minimum distance between two

reduced convex hulls is equivalent to find maximum margin in SVM [13]. Schölkopf

et. al. in 2001 have also discussed that maximum margin hyperplane is equivalent to

bisecting the shortest line orthogonally connecting to two convex hulls [118]. So, the

optimization problem is to minimize the distance between two soft(reduced) convex

hulls in such a way that few outliers do not dominate the solution.
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Let the two convex hulls for both classes of training data are

x+ =
∑

i,yi=+1

αiφ(xi),
∑
yi=1

αi = 1, αi ≥ 0 (5.3.1)

x− =
∑

j,yj=−1

βjφ(xj),
∑
yj=−1

βj = 1, βj ≥ 0 (5.3.2)

5.3.1 Optimal Separation for separable data in pE space

Figure 5.2: Convex Hulls for Separable Data

Let x+ and x− are two convex hulls of two separable datasets. Let x′w = b1 and

x′w = b2 are the two separating planes as shown in the figure (5.2). The distance

between two convex hulls (parallel supporting hyperplanes) is given by x′w = b1−b2

‖w‖

which can be maximized by minimizing the normal vector(weight vector) ‖w‖pE
and maximizing (b1 − b2) [13].

Setting b1 − b2 = 2 , the optimization problem becomes,

min
w

1

2
‖w‖2pE = wTPw (5.3.3)

where,

w := x+ − x− and P := diag(1p,−1q),

(p, q ∈ N0 with p + q = n , n is the dimension of the pE space.)
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subject to the constraints, ∑
i,yi=1

αi = 1, αi ≥ 0∑
j,yj=−1

βj = 1, βj ≥ 0

The dual of the optimization problem (5.3.3) is [47]:

max
αi,βj

1

2

∑
i,j

αi βj yi yj 〈xi, xj〉 (5.3.4)

subject to the constraints, ∑
i,yi=+1

αiyi = 0,
∑

j,yj=−1

βjyj = 0

m∑
i=1

(αi + βi) = 2

0 ≤ αi ≤ 1, 0 ≤ βj ≤ 1.

5.3.2 Optimal Separation for Non-Separable data in pE space

For non-separable data, the convex hulls of two different classes will intersect (see

figure 5.3). So, using linear classifier it is not possible to separate the two data

points.

Figure 5.3: Convex Hulls for Non-Separable Data
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The effect of outliers can be reduced using reduced convex hulls (refer definition 2.2,

figure 5.4) in which an upper bound is kept on the multipliers, in the convex com-

bination of each point of the convex hulls [13].

Figure 5.4: Reduced Convex Hulls for Non-Separable Data

The dual of the optimization problem (5.3.3) is:

max
αi,βj

1

2

∑
i,j

αi βj yi yj k(xi, xj) (5.3.5)

subject to the constraints, ∑
i,yi=1

αi = 1, 0 ≤ αi ≤ µ1∑
j,yj=−1

βj = 1, 0 ≤ βj ≤ µ2

where, k(xi, xj) = 〈φ(xi), φ(xj)〉 and φ : {xi}ni=1 → R
(p,q) be some nonlinear function.

Training of dual convex hull optimization problem (5.3.3) is performed for different

values of µ1 and µ2. If classes are not skewed then µ1 = µ2 = µ can be considered.

The optimization problem (5.3.3) is quadratic but it may not be convex.
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The optimal classifier is given by, sign(g(x)) where,

g(x) = ‖x− x−‖2pE − ‖x− x+‖2pE

Optimal hyper plane is the minimum distance classifier with respect to closet point

of convex hulls.

5.3.3 SVM with Indefinite Kernel

For noisy data, adding soft margin error term the SVM primal problem in pE for

non separable sample points is given by:

min
w,b,ξ

1

2
wTPw + C

∑
i

ξi (5.3.6)

subject to the Constraints,

yi
(
wTPφ(xi) + b

)
> 1− ξi, ξi ≥ 0

where, C > 0 is the regularization parameter.

Optimization problem given in (5.3.6) is not convex. By solving it, stationary point

w ∈ R(p,q) and b ∈ R and ξ ∈ Rn
+ can be obtained, which are given by [47],

w =
∑
i

αiyiφ(xi)

b := −1

2
wTPw + φ(xi)

and ξi is given by,

ξi =


1− yi

(
wTPφ(xi) + b

)
, if αi = C

0, otherwise.
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Some Remarks:

Following points were discussed in [47].

(a) If αi < C and αi = C, ξi < 1, then data are correctly classified by SVM. But,

if αi = C and ξi > 1 , then classification is wrong.

(b) When wTPw > 0, then points are correctly classified. But, when wTPw < 0,

the points have negative squared distance from the points of other convex hull.

This violets the nice property of distance that lower distance then high simi-

larity. So, by theoretical aspect and geometrical interpretation, wTPw > 0 is

the requirement for relevant solution. So, wTPw should be positive. There-

fore, when kernels are non-CPD, linear separability is not enough but positive

norm is also required, which is obtained by lower value of the regularization

parameter C.

(c) We can obtain only stationary point in case of indefinite kernels. The stationary

point is global optimum if, there is a positive square distance between two

convex hulls. Also the point have positive square distance to all points of their

corresponding convex hulls.

(d) When wTPw < 0, wTPw can diverges to −∞, so margin maximization is not

right interpretation for indefinite kernel, instead optimal separation of convex

hulls is better.

(e) For P = In, optimization problem (5.3.6) is equivalent to standard SVM primal

problem.
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5.4 Classification using Various Kernels

5.4.1 Distance Based Kernels

Standard Radial Basis kernel function and Polynomial kernel function are defined

as follows:

• Radial Basis kernel function (RBF): exp(−γ‖x− y‖2),
where parameter γ is the radius of influence of support vectors.

• Polynomial kernel function: (αxTy + a0)
d ,

where d is the degree of the polynomial.

Euclidean distance is considered to be a powerful tool for similarity measure, it is not

the only solution of all types of data or pattern to be compared [16]. In this study

the Euclidean distance in RBF kernel is replaced with many other distances where,

some distances are not satisfying metric property so they are termed as pseudo met-

ric. Also, the standard inner product in polynomial kernel is replaced by different

inner products, some of which are not positive definite. In this study Euclidean

distance/standard inner product are replaced by some of the distances/inner prod-

ucts discussed in [16]. Their effects on classification results are also studied. Here,

we have proposed a new kernel function which is Modified Gaussian kernel [102].

We have studied the definiteness property of each of these kernels by finding Eigen

values of Gram matrix(definition 2.1.9) of each kernel where, Some of these kernels

are indefinite(definition 5.2.4). .

We have carried out empirical verification by using two different Datasets: Dataset-I

and Dataset-II (Appendix-A). For training-testing purpose the datasets are divided

into 70%-30% random data partitions. Parameters of the kernels are set using grid

search method (2.2.2) and LIBSVM [76] is used to solve optimization problem. LIB-

SVM gives convergence not only for convex optimization problem but also converge

to a stationary point for indefinite kernels of non convex optimization problem [47].
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Table 5.1: Performance of SVM using Various Distance

Kernels

Various Distances in RBF Kernel

Distances from Minkowski Family

No Distance

Type

Definition Gram matrix Classification Accuracy

Data set I Data set II

1. City Block L1

m∑
i=1

|xi − yi| Positive definite 90.78% 97.26%

2. Euclidean L2

√
m∑
i=1

(xi − yi)2 Positive definite 90.07% 97.26%

3. Minkowski

Lp, p = 3, 4, 5

p

√
m∑
i=1

|xi − yi|p Indefinite 89.36% 95.89%

Distances from L1 Family

4. Sorensen

m∑
i=1
|xi−yi|

m∑
i=1

(xi+yi)
Positive definite 89.36% 98.63%

5. Gower 1
m

m∑
i=1

|xi − yi| Positive definite 90.78% 98.63%

6. Kulczynski

m∑
i=1
|xi−yi|∑m

i=1min(xi+yi)
Indefinite 90.07% 98.63%

7. Canberra
m∑
i=1

|xi−yi|
xi+yi+ε

Positive definite 90.78% 98.63%

8. Lorentzian
m∑
i=1

log(1+|xi−yi|)
1

Positive def. 90.78% 97.26%

Distances from Intersection Family

9. Wave Hedges
m∑
i=1

|xi−yi|
max(xi,yi)

Positive definite 90.78% 97.26%

10. Intersection 1
2

m∑
i=1

|xi − yi| Positive definite 90.78% 97.26%
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11. Tanimoto

m∑
i=1

(max(xi,yi)−min(xi,yi))

m∑
i=1

(max(xi,yi))
Pos. def. 90.78% 97.26%

Distances from Chi-squares family

12. Squared

Euclidean

m∑
i=1

(xi − yi)2 Positive definite 90.78% 97.26%

13. Squared χ2
m∑
i=1

(xi−yi)2
2∗(xi+yi)+ε Positive definite 90.78% 97.26%

Various Inner Product in Polynomial kernel

Inner Product family

14. Standard Inner

Product

m∑
i=1

xiyi Positive definite 90.78% 97.26%

15. Cosine

m∑
i=1

xiyi√
m∑
i=1

x2i

√
m∑
i=1

y2i

Positive definite 90.07% 89.82%

16. Kumar-Hassebrool

(PCE)

m∑
i=1

xiyi√
m∑
i=1

x2i+

√
m∑
i=1

y2i−
m∑
i=1

xiyi

Positive

definite

90.78% 97.26%

5.4.2 A Novel Modified Gaussian Kernel

A proposed novel kernel is defined as:

K(x,y) =
(√
‖x− y‖2 + ε

)(
e−γ∗‖x−y‖

2
)

(5.4.1)

This kernel is indefinite and using SVM 91.50% classification accuracy for Dataset-I

and 98.63% accuracy for Dataset-II is obtained. For Dataset-I, in which total 329

training samples, 199 positive and 130 negative Eigen values for the Gram matrix

of modified kernel function is obtained and for Dataset-II, total 293 training sam-

ples, 72 positive Eigen values, 221 negative Eigen values for the Gram matrix of the

proposed indefinite kernel function are obtained [102]. Figure (5.5) and Figure (5.6)
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show the classification accuracy using F-scores for distance substitution kernels and

Modified Gaussian Kernel for Dataset-I and Dataset-II respectively.
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Figure 5.5: Graph of Classification Accuracy for Dataset-I
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Figure 5.6: Graph of Classification Accuracy for Dataset-II.

5.5 Summary

In this chapter a novel modified indefinite Gaussian Kernel is introduced and classifi-

cation of various dermatological skin disorders are carried out using Support Vector

Machine. Various types of distances and inner products are substituted in lieu of

standard Euclidean distance and inner product in Radial basis kernel function and

Polynomial kernel function respectively. Classification accuracy is obtained using

these distance substitution kernels and for newly developed kernel. Definiteness of

these various kernels are computed using Gram matrix. It is observed that the novel

Gaussian kernel exhibits the highest classification accuracy. It is an indefinite ker-

nel, but it has robust mathematical theory in Krěın space with better F-scores and

thus it is acceptable for the Datasets under study.
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