Chapter 4

Wavelet collocation approaches for

partial differential equations
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4.1 Introduction

PDE solutions using wavelet algorithms are usually based on Galerikin techniques
as given by Chen, C. Hwang, Y. P. Shih [106], Vani [8] or collocation methods by
Naldi [97], [108]. Daubechies wavelets were used in most of the cases.

M.Q. Chen, C. Hwang, Y. P. Shih [106] used Daubechies wavelet for implementing
wavelet Galerikin approach on a bounded interval. The exact evaluation of various
finite integrals, whose integrands involved products of Daubechies compactly sup-
ported wavelets and their derivatives and/or integrals.

Wavelet Galerikin scheme involves the evaluation of connection coefficients. Con-
nection coefficients are integrals with integrand being the product of wavelet bases
and their derivatives.

Valeriano Comincioli, Naldi [108] solved the evolution equation using an adaptive
wavelet algorithm. They implemented Daubechies wavelet along with a two stage
implicit Runge Kutta method with a suitable numerical approximation of the exact
Jacobian. They implemented the approach to a one dimensional semilinear parabolic
equation given by,

Wy = Wy + f(w), w(z,0)=w

and specified boundary conditions. It was solved after reformulating it to an abstract

Cauchy problem in L? space as,

W' = AW + F(w), W(0)=W°
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K.P. Mredula 4.1. INTRODUCTION

where the boundary conditions together with the differential operators were incor-
porated into the operator A.

As explicit expression for Daubechies wavelets are not available so their analytical
differentiation or integration is not possible. This fact in particular complicates the
solution of nonlinear PDE’s, where integrals of products of wavelets and their deriva-
tives must be computed. This can be done by introducing the connection coefficients
as given by Juan [46], which is possible only for a few class of nonlinearities. But
numerical evaluation of these coefficients is often unstable or inaccurate [103]. So
Haar wavelet(dbl) being piecewise constant function is utilized to overcome these
shortfalls.

Evolution equations were solved by Lepik [103] using Haar approximation. Bound-
ary layer fluid flow problem was solved using Haar by Siraj-ul-Islam, Sarler B., Aziz
I. and Fazal-i-Haq [95].

They had solved natural convection bounday layer flow. The natural convection
flows are caused by the density gradient. Density variation is caused due to the
temperature difference. The governing PDE consist of continuity, momentum and
energy of two dimensional flow over a vertical flat plate with uniform surface tem-

perature given by,

ou n v

or Oy
ou n ov d*u B T—T.
U— +V=— = y——= _—
ox oy 7By2 9 Tw — Too

or ar 0*T
Ur— FV— =

ox Oy oy?

subject to the boundary conditions,
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K.P. Mredula 4.1. INTRODUCTION

where x and y are coordinates measured parallel and perpendicular to the plate.
They had transformed the PDE to a system of nonlinear ODFE’s, then applied Haar
wavelet algorithm for the system of ODE.

Lepik [102] solved the evolution equation,

Pu  Ou ou 0%u
W‘i‘/ﬁE—F(t, IL,%7@),

(@

where ¢ € [tin, trin], @ € [Tin, Tfin).

He took I to be a nonlinear function along with «, {;,,  in, Zin, T in, as constants.
Dividing the interval [t;,, ;5] into N equal parts of length At = (t”‘—;vtﬂ) and de-
noting ts = (s — 1)At, s=1,2,...,N.

For subinterval ¢ € [ts,¢s41] the solution is approximated. He considered the as-

sumption of derivative of the solution as Haar series approximation in space as,
W'=Y es(n)hy(z) (4.1.1)

where ¢, is a 2m dimensional row vector it is regarded as a vector constant in the
subinterval ¢ € [ts,ts11]. We extend Lepik’s [103] to solve the parabolic equation
with Haar approximation in one dimension and then extend the idea to solve the
elliptic partial differential equations. Algorithms for the approach is described in
detail along with five test problems. Brief tables describing the formulated results
are given.

The implementation of Haar wavelet function as basis for solving ODE motivates its
implementation to PDE. The initial attempt was done to utilize the basis function
for approximating space variable in a parabolic equation. In the solution procedure

of elliptic PDE the approximation was taken both in 2 and y space. Simple examples
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were solved using codes generated to evaluate and solve the PDE.

4.2 Parabolic partial differential equation

To apply the proposed method we follow the following stages

Function approximation.

Subsequent integration depending on the order of the equation.

Substitution of the values to the partial differential equation.

Solving the system for Haar coefficients which leads to the solution.

Motivated by the concept similar to the considerations for an ordinary differential
equation [102].

Considering an equation of the form u; = wu,, with particular initial and boundary
condition, we recall equation 4.1.1, with u” representing first derivative with respect

to time and second derivative with x, also

Cout = o, ¢ty oy Cmot1] and oy (2) = [ho(x), hi(2), ... hyp—1 (2)]F

¢; represents Haar coefficients, i = 0,1,2,..,(m — 1) and h,,(x) are Haar functions
with

m = 27, where

-1

U = cs(n)hy () = Cp T hy (2), (4.2.1)

3

3
Il
=}
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where C,,,T is a constant in t € (ts,ts+1). Integrating the equation 4.2.1 with respect

to t from t;  to t and twice with respect to x from 0 to x we obtain,

u'(x,t) = (t — t5)COp hn(2) + ula, t,) (4.2.2)

w(z.t) = (t — t)Cp Q) + x[u/(0,1) — /' (0,t,)]
(4.2.3)

+u(0,t) — u(0,ts) + u(x, ts),

where (), () represents double integral of Haar function with respect to = from 0

to x. To utilize the boundary conditions

u(0,t5) = go(ts) u(l,ty) = g1(ts)

(0, 1) = go'(t) a(1,t) = g1 (t)

(4.2.4)

we differentiate equation 4.2.3 with respect to t and put x = 1 to use equation 4.2.4

and obtain

u(1,t) = (t — t5)CLQum(x) + u(1,t,) — u(0,1,)

(4.2.5)

+u'(0,t) — u'(0,ts) + u(0,t)
w(1,t) = CLQm(x) +u'(0,t) +u(0,1) (4.2.6)
w(z,t) = CrQu(x)+ 20/ (0,t) +u(0,1) (4.2.7)
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Rearranging equation we obtain

u'(0,1) — ' (0,t5) = —(t — ) OLQm () — u(l,t,)
(4.2.8)

+u(0,ts) — u(0,t) +u(l,t)

W(0,8) = a(l,t) — CT Q. (x) —u(0,1) (4.2.9)

Now taking z — z; and t — i1 and discretizing the result we obtain from

equation 4.2.3

“(-Tlv ts+1) = (ts+1 - ts)OmTQm(x) + x[ul(oa ts—i—l) - ul(ov ILS)]

(4.2.10)
+u(0,tsy1) — w(0,ts) + u(x, ty)
Using the equation 4.2.5 we get
(0, o) — 0/ (0,t5) = —(top1 — ts)CF Quu(x) — u(1,ts) + u(0,t,)
(4.2.11)
- u(oa ts+1) + u(17 ts+1)

W (0,ts41) = (1, tey1) — CLQu(x) — w(0, ts1) (4.2.12)

From equation 4.2.2 and equation 4.2.6 we obtain
W(wy, tsr1) = CF Q) + 2[@ (0, t551)] + (0, tsi1) (4.2.13)
u”(xly ts+1) = (ts+1 - ts)err;hmxl + u”(ml, ts) (4214)

68



K.P. Mredula 4.3. NUMERICAL EXAMPLE

Hence from equation 4.2.10 using equations 4.2.11, 4.2.12, 4.2.13 and 4.2.9 we get

u(xla ts+1) = (ts—l-l - ts)(jvz‘r;Qm(xl) + U(Ih ts)

- U(O, ts) + xl[_(terl - ts)(/yvz;Qm(xl)

(4.2.15)
+ U(l, ts+1) - u(l, ts) + U(O, ts)
- U(O, ts-i—l)] + ’lL(O, t5+1)
iy, top1) = Cp Q1) + 31| Ch Q1) — (0, t511)
(4.2.16)
+ U(l, terl)] =+ U(O, terl)
4.3 Numerical example
Consider a simple example
Ut = Ugy
with condition wu(x,0) = sin(7x) (4.3.1)

w(0,0) =0 and wu(l,t) =0.

Substituting the expression for derivative with ¢ as in equation 4.2.13 and twice
derivative with = in equation 4.2.14, system of equations are generated and they are
solved to obtain Haar coefficients. The Haar coeflicients are substituted in equa-
tion 4.2.15 which gives Haar solution. The solution using Haar wavelet collocation
method is obtained using computer coding which is compared with solution ob-

tained using analytic solution and finite difference method. The analytic solution
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Table 4.1: Represents the absolute error between Haar solution and analytic with

| x\t x=0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375 |
t=0.0001 0.0001323 0.0001359 0.0001355 0.0001356 0.0001356 0.0001355 0.0001359 0.0001321
0.005 0.005168 0.002286 0.0032153 0.0032243 0.0032121 0.0030481 0.0007266 0.0146834
0.01 0.0103493 0.002762 0.0057416 0.0061405 0.0060397 0.0050278 0.0004646 0.0195367
0.015 0.0154442 0.0020657 0.0074223 0.0085369 0.0082825 0.0061571 0.0015896 0.0209419
0.05 0.0461981 0.0138149 0.0043511 0.0123356 0.013174 0.0083376 0.0017236 0.0164513
0.1 0.0757318 0.0401328 0.0154609 0.0007081 0.0056727 0.0053065 0.0002901 0.0096614
0.2 0.1026435 0.0734385 0.0493779 0.0309346 0.0180237 0.0101218 0.0063804 0.005714
0.65 0.0926572 0.078788 0.0651544 0.0519291 0.039268 0.027308 0.0161676 0.005951
0.9999 0.0687896 0.0584033 0.0481632 0.0382116 0.0286908 0.0197421 0.0115057 0.004122
for equation 4.3.1 obtained by variable separable method is,
oo
. . N —m2r3t
u(w, t) = by, sin(mma)e (4.3.2)
m=1

where

bm -

b =1,

bi=0 for

u(z,t) = sin(nz)e

1
2 / sin(mmx) sin(rz)dx
0

i=23,..

—m2t

The absolute errors are listed in table 4.1 for space step taken with resolution of

J = 2 and table 4.2 represents resolution of J = 4 with time step 0.0001. The solu-

tion improves with increased resolution which is clearly shown by reduced absolute

error in the table 4.1 and 4.2.

Table 4.3 gives absolute error between the analytic solution and finite difference

Table 4.2: Represents the absolute error between Haar solution and analytic with

J=4
| t\x 0.015625 0.046875 0.078125 0.265625 0.296875 0.328125 0.390625 0.671875 0.703125 0.890625 0.984375 |
t=0.0001 3.44E-05 4.48E-05 4.46E-05 4.49E-05 4.49E-05 4.5E-05 4.5E-05 4.5E-05 4.49E-05 4.47E-05 3.41E-05
0.005 0.001488 0.000825 0.000392 0.000128 0.000127 0.000125 0.000121 0.000122 0.00012 0.000481 0.001916
0.01 0.002948 0.001957 0.001212 0.000222 0.000252 0.000266 0.000274 0.000239 0.000208 0.000713 0.001889
0.015 0.004347 0.003126 0.002153 0.000195 0.000285 0.000341 0.000395 0.000308 0.000248 0.000785 0.001821
0.1 0.019826 0.017767 0.015836 0.006992 0.005941 0.004999 0.003414 0.000117 3.39E-05 0.00029 0.000775
0.2 0.026338 0.024613 0.022939 0.014184 0.012955 0.011793 0.00967 0.003195 0.002747 0.000909 0.000398
0.65 0.023764 0.0229 0.022037 0.01693 0.016095 0.015268 0.013635 0.006754 0.006046 0.002084 0.000301
0.9999 0.01804 0.017381 0.016722 0.012814 0.012174 0.011539 0.010286 0.005017 0.004479 0.00151 0.000213
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Table 4.3: Represents the absolute error between analytic solution and finite differ-
ence method.

| t\x x=0.015625 0.046875 0.078125 0.265625 0.296875 0.328125 0.671875
t=0.0001 0.02897 0.067661 0.066682 0.048075 0.043131 0.037772 0.03205
0.005 0.046705 0.139665 0.231281 0.705274 0.764533 0.816429 0.81578
0.01 0.044456 0.13294 0.220144 0.671315 0.727721 0.777118 0.777118
0.015 0.042316 0.126539 0.209544 0.638991 0.692681 0.739699 0.739699
0.05 0.029956 0.089579 0.148339 0.452349 0.490357 0.523642 0.523642
0.1 0.018288 0.054688 0.090561 0.276158 0.299362 0.319682 0.319682
0.9999 2.54E-06 7.6E-06 1.26E-05 3.84E-05 4.16E-05 4.44E-05 4.44E-05

method with same step length of t as 0.0001 and step length of z taken as consid-
ered in Haar formulation with J = 4. The table clearly shows the improved solution

pattern of Haar collocation method with reduced error as in Table 4.2

Here resolution J = 2 was considered for figure 4.1 and resolution J = 4 was

taken for figure 4.2

Haar solution J=2

Figure 4.1: Solution of example using Haar collocation method with J=2.
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Haar solution J=4

Figure 4.2: Solution of example using Haar collocation method with J=4.

4.4 Convergence of Haar wavelet series

Let u(z) € L*(R) and let > 32, a;¢0;(x) be its wavelet series where /s are defined in
chapter 2 article 2.1.3 equation 2.1.13. The following result assures the convergence

of wavelet series. We define error e; with resolution j as u — u; where
2]+1

U; = Z CLZQ/)Z(.Z')

i=1

Result: For u(x) € L*(R), the error norm with resolution j is bounded and

[K .
llej (@) < 71012_(3)2 1
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where K7 and C are obtained by
1
max [/ (z)| < Ky and :/|xwg(x)|dx
0

as in [39], [90], [62] , which is verified in the example solved with J =4 and J = 2
in chapter 3.

Proof: Consider j as the assumed resolution level

lej(@)] = |u = uj(@)] = [ 25010 aithi(2))|
2i+1

where  wj(z) =Y 7" api(x) (4.4.1)

Now |le; (@”2 = Z;.i27+1+1 Z?izﬁlﬂ a;a ffooo Vi(x)(x)de

Hence now
2 2
le;@)P < > ail (4.4.2)
i=23+141
But
|a;| < C1272" max |u/(n)] (4.4.3)

where C = fol |zpo(z)|de  and n € (k277, (k4 1)277) hence

“ej(.%‘)”Q < 222j+1+1 ch’122—3i
where |u'(z)] < K; (4.4.4)

and  hence |le;(z)]| < \/ErC1273@7
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4.5 OQObservations

The orthogonal property of Haar wavelet used as basis reduces the computational
cost, just by increasing the resolution. Higher accuracy is obtained in the solution
which is shown in tables 4.1 and table 4.2. This provides a solid foundation in
application of Haar wavelet to partial differential equation. Table 4.3 compares the
approach of Haar wavelet collocation with finite difference method and indicates the

improvement of solution in absolute sense.

4.6 Elliptic partial differential equation

4.6.1 Algorithm-EPDE

The definition of Haar wavelet and multi resolution as [58] are utilized. The approach
includes the consideration of second order derivative as Haar approximations in both

x and y direction as

Wee = H(x)CLH(y) (4.6.1)

= H"(2)CyH(y) (4.6.2)

Wyy
For the elliptic partial differential equation was taken to be,
Wy 1 Wyy = 0 (463)

where C) and C5 represent the coefficient matrix of dimension m. Now integrating

equation 4.6.1 twice with respect to z and y between 0 to z and 0 to y respectively
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we obtain,
we(z,y) = H'QuCiH(y) +w,(0,y) (4.6.4)
wz,y) = H'QEQECIH(y) + zw.(0,y) +w(0,y) (4.6.5)
and
wy(z,y) = H'QuCyH(y) + wy(z,0) (4.6.6)
w(z,y) = H'QLQLCH (y) + yw,(x,0) +w(z,0) (4.6.7)

The procedure includes assuming the highest derivative term as linear combination
of Haar wavelet and the successive integration is performed to obtain the original
function. The terms are substituted into the governing equation to be solved which

leads us to solve only system of algebraic equation in Haar coefficients.

4.6.2 Numerical examples

The cases discussed in this study include different boundary conditions for

wz:r _|_ «wyy g 0 (4.6.8)

and Helmholtz equation handled for the described approach as follows:
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4.6.3 Case 1l

Here the equation 4.6.8 is solved with,

w(x,0) =2z(1 — )

(4.6.9)
w(z,1) =w(0,y) =w(l,y) =0
4.6.4 Case 2
The equation 4.6.8 is solved with,
w(z,0) =z
w(r, 1) = 2® — 1,
(4.6.10)
w(0,y) = =y,
4.6.5 Case 3
Here the equation 4.6.8 is solved with,
w(z,0) = 2°,
w(z, 1) = 22— 1,
(4.6.11)

UJ(O y) = _y27

w(ly)=1-y
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4.6.6 Case 4 Helmholtz equation

Consider the Helmholtz equation as

Wy + 10y = f(2,9) (46.12)
with boundary conditions

w(x,0) =0,

w(z,1) =0,

w(l,y) =0,

f(z,y) = (k — 27%) sin(rz) sin(7y).

Figure 4.3: Error plot for case 1
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Wavelet Haar method solution

Figure 4.4: Haar solution for case 2

Figure 4.5: Comparison of exact, Haar and FDM for case 3
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Figure 4.6: Comparison of solution of Helmholtz equation using exact, Haar, per-
centage error.

Error plots are analyzed to observe that error is sufficiently reduced using the Haar
approach. In case 1 given by equation 4.6.9, 128 grid points are considered. Figure
4.3 shows comparison of exact solution, Haar solution along with the percentage
error plots from left to right respectively. Figure 4.4 gives the Haar solution for
case 2. For case 3 given by equation 4.6.11, the solution is given in figure 4.5 which
compares the exact solution, Haar solution, finite difference and percent error of
Haar solution. For case 3, m is taken to be 8. Figure 4.6 compares the solution
of Helmholtz equation 4.6.12 with & = 0.5. It gives the comparison of exact, Haar

solution along with percentage error from left to right taking m = 64.
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4.7 Convergence analysis of two dimensional wavelet

method:

Assuming that, f(z,y) € C*([q,r] X [q,7]) there exist M > 0, for which,

2
Y car v sy el <l
Considering
n—1m-—1
fnm X y = amwz
i=0 j=0

where n =29t o =0,1,2,-- m =2 3=0,1,2,-- then [93]

(b—a)'OM? ( 1 )
3 32k + 525 4 53 )

||f(x,y) - fkl(x?y)“ S

As ] — oo and k — oo leads to

| f(x,y) = fulz.y)]] — 0.

for k<n, [<m.

4.8 Observations

Different cases with boundary conditions are analyzed at different resolutions, which
shows the significance of the approach used. It clearly indicates that a very fine
change in resolution gives a better approximation. The plots as in figure 4.3 and
4.5 which compares the Haar wavelet approach with solutions using exact and finite

difference method with the percentage error as low as 2.
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