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5.1 Introduction

In this chapter algorithm of the wavelet approximation is combined along with the
finite volume technique for solving the partial differential equation. The choice of
space of resolution considered in multi resolution framework improves the decom-
posed solution and the reconstruction phenomena. Extraction of the detailed pattern
in the required region of sudden change is achieved. Accuracy of the approach is
discussed with decomposed solution in multi resolution framework. Test cases are
discussed to validate the approach.

Simplicity of the approach is highlighted which is improved by closely recording the
error approximation. The method is compared with already available approaches

in literature such as finite volume Godunov approach and exact solution obtained
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K.P. Mredula 5.1. INTRODUCTION

by method of characteristics. A comparison of proposed approach with Haar,
Daubechies and Coiflet wavelet basis is also considered for a better understanding
of localized behaviour of the approach. Before discussing our approach the basics of
hyperbolicity of the linear systems, shallow water wave equation and finite volume

framework are discussed briefly.

Hyperbolicity of the linear system A linear system of the form

wy + Aw, =0 (5.1.1)

is called hyperbolic if the m x m matrix A is diagonalizable with real eigenvalues.
Here the eigen values are considered as A\! < A2 < ... < \™,

The matrix is diagonalizable if there is a complex set of eigenvectors i.e. if there are

nonzero vectors r*, 72, ..., r™ € R™ such that

Ar? = \PrP (5.1.2)
for p=1,2,...,m and these vectors are linearly independent.
The matrix R = [rt]r?]... |r™],
formed by collecting the vectors 7', 72, ... r™ together, is nonsingular and has an
inverse R~!. Hence,

R'AR=A (5.1.3)
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K.P. Mredula 5.1. INTRODUCTION

and A = RAR™!

with

)\1
)\2
A= = diag(\' < ? <. <) (5.1.4)

)\m

Hence A is transformed to diagonal form by similarity transformation. So the linear

system can be rewritten as,

RYw,+ R*ARR Yw, =0 (5.1.5)

Defining z(x,t) = R~ w(x,t) leads to ,

2+ Az =0 (5.1.6)

Since each A is diagonal, this system decouples into m independent advection equa-

tions for the components zP of z :

2+ APzl =0 (5.1.7)

forp=1,2,...,m.

Since each of M is real, these advection equations make sense physically and can be
used to solve the original system which has solutions represented as waves traveling
at the characteristic speeds A!' < A2 < ... < A™. These values represent the

characteristic curves along which information propagates in the decoupled advection
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K.P. Mredula 5.1. INTRODUCTION

equations as viewed in an analytic solution.

This motivates us to consider the solution assumption to be an approximation of
wavelet basis within the cell intervals in FVM. This idea was implemented in the
work of Haleem [28] for solving the shallow water equation.

He considered the shallow water wave equations, which are an attempt to model
fluid flow in a confined region such as harbors where the depth is relatively small.
The unknown parameters were, height = h(z,y,t) above the bottom, x— velocity
= u(z,y,t) and y— velocity = v(x,y,t). The governing equations were conservation
of mass and conservation of momentum in both the z and y directions.

The conservation matrix form of shallow water wave equation is given by,

Shallow water wave equations
Ui+ FU),+GU),=0 (5.1.8)

in R® where

U= |uh (5.1.9)

uh
F(U) = u?h+ Lgh? (5.1.10)

uvh
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and

vh
GU) = wvh (5.1.11)

v*h + gh?

The equations are also commonly known as Saint Venant equations, Haleem consid-

ered the one dimensional case with source term as,

ou  OF(U)
i =9 112
ot * oz 5 (5 )
with
. T . gh2 QQ T . Tk .
U=lhql", FU)=]qg, - + E] and S(U)=10,—gh(So — S¢)|" (5.1.13)

where t is the time (s), z is space (m) and U, F' and S are the vectors containing the
conserved variables, the fluxes and the bed source terms, respectively, in which A is
the water depth (m), ¢ is the flow rate per unit width (%), g is the acceleration
gravity (%) and z is the bed elevation (m). For a rectangular channel, Sy in terms

of Manning’s equations and Sy have the following expressions

5, = n’|qlq

o — 1
h? R (5.1.14)
So = ﬁmz

Finite volume framework The Godunov type finite volume approach considers
the division of the domain into uniform non overlapping control volumes, each cell

is defined as [; = [z; 1,x,,1] having cell size dx = x,,1 — z, 1 having centre at
T2 2 ] 2
.’l?z.+%+.’lli

2

1
2
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K.P. Mredula 5.1. INTRODUCTION

Integrating to formulate the integral equation for equation 5.1.12 by integrating over
space and then over time domain ¢, =t to i1 = t + 6t , the discrete form is

given as,

Ul = Ut — (P — F L) 46t (5.1.15)
i 2

where Ufk represents the local numerical solution at a time. It is a piecewise constant
average representation. F;‘i 1 represents the flux at cell interface which depends on
the choice of flux.

Haleem choose to approximate solution in terms of Haar wavelet and evaluated the
equation 5.1.15 as,

nthtt otk n

_271\/2 R R . (5116)
. ng __ oe ni—1 ng oe Tt g
with L = ——=(F™ (U5, UM) + FR(USL UM))

5x I'_I»j7 1""'17)q 2y
1

where j indicates the resolution chosen for the local cell n. F#¢(U") indicates the
flux chosen to be Roe.

In our study we have considered different numerical fluxes, for the Burger equations
with wavelet families which is an extension to Haleems work where he restricted to
shallow water problem with Haar wavelets only.

We have also analyzed the experimental order of accuracy for our proposed approach

to justify its accuracy.

Solution of Burger inviscid equation is formulated using the proposed wavelet based
finite volume approach in this chapter which is compared with the classical Godunov
finite volume [79]. Test cases are given which implement the proposed approaches

using Haar wavelet, Symlet wavelets and Coiflet wavelet. Experimental order of ac-
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curacy is also formulated for the approach proposed by K.P.Mredula, V.D Pathak,
B.M. Shah [54].
Nonlinear Burger equation is solved using wavelet based finite volume in this chap-

ter. The nonlinear equation

wy + [f(w)]e = vwee, where flw) =— (5.1.17)

is utilized. The finite volume method by Mikel [72] for = 1 is considered. He inte-

grated equation 5.1.17 with respect to « between z; 1 and z;, 1 and then rewriting

_1
2

it as,

[ e = i = ()2 (5.1.18)
.’L’j_% =
Now approximating ecach of the term in equation 5.1.18 as,
i+l d
/ o wydx ~ —w(xj,t)h,
e dt
J=32
for h being the step size in x.
~[wale? = vlwn (3, t) — ey, 1, 1)
~ I/[’Uf(xj, t) B ,U)(‘Tj—lv t) _ 'lU(I'j_'_l, t) — ,U)(xj7 t)] (5119>
h h
B w(xjy1,t) — 2w(z;, t) +w(z;_1,t)
- _V[ h ]
and
T 1
—Uf )"} = flwla; s, 0) = (w1, b)) (5.1.20)
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Substituting these into the equation 5.1.18, then dividing by h and taking W;(t) to

be the function w(z;,t) the system obtained is,

dW] VVV‘H_l - QWJ — VVj_l . f(M/j—

dt h? h

Discretizing the time derivative in forward difference a finite volume discretized form

is achieved.

Test cases are solved which compared the solution of the proposed approach with
the solution given by Shu- Sen Xie [99], who implemented solution formulation us-
ing reproducing kernel function and solution given by Mittal [82], who implemented
modified cubic spline method.

Test cases comparing the approaches with results of Asai [7] who used automatic
differentiation algorithm and the work of Aksan [29] by quadratic B-Spline func-
tions are shown. This comparison is followed by the analysis of the solution using
experimental order of accuracy to justify the validity of the approach.

The proposed approach is implemented to viscous burger equation. The study
proved that the error is reduced by introducing the wavelet approximation to fi-
nite volume algorithm with various test cases. This is achieved due to the utiliza-
tion of salient features of conservative property embedded in finite volume approach
and localization property of wavelets. The chapter includes description of a func-
tion representation by decomposed multi wavelets. Reconstruction of the function
is highlighted at a specific resolution. In section 5.2 we begin with discreption of

combined approach proposed for solving Burger inviscid equation
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K.P. Mredula 5.2. COMBINED APPROACH

5.2 Combined Approach

5.2.1 Burger inviscid equations using Godunov flux

Motivation The burger equation was discovered back in the year 1915 by Bate-
man [37]. In computational fluid dynamics, the inviscid burger equation plays an
important role in development and analysis of many algorithms due to its simple
but challenging phenomena[l]. One of the very interesting pattern of series solution
for burger equation was due to FAY [84]. It appears that for the same number of
freedom, spectral methods do yield better accuracy than finite difference solution
especially from the point of view of phase error. However if the problem involves
as in sharp variation of the profile then spectral methods do not possess an expo-
nential rate of convergence until the region of rapid change is resolved [30]. The
exponential fast convergence is lost as the derivatives are calculated in large regions.
The wavelet functions have been utilized for solution of ordinary differential equa-
tions, finite element approach and so on during the recent years. Utilizing the finite
volume with Godunov flux representation is an added advantage employed in this
attempt. With decomposition and reconstruction of solution values at each stage of

time step improves the solution.

Burger equation The Burger equations are appearing in most of the approximate
theories of flow through a shock wave in viscous fluid, and in study of turbulence.

The Burger equation,

ow ow  ow?
9w W2 2 2.1
o or Vo (5:21)
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is a quasilinear parabolic partial differential equation in which w(z,t) is the de-
pendent variable for most of the fluid mechanics applications with a small valued
parameter v. There is a similarity between the Burgers equation and the Navier-
Stokes equations due to the form of the non-linear terms and the occurrence of higher
order derivatives with small coefficients in both. The Burgers equation is one of the
very few non-linear partial differential equations which can be solved exactly for an
arbitrary initial data. For v = 0, the Burgers equation reduces to the momentum

equation of gas dynamics as

ow ow
E + w% =0 (5.2.2)

which is an important test case as considered in this study also.

Core idea The finite volume approach is based on writing the equation in integral
form. By considering the homogeneous scalar conservation law that is valid for any
arbitrary closed volume on the cartesian mesh [79]. The multi resolution helps in
representing any function in L?[—1, 1] as a series of multiwavelets using scaling and
dilating function. Here we attempt to bring together the properties of both finite
volume along with wavelet representation, for a better solution of the equation with

suddenly changing behaviour.
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5.3 Review of Approaches used in the algorithm

5.3.1 Multiresolution revisited

A brief discussion of multiresolution in relation to finite volume approach is given.
The theory follows from the well known Alpert’s multiwavelet algorithm[4]. The
interval [—1, 1] is used as one element at level 0 then, divided as two in level 1 and
so on. In mathematical sense the interval Iﬁffl and [gjfl on level n + 1 are formed

by splitting [7' on level n into two equal parts with n = 0,1,...,7 = 0,1,...,2" — 1.

At level n, the domain [—1, 1] is divided into 2" elements, defined as,
n __ —n—+1 - —n+1/ - v . no__
I=[-1+27""j,~1+2 (j+1)] with, j=0,1,..,2" = 1.

Now recalling concepts of multiresolution chapter 2 article 2.1.2, Godunov method
chapter 5 section 5.1, wavelets chapter 2 article 2.1.3 and few details from chapter

2, section 2.2, we consider spaces as,

Vot ={f: fe PH[-1,1])},

VI = {f: f e P¥[-1,0) U P*[0, 1]}
Vi ={f: f¢€ P’“(If),j =0,1,2,3}, ...,
Vit =) [ e PRI, = 0,1,.,2" — 1)

To begin defining multiwavelet in one dimension, the scaling functions was intro-
duced.
The scaling function spaces were defined as above V**! with P*(I ') being the space

of polynomials of degree k, on interval I} with nested property as
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Vit c vt c VY ¢ L VR L € L2[=1,1]. The space VF*! was generated
by 2"(k + 1) functions which were obtained by dilation and translation of Legendre

polynomials, ¢g, @1, @2, ..., i as
By (@) = 222w + 1) — 2 — 1) (531)

with [=0,1,...k and j57=0,1,...,2" — 1.
The orthogonal projection of an arbitrary function f € L*[—1,1] on to V1 n € N
was given [107] as discussed in details in chapter 2 section 2.2, recalling equation

2.2.9 which is given as,
PELf(z) = Z s (5.3.2)
where the expansion of the coefficient is given by

st (1) = (f5 &1 (5.3.3)

The value of the coefficient indicates the location of f(z) at a particular resolution
level. This is extended by considering a projection on W} with the multiwavelet
bases {¢/]";} along with a combined consideration, the function projection is modified

as,

N—

—_

2" —1

p
> dpap(x (5.3.4)

n=0 j=0 [=0

p
Pk+1f Z 0,
=0

where the detail coefficients were computed as d}'; = (f, 1/)l"j>
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5.3.2 Decomposition and Reconstruction

We implement the concepts, given by Alpert and Amat [5],[89]. The decomposition

due to the nested feature of V;* can be represented as,

2"—-1 p

ZZHZTQ/)?;’#” ( :

m=0 r=0

<t
w
ot
S—

where HJ' are the lowpass quadrature mirror filters. Refer [5] for details.

Similarly for the wavelet functions

2"—1 p

Uiy =Y G (5.3.6)

m=0 r=0

with G} as high pass filters are used. The combined use leads us to the bases

decomposition and the inverse which is bases reconstruction.

5.3.3 Finite Volume Godunov Approach

The finite volume approach involves writing the equation 5.2.2 in integral form.
With considerations of the homogeneous scalar conservation law that was valid for
any arbitrary closed volume on the cartesian mesh the equation in discrete form
using Godunov approach was given by [79],

n n k n n n n
witt =Wl — E[F(w s Wihy) — F(wji_y, w})] (5.3.7)

where a closed volume was represented by a cell ¢ in the domain of = as [z;_ 1, +%]

tn+1]

with time interval [, for integration.

Now
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with U > V we obtained,

U U+V>0

o = -
V otherwise
For U <V we get
U U>0
=9V V<0
0 U<0<V

Now a step by step formulation of the approach is mentioned in section 5.4,

5.4 Algorithm of the approach used

The proposed Wavelet Finite Volume (WFVM) is described in short by the four

steps.

Step 1 The initial condition is decomposed to the wavelet domain and recon-

structed to the chosen level of resolution with a specific choice of wavelet.

Step 2 Updating the value for next time step is performed with finite volume

formulation by considering the new domain of integration

A N
[ + ;(1 ) TT(l 27 1)),

hence evaluation of all the local values within the interval is achieved.

Step 3 Step 1 is repeated for the new value updated at same time step.
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Step 4 Then the next updated finite volume step is repeated. The intermedi-
ate decomposition and reconstruction of the obtained data improves in tracing the
details of change occurring in the solution phenomena and thus proves to be an
improved added property. The approach was experimented with the following test

cases as given in section 5.5.

5.5 Numerical experiments and discussion

5.5.1 Casel
1 z <0
The equation 5.2.2 was considered with initial condition w(z,0) =
0 x>0
1 Tz < %
The exact solution is given by w(z,t) = using the method of char-
0 T > %

acteristics. The solution procedure considers x in [—1, 1], final time ¢ = 1 with step
size of 0.01. In WFVM the wavelet considered is Daubechies at level 4 within the
interval. The solution comparison for FVM JWFVM and exact is represented in
figure 5.1 with green, blue and red respectively. Figure 5.2 gives the surface plot for
exact solution. The table 5.1, gives values for proposed approach with Haar, Symlet

and Coiflet wavelet used as basis function.
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Table 5.1: The table gives the comparative solution of the proposed method using
Haar, Symlets and Coiflet wavelets as basis for case 1.

| t X Haar Symlets Coiflet |
0 -04 1 0.99999 1.000002
0.2 -0.1 1 0.99999 1.000000

04 01 0971748  0.971748  0.9717487

0.6 0.3 0.7708705 0.7708705 0.7708705

0.8 0.5 0.3091955 0.30919551 0.3091955
1 1 0 0 0

Solution plot for w

Figure 5.1: Comparative plots for exact in red, FVM in green and WFVM in blue
for case 1 with various time levels
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Surface plot of exact solution for case 1

Figure 5.2: The exact solution by method of characteristics for case 1

5.5.2 Case 2

1 x <0
The equation 5.2.2 is considered with initial condition w(z,0) = ¢ 1 — g 0<z<l1
0 x>1
1 T <t
The exact solution is given by w(z,t) = =2 ¢ <z <1 using the method of
0 z>1

characteristics. The solution for wavelet finite volume approach is plotted in figure
5.3 as compared to its exact solution for different time step for  within [—1, 1], final
time ¢t = 1 ,with step size of 0.01. Figure 5.4 indicates surface plot for WFVM. The
figure 5.3 gives plot for different wavelets chosen as approximating basis to see the

performance of the proposed method.
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Plot for different time with time step as 0.001 for example in case 2

1.4 w
+ Haar
& Symlet
1.2} Coiflet |
1<>$$$$%%%%%%$$@$@@@ 1
: CSbe e e
£ t=0.02
£ = 08f ® % & & .
= C
%g t=0.12% & % ®
nE L & i
5 0.6
= t=0.22/§
&
0.4k 1=0.52 & 1
& g o
0.2} t=0.9 % m
0 ‘ : ‘
-1 -0.5 0 0.5
X axis

Figure 5.3: Comparative plots for WFVM with different wavelet basis, case 2

Solution of case 2 wilh WFVM daubachios lovel 4

Figure 5.4: Solution by WEVM for case 2 using Daubechies wavelet
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5.5.3 Case 3

The equation 5.2.2 with initial condition w(z,0) = z. is solved. The exact solution

is given by
2

w(z,t) = PR

In the solution a final time was set to 0.9 with time step 0.01. Coiflet wavelet with
level 7 for WFVM was implemented for z € [0, 1].
The plots for a comparative study of FVM in green, WEVM in blue and exact in

red, is given in figure 5.5. Figure 5.6 shows WFVM with Coiflet wavelet.

\\k\\

\\\\
RN

w\\\\\i\

A
AR

\
0
\\\i\

A
AN
)
7
N

—

/I
7
[

xaxis

Figure 5.5: Comparative plots for exact in red, FVM in green and WFVM in blue
for case 3 with various time levels
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Solution by WFVM with Coiflets5

Solution w

t axis X axis

Figure 5.6: Solution of case 3 by WFVM using Coifletb level 7

Table 5.2: The experimental order of accuracy is given for case 1

€AZ‘
Number of grids Proposed EOC
method
20 8.4709
40 4.2826  0.9840
80 2.1498  0.9943
160 1.0948  0.9849
320 0.5587  0.9486
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5.6 Convergence analysis for the proposed approach

The experimental order of convergence was formulated for the examples computed

using the formula,

log(£571) — log(e472)

EOCHmbw2 — 5.6.1
log(Azy) — log(Axy) ( )
where Az, and Az are the different mesh sizes.
Az1 _ ,,exact
T L - e, (5.6.2)
||weJ,H,L,||L1

which gives the relative percentage error for the different mesh considered as in
equation 5.6.1. w®%! indicates the exact solution as a reference value to compute the
experimental order of convergence, which is shown to be increasing with increased

cell numbers. In table 5.2 for case 1 the EOC for proposed approach is given which

indicates an accelerated value of EOC, converging to one.

5.7 Observations

The study gives a modified approach with combination of two phenomena and the
error is observed in terms of root mean square error between the exact and WFVM.
It was observed that the results are quiet comparable with case 1, the error was
noted between 0.0139 to 0.1445 . The case 2 showed a reading of error to be between
0.004 and 0.0553 with case 3 it was noted as between 0.0051 and 0.1152. The results
were agreeable with the existing procedures of FVM but the benefit observed was
the flexibility to analyse the solution due to multi resolution which was an added

advantage due to the fusion of approaches. The benefit of finite volume and wavelet
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were fully utilized due to the adaptability of the approach to different resolutions as
per the requirement for observing the sudden change in pattern of the solution. The
comparitive study with different wavelets like Haar, Symlet, Coiflet suggest that the
choice of basis depends on the type of example considered for better precision. The
experimental order of convergence is also analyzed for the proposed method with
case 1 which indicates that the convergence level is approaching 1 faster with an
increase of grids.

The study also indicates that selection of various wavelet families as basis for the
proposed approach is depending on the case handled, the performance of the varied

choices do not alter the solution to a large extent.

5.8 Viscous Burger equation using finite volume

approach

A new algorithm was implemented which combines the finite volume and wavelet
approximation to bring together the salient features of both the approaches for
obtaining numerical solution of nonlinear viscous burger equation under various
initial and boundary conditions. The approach was based on approximating the
values using wavelet and then it was combined with finite volume formulation. It
uses the localization property of wavelet basis. The root mean square error is studied
to establish the improvement in the solution as compared to the classical approaches.

Plots and tables indicate the significance of the algorithm discussed.
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5.8.1 Motivation

The concept of numerical approximation for solution of a partial differential equa-
tion, is widely implemented in many applications. Various approaches like wavelet
based finite difference [23],[56],[52], finite element[5], finite volume applicaton in
shallow water problem [38], their combinations like discontinuous galerikin in shock
tube, blast wave problem and Shu Osher problem as in [107], [51] have been used

by the researchers.

We consider the classical non linear burger equation

Xy Puss — v =0, (5.8.1)

with initial and boundary conditions as w(z.0) = fo(z), a < x < b and w(a,t) =
go(t) and w(b,t) = ¢1(t) , t € [0, T] where v > 0 is a small parameter known as the
kinematic viscosity and [ is some positive constant.

The Burger’s equation is the simplest nonlinear model equation for diffusive waves in
fluid dynamics. Burger’s equation arises in many physical problems including one-
dimensional turbulence, sound waves in a viscous medium, shock waves in a viscous
medium, waves in fluid filled in viscous elastic tubes, and magneto-hydrodynamic
waves in a medium with finite electrical conductivity.

Many numerical solutions have been proposed namely B-spline collocation [18], [44],

Galerikin finite element approach [2]. We compare our results with [82], [29],[99], [7].

The method proposed here for solving nonlinear burger equation combines the

wavelet based approach and the parabolic method in a novel pattern to bring to-
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gether the benefits of both the approaches.

5.8.2 Discretization

The governing equation 5.8.1 is discretized using the finite volume method [72]. We

rewrite the equation 5.1.17,
wet [f(W)le = vy,  where  f(w) = — (5.8.2)

Now by integrating equation 5.8.2 with respect to x between ;1 and z; 1 equation

5.8.2 is converted into following discretized form,

wh oy — 2w +w / ['w;-LJr;] —f [w?_
w(z+1 — W+ k(v Jj+1 ‘J J
J J ( h? h

i) (5.8.3)

where flw is the average of f[w?] and flw},,]. k and h indicates the time and

;Lié]
space step size respectively. Utilizing the wavelet approximation similar to burger

inviscid equation as in previous section 5.3.1. The following algorithm is proposed

5.9 Algorithm proposed for viscid Burger equa-

tion

Algorithm combines the features of discretization and mutiscaling, to obtain a more

reliable approach. The underlying idea is as follows:

e The time and space is discretized with At and Ax as per the requirement of

the example. Initialization of the viscosity parameter is done.
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e The function that represents the solution as per the initial condition is decom-

posed using multiscale decomposition by equation 5.3.4

e To go to the next time step we use finite volume frame work equation 5.8.3 in
article 5.8.2, and then again wavelet decomposition is performed according to

equation 5.3.4.
e The above step is repeated upto time T.

e Solution at all time step is represented in terms of a matrix..

5.10 Numerical experiments and discussion

In order to justify the implementation and adaptability of the algorithm three ex-

amples are discussed in details as

5.10.1 Example 1

The nonlinear Burger equation

ow ow 0w

t > 0 for § = 1 with initial condition w(z,0) = —sin7zx, v = % and z € [—7, 7]
is solved using the proposed approach with time step ﬁ. The plot is given in
figure 5.7. The analytic solution is given in [13] with surface plot figure 5.8. Figure
5.9 shows the surface plot of proposed approach. Figure 5.10 gives the root mean

square error plot for both classical parabolic and wavelet based proposed approach.
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Wavelet based solution with different t with time step = 1/(300pi)
1 T T T T T T T

0.8 t=0—> b

06} t=1/pi |

t= 2/pi
0.4} .
t=1

0.2 b

Solution
w
o
:
.

Figure 5.7: Wavelet based solution plot for the example 1

Analytic solution

w(x,t)

Figure 5.8: Analytic solution plot for example 1

5.10.2 Example 2

Considering the same equation 5.10.1 with 5 = 1 for z € [0, 1.2] with initial condition

w(z, 1) = m with boundary conditions w(0,t) = 0 and w(1.2,¢) = 0.
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Wavelet based solution

Figure 5.9: Wavelet based solution plot for example 1

Comparison of the root mean square errors for
wavelet based and classical approache

0.6} ]

classical approach

RMSE

0.3

0.2}
wavelet based\

0.1

0 0.1 02 03 04 05 06 07 08 09
t axis

Figure 5.10: Root mean square error of classical parabolic and wavelet based
parabolic solution with analytic value example 1.

The example is solved for v = 0.005, the step length of x as 0.01 and for time as

0.001. to obtain figure 5.11.
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Table 5.3: The experimental order of convergence as per equation 5.6.1 for example
1.

No of cells &4 EOC |
5 29.9071

10 29.5381 0.0179
16 13.9055 1.6031
32 12.8645 0.1122

The analytic solution is given by

x
w(m, t) = %t

with ¢ > 1 and to = 5.
The results obtained are compared with results obtained by [82], [99] with courser

2 grids in table 5.4.

Wavelet based solution for example 2
0.45 ‘ ‘ ‘ ‘

0.4l 17

0.35F

o
w

o
N
3

Solution
w at different t

©
- .°
3 )

e
=

0.05F

0 0.2 0.4 0.6 0.8 1 1.2 14
X axis

Figure 5.11: Solution for v = 0.005, At = 0.001 between 0 and 1 for ¢ < 3.6 for
example 2.
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Table 5.4: Comparison of solution using numerical and analytic solution for Az =
0.01, At = 0.001, v = 0.005 for example 2.

Shu [99] Mittal [82]  Proposed  Proposed
x ot At = 0.01, At =0.001 At=0.001 At=0.001, Analytic Solution
Ax =0.0001 Az =0.005 Az=0.00 Azx=0.01

0.2 1.7 0.1176565 0.1176452 0.1176093  0.1173452 0.1176452
2.5 0.0800527 0.079999 0.0799701  0.0797990 0.079999
3.0 0.0667147 0.066665 0.066641 0.0664658 0.0666658
3.5 0.0571820 0.05714 0.057122 0.0571422 0.0571422

04 1.7 0.2332111 0.235169 0.234525 0.235169 0.2351677
2.5 0.1591735 0.159977 0.159964 0.1599214 0.1599769
3.0 0.1328314 0.133321 0.133289 0.1332738 0.1333209
3.5 0.1139606 0.114278 0.1142459  0.1142380 0.1142779

0.6 1.7 0.2940048 0295857 0.2816436  0.2964038 0.2959097
2.5 0.2347876 0238129 0.2422683  0.2382074 0.2381207
3.0 0.1973222 0.199483 0.1997065  0.1994634 0.1994805
3.5 0.1697753 0.171225 0.1712523  0.1711861 0.1712242

0.8 1.7 0.0008917 0.000638 0.0019488  0.0006381 0.0006465
2.5 0.1103866 0.102132 0.0931274  0.1016980 0.1020957
3.0 0.2088346 0.208803 0.2021463  0.2088032 0.2088359
3.5 0.2119293 0.214593 0.222798 0.2145838 0.2145869

5.10.3 Example 3

The equation 5.10.1 is solved with 5 = 1 with time step 0.001, w(z,0) = 4z(1 — z).

The boundary conditions w(0,¢) = 0 and w(1,t) = 0 with = step length as 0.025

and v = 0.01 is considered.

The analytic solution is given by

w(x,t) =

2mv Yy | Gy €Xp

—n2nlut

nsinnwx

2.2
Ao+ Y ooy anexp~ TV n cos nx

(5.10.2)

Table 5.6 gives the comparative results for our approach with results in [29], [7], and

they are quiet satisfactory.
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Table 5.5: The experimental order of convergence according to equation 5.6.1 for
Example 2 at At = 0.001

Az
No of cells et ior proposed EOC g?ogosed
for FVM method FVM Method
10 17.7418  17.7211
20 5.1822 5.1550 1.7755 1.7814
40 1.2608 1.2236 2.0392 2.0748
80 0.2932 0.2625 2.1044  2.2207

Plot of the solution with wavelet based method for different time

0.9
0.8}
0.7
= 0.6
5
5 0.5F
&
041
0.3 t=0
| t=0.25
02 t=0.5
o1l t=0.75
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

X axis

Figure 5.12: Solution for Az = 0.025, At = 0.001, ¢t < 3 and v = 0.01. for example
3

5.11 Convergence analysis for the proposed ap-

proach

The experimental order of convergence is formulated for the examples computed
using the formula given in equation 5.6.1. which gives the relative percentage error
for the different mesh considered as in table 5.3 and table 5.5. w*** indicates the

exact solution as a reference value to compute the experimental order of convergence,
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Table 5.6: Comparison of solution using numerical and analytic solution for Az =
0.025, At = 0.001 for proposed method, v = 0.01 for example 3.

Asai [7] Aksan|[29] Proposed
Xt AL 00125 Az—0025 Ax— 0025 ‘nalyticSolution
At=00001 At =00001 At=0001
025 04 0.36232 0.36225 0.362356  0.3622
0.6 0.28209 0.28199 0.2820722  0.28204
0.8 0.23049 0.23039 0.2304514  0.23045
1.0 0.19472 0.19463 0.1046725  0.19469
3.0 0.07614 0.07611 0.07611154  0.07613
050 04 0.68380 0.68371 0.6839751  0.63368
0.6 0.54840 0.54835 0.548424  0.54832
0.8 045377 0.45374 0453692  0.45371
1.0 0.38572 0.38568 0.3856223  0.38568
3.0 015219 0.15216 0.152134  0.15218
0.75 04 092101 0.92047 0.9219043  0.92050
0.6 0.78324 0.78302 0.783568  0.78299
0.8 0.66285 0.66276 0.662885  0.66272
1.0 0.56940 0.56936 05693176  0.56932
3.0 022786 0.22773 0.2277426  0.22774

which is shown to be increasing with increased cell numbers. In table 5.5 for example

2 the comparison of EOC for both classical finite volume and proposed approach is

given which indicates an accelerated value of EOC with the classical approach.

5.12 Observations

In this chapter, we developed a wavelet based finite volume method for solving non-

linear Burgers equation using Daubechies wavelet as basis functions. In the present

method we combined the features of localization due to wavelet approximation and

the salient feature of finite volume which utilizes conservation laws within cell in-

terface.
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The flux conservation defined in average sense over each cell contributes in the im-
provement of accuracy. This method is tested on three test problems, and the root
mean square error plot figure 5.10 for example 1 clearly indicates the reduced error.
The solution by our approach as shown for example 2 in section 5.10, given in table
5.4, by using courser z grid Az = 0.05 and Az = 0.01 compares very well and gives
even closer to the analytical solution as compared to the results obtained by other
researchers [99], [18].

It is interesting to note in example 3 given in section 5.10, that we have considered
10 times larger time step than other researchers as in [7],[29], given in table 5.6
which helps in obtaining the solution at the desired time faster, with comparable

solution.
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