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      4.1   Introduction  

            Squeeze-film behaviour arises when two lubricated surfaces approach each other 

with a normal velocity, known as squeeze velocity. Squeeze-film behaviour always 

have an attraction for researcher because of its appearance in many fields of real life, for 

example (a) in industry, it is observed in machine tools, gears, rolling elements, 

hydraulic systems, engines, clutch plates, etc. (b) in human body, it  is observed in the 

study of skeletal joints as bio-lubrication. Due to this motivation many theoretical and 

experimental investigations were made on squeeze-film phenomenon by several 

investigators from different viewpoints. As reported by Gould [1], the study of squeeze-

films was developed more rigorously by Reynolds [2]. The equations derived and 

integrated were applicable to the situation in which a Newtonian fluid of invariable 

properties was being slowly squeezed out of the space between two rigid, flat parallel 

plates with elliptical boundaries. Many configurations were investigated by Archibald 

[3] for the case when the surfaces remain parallel during the approach. Jackson [4] 

included both viscous and inertia effects in an investigation of the squeeze-film between 

plane discs. An excellent review of the work in squeeze-films up to 1965 has been given 

by Moore [5]. Christensen [6] has analyzed the elastohydrodynamic problem on normal 

approach of two spherical bodies. According to results, the effect of elastic deformation 

profoundly influences all aspects of motion when the separation of two surfaces 

becomes narrow enough. Gould [7] examined the same problem by considering the 

lubricant to be a function of pressure and temperature, and showed the effect of 

temperature on the characteristics of high-pressure squeeze-films. Conway and Lee [8] 

studied the squeeze-film characteristics between a sphere and a flat plate.They found 
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that the effect of increase in viscosity of the lubricant with pressure causes large 

increase of pressure near the central area as compared with the pressure obtained for 

isoviscous lubricant.The other authors worked in this direction from different 

viewpoints are given in     [9-11].   

    All above authors have studied various geometry of bearing surfaces on the 

assumption that the surfaces are perfectly smooth. However, in the production of 

bearings, presence of surface roughness pattern always exists up to certain extent. 

Several studies were made concerning the bearing design systems including roughness 

effect. It has been pointed out that load-carrying capacity, frictional force etc. can differ 

from their values for a smooth surface and this difference depends mainly on the 

amplitudes and wavelengths of the waves representing the rough surface. Burton [12] 

studied the effect of surface roughness on the load supporting characteristics of a 

lubricant film by postulating the sinusoidal variations in film thickness. Davies [13] used 

the saw tooth curve to study the effect of surface roughness on the generation of pressure 

between rough, fluid lubricated moving deformable surfaces. Tzeng and Saibel [14] made 

study of surface roughness effect on slider bearing lubrication using probability density 

function for random variable characterizing the surface roughness. Using stochastic 

method, Christensen [15] studied hydrodynamic lubrication of rough surfaces to analyze 

the effects of surface roughness on the squeeze-film lubrication between the curved 

circular plates. Tonder [16] made theoretical study of transition between surface 

distributed waviness and random roughness. Christensen and Tonder [17] studied 

hydrodynamic lubrication of rough journal bearings. Prakash and Christensen [18] used 

the stochastic theory to study the surface roughness effects on squeeze-film lubrication 
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between two rectangular plates. Prakash and Tiwari [19] studied effect of surface 

roughness on the characteristics of porous bearings using Christensen’s stochastic theory. 

Andharia et. al. [20] studied the effect of surface roughness on the behaviour of a 

squeeze-film in a spherical bearing in transverse direction. Lin et. al. [21] have studied 

the effect of surface roughness on the oscillating squeeze-film behaviour of long partial 

bearings. Naduvinamani et. al. [22] studied the roughness effect on the squeeze-film 

formed by a sphere and a plate using couple-stress fluid. They showed that surface 

roughness effect considerably influences on squeeze-film characteristics. Bujurke et. al. 

[23] showed the effect of surface roughness on squeeze-film behaviour in porous circular 

discs using couple-stress fluid. They have shown that effect of couple-stress fluid and 

surface roughness is more pronounced as compared to classical one. More recently, Basti 

[24] discusses the effect of surface roughness and couple-stress fluid on squeeze-films 

formed between curved annular plates. It was shown that the circumferential roughness 

pattern on the curved annular plate results in more pressure buildup whereas performance 

of the squeeze-film suffers due to the radial roughness pattern for both concave and 

convex plates. 

In recent years, many theoretical and experimental inventions are made on the 

bearing design system as well as on the lubricating substances in order to increase the 

efficiency of the bearing performances. One of the major revolutions in the direction of 

lubricating substances is an invention of ferrofluids. Ferrofluids (FFs) or Magnetic fluids 

(MFs) [25] are stable colloidal suspensions containing fine ferromagnetic particles 

dispersing in a liquid, called carrier liquid, in which a surfactant is added to generate a 

coating layer preventing the flocculation of the particles. When an external magnetic field 
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H is applied, FFs experience magnetic body force (M ) H which depends upon the 

magnetization vector M of ferromagnetic particles. Owing to these features, FFs are 

useful in many applications like in sensors, sealing devices, filtering apparatus, elastic 

damper, bearings, etc.[26- 30]. 

  With the advent of FFs [25], many researchers have tried to find its applications 

as lubricant in bearing design system. Agrawal [31] studied effects of MF on a porous 

inclined slider bearing and found that the magnetization of the magnetic particles in the 

lubricant increases load-carrying capacity without affecting the friction on the moving 

slider. Chi et. al. [32] discuss new type of FF lubricated journal bearing consists of three 

pads. One of them is a deformable elastic pad. The theoretical analysis and experimental 

investigation shows that the performance of the bearing is much better than that of 

ordinary bearings. Moreover, the bearing operated without leakage and any feed system. 

Sinha et. al. [33] discuss about FF lubricated cylindrical rollers with cavitation. Recently, 

Uhlmann et. al. [34] discuss about application of MFs in tribotechnical systems. The 

rheological and tribological behaviour of MFs was investigated and compared with 

conventional lubricants between friction pairs under boundary conditions. Ahmad and 

Singh [35] studied about MF lubricated porous pivoted slider bearing with slip velocity. 

There it was discussed about the minimization of the slip parameter and permeability 

parameter for the possible increase in the load capacity. Andharia and Deheri [36] studied 

MF based squeeze-film for truncated conical plates with the effect of longitudinal 

roughness and found that load capacity can be increased with magnetization as well as 

negatively skewed roughness. The pressure and response time also found to increase with 

magnetization. Singh and Gupta [37] studied about curved slider bearing with FF as 
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lubricant and shown that the effect of rotation and volume concentration of magnetic 

particles improves the stiffness and damping capacities of the bearings. Lin et. al. [38] 

studied squeeze-film characteristics for conical plates with the effect of fluid inertia and 

FF, and shown the better performance of the system as compared to non-inertia non-

magnetic case. Lin et. al. [39] studied squeeze-film characteristics of parallel circular 

discs with the effects of FF and non-Newtonian couple stresses using transverse magnetic 

field. With these effects, it was shown that higher load capacity and lengthens 

approaching time obtained. Andharia and Deheri [40] studied about performance of a MF 

based squeeze-film between longitudinally rough elliptical plates. It was observed that 

increase in load-carrying capacity due to MF lubricant gets considerably increased due to 

the combined effect of standard deviation and negatively skewed roughness. Lin et. al. 

[41] studied effects of circumferential and radial roughness in the study of squeeze-film 

using non-Newtonian MF. It was shown that the mean load-carrying capacity increases 

and prolongs the mean approaching time as compared to those of the smooth discs with a 

non-Newtonian MF. However, in the case of radial roughness pattern the above trend is 

reverse. Huang and Wang [42] presented a comprehensive review on FFs lubrication 

theory based on different flow models. Shah and co-authors [43-53] studied about FF 

lubricated various designed bearings like porous slider bearings of different shapes, long 

journal bearing, axially undefined journal bearing, squeeze-film-bearings with the 

inclusion of effects of slip velocity at the porous boundary and anisotropic permeability 

of the porous matrix attached to the impermeable plate. 

 Because of having significant effect of surface roughness on the bearing 

performances, the present Chapter studied FF lubricated squeeze-film behaviour formed 
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between a rotating upper sphere and a radially rough lower flat plate (disc or surface) 

considering variable magnetic field which is oblique to the lower plate. The variable 

magnetic field is important because of its advantage of generating maximum field at the 

required active contact zone. The FF considered here is water based. On the basis of 

ferrohydrodynamic theory and Christensen’s stochastic theory for hydrodynamic 

lubrication of rough surfaces, the modified Reynolds equation is derived and expressions 

for squeeze-film characteristics are obtained and calculated numerically. The effects of 

various parameters like radial co-ordinates, radial roughness, rotation, width of the 

nominal minimum film thickness and squeeze velocity are also considered and studied.      

4.2   Mathematical Formulation and Solution    

              The schematic diagram of the squeeze-film geometry under study is shown in 

figure 4.1. A rigid rotating sphere of radius a is approaching towards radially rough flat 

plate with a uniform velocity (known as squeeze velocity) 

dt
dhh 0

0 
 , 

                                                                                                                                                    (4.1)  

              under a constant load, where 0h  is the central film thickness at time t=0. As shown in 

figure 4.1    the gap between a sphere and a plate (known as film region or film thickness) 

is filled with FF  lubricant which is controlled by oblique (oblique to the lower plate) and 

variable magnetic field of strength H of the form [43] 

a
raKrH )(2

2 
 , 

(4.2) 
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         where r is the radial co-ordinate and K being a quantity chosen to suit the dimensions of 

both  sides of equation (4.2) which helps in getting maximum magnetic field strength at          

r = 2 a / 3  as follows . 

From equation (4.2), 

KHMax 42 1021.0.    for   a=0.012, 

which implies for   

21.0
1010

K , so that )10( 3OH    or 3)( HO , 

where O indicates order. 

 Also, 

),,,(),,(
...

wrvuzrr q  

 

(4.3) 

           where ),,( zr    are cylindrical polar co-ordinates and dot (.) represents derivative w.r.t. t. 

              For an incompressible, steady, axisymmetric flow, equations (2.25) to (2.29) with 

equation (4.3) in cylindrical polar co-ordinates in r-direction becomes 
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 (4.4) 

            under the usual assumptions of lubrication, neglecting inertia terms and that the 

derivatives of fluid velocities across the film predominate. 

 Using tangential velocity under the boundary conditions  

lrv     when 0z  



99 
 

 and  

urv     when ,hz   

        equation (4.4) becomes 
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 which on simplification yields 
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(4.6) 

           where l  is the rotation of the lower plate, u  is the rotation of the upper sphere and h is 

the film thickness made up of two parts  

),,()(  rhrhh sn ;  

(4.7) 

 nh  denotes the nominal smooth part of the film geometry and is defined as [10,22] 

,
a

rhh mn 2

2

  

(4.8) 

           provided  r < < a , mh  being the nominal minimum  film thickness at r=0 and )(  ,,rhs   

is the part due to the surface asperities measured from nominal level and is a randomly 

varying quantity with zero mean,    being an index determining a definite roughness 

arrangement . 
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           Solving equation (4.6) for u with the corresponding boundary conditions  

0,0  wu   when   0z  

and 

dt
dhwu 0,0  when hz  , 

                                                                                                                                   (4.9) 

          yields 
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                                                                                                                          (4.10) 

            The continuity equation (2.26) for the film region in cylindrical polar  

co-ordinates yields 

.0)(1

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z
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rr
 

  (4.11) 

                     Substituting equation (4.10) in equation (4.11) and integrating over the film 

thickness (0, h) using boundary conditions for w from (4.9), yields Reynolds type 

equation of the form 
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(4.12) 

where the fact that  

0
00 

z
ww ,    

Because  rough plate is solid. 
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            Let )( shf  be the probability density function of the stochastic film thickness, sh

.Taking the stochastic average of equation (4.12) with respect to )( shf , the stochastic 

Reynolds equation can be obtained in the form 
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                                                                                                                          (4.13) 

where *)(E  is the expectancy operator defined by 






 ss dhhfE )((*)(*) . 

 (4.14) 

 After Christensen [15], it is assumed that 
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                                                                                                                                      (4.15) 

 where 3/c    is the standard deviation. 

            In the context of stochastic theory, the analysis is usually done for two types of 

one-dimensional roughness pattern (viz. circumferential and radial). In this Chapter, one 

dimensional radial roughness pattern is considered for study. For this pattern, the 

roughness structure is having the form of long, narrow ridges and valleys running in r-

direction (that is, they are straight ridges and valleys passing through z = 0, r = 0 to form 

a star pattern). The film thickness in this case assumes the form 
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)(  ,hhh sn , 

 (4.16) 

so that the stochastic Reynolds equation becomes  
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 where 
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Introducing the dimensionless quantities 
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 The stochastic Reynolds equation (4.17) reduces to               
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 Also, equations (4.2), (4.8) and (4.16) can be written as 

)1(222 RRKaH    , 
2

2aRhh mn    and   sn hhh  , 

respectively. 

4.2.1   Pressure Distribution  

 Solving equation (4.20) for the following relevant boundary conditions 

0p when 1R , 

    and 

0
R
p




 when 0R , 

(4.23) 

yields dimensionless film pressure as 


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2* .dR
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G)R1(R
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1p  

 

                                             (4.24) 

  4.2.2   Load-Carrying capacity 

            The mean load-carrying capacity is derived by integrating the mean film pressure acting 

on the sphere and is given by 
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 Thus, the dimensionless load-carrying capacity can be obtained as   
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 (4.26) 

where F and  G  are given by equations (4.21) and (4.22) respectively.  

4.3   Results and Discussion 

               In the present analysis, squeeze-film between a rotating upper sphere and a 

radially rough lower flat plate is analyzed using FF as lubricant. The dimensionless film 

pressure ( p ) is studied for the effect of dimensionless radial co-ordinate R. Moreover, the 

Chapter also studied about the effects of dimensionless radial surface roughness 

parameter, rotational parameter, width of the nominal minimum film thickness and 

squeeze velocity on dimensionless load-carrying capacity ( W ). The radial roughness 

model considered here is based on Christensen’s stochastic theory [15] for hydrodynamic 

lubrication of rough surfaces. The FF considered here is water based. The magnetic field 

is oblique and variable to the lower plate. This type of magnetic field is important 

because of its advantage of generating maximum field at the required active contact zone. 

The strength of the magnetic field considered throughout the study is of order 3; that is, 

3)(HO  in order to get maximum field strength at 3/2ar  . When FF is used as 
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lubricant, the variation in p  and W   is due to the first term of the equations (4.24) and 

(4.26) respectively. The values of the dimensionless film pressure and load-carrying 

capacity have been calculated for the following value of different parameters [10,54,55] 

which are remain fixed whenever required during calculation.  

21.0/1010K (A2 m-4), 00025.0mh (m),  1400  (Ns2m-4) 

0120050 .,.  (Ns m-2), 012.0a (m), 7
0 104  (NA-2) 

h0=0.00035 (m), 001.00 h (ms-1), u=30 (rad.s-1), l =30 (rad. s-1), 

 = 22/7, r = 0.0006 (m) 

                        Chan and Horn [9] in 1985 considered Reynolds lubrication equation when 

sphere of radius R moving normally towards a flat surface at a separation 0h  and shown 

that the pressure distribution )(rp  over the spherical surface satisfies the equation 

mn h
dr

rdprhr
dr
d

r








 12)() (1 3 , 

(4.27) 

            where  )(rhn  is the separation of the surface at a radius r and is given by equation (4.8). 

            Matthewson [10] in 1988 discussed about the analytical derivation for the squeeze 

flow of the liquid bridge of Newtonian fluid between a smooth rigid sphere and a smooth 

rigid flat plate using equation (4.27). Naduvinamani et. al. [22] in 2005 studied about the 

effect of roughness on the squeeze-film between a sphere and a flat plate using couple-

stress fluid. Here, they have derived the Reynolds equation giving pressure distribution of 

the form  
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(4.28) 

            where   is the inverse of the microstructural length scale responsible for the couple-

stress effect and h is given by equation (4.7). Equation (4.28) can be reduced to equation 

(4.27) when there is no roughness effect and Newtonian fluid is used. 

           Considering base as equations (4.27) and (4.8), the present study is the extension 

of the work by Chan and Horn [9] as well as Naduvinamani et. al. [22] in the context of 

Reynolds equation for pressure distribution and addition of roughness pattern 

respectively. The Chapter also considers FF as lubricant with oblique and variable 

magnetic field instead of conventional as well as couple-stress fluid and also rotation 

effect of the sphere. 

             The results for dimensionless film pressure ( p ) is calculated with respect to 

dimensionless radial co-ordinate R whereas the results for dimensionless load-carrying 

capacity (W ) is calculated with respect to different dimensionless parameters like radial 

surface roughness, rotation of the sphere and a flat plate, width of the nominal minimum 

film thickness and squeeze velocity. The results are presented graphically. 

4.3.1   Discussion on Dimensionless Film Pressure 

                       Figure 4.2 shows the variation of p  as a function of dimensionless  radial 

parameter (R) when radial surface roughness parameter C=0.004286, rotational parameter 

f = 1 and 3)(HO . It is observed that p  decreases as R increases; that is, as radius of 

the sphere a decreases since arR / . This decrease nature of p agrees with the behaviour 

of [22]. It should be noted here that as per [22], when R = 0.1, 2.0C  then 5.5p  
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while in our case 7.21p when R = 0.1, C=0.004286. Hence, approximate benefit of 

294.5 % more pressure generation is obtained even if smaller value of surface roughness 

parameter C is assigned, which is the advantage of the present method. From figure 

maximum pressure can be generated when R is nearer to 0.02 which can be obtained 

when r = 0.0006 m and a = 0.03 m; that is, r << a, which is the basic requirement of this 

problem [10]. Thus, the value of a is considered about 4900 % more than the value of r. 

The integral in equation (4.24) can be solved using Simpson’s 1/3-rule with step size 

determined by the formula (1-R)/10. 

4.3.2   Discussion on Dimensionless Load-Carrying Capacity 

            Before proceeding further, it should be noted that the integral in equation (4.26) can be 

solved using Simpson’s 1/3-rule with step size 0.1.             

Figure 4.3 shows the variation of dimensionless load-carrying capacity (W ) as a 

function of dimensionless radial surface roughness parameter (C) for different values of 

rotational parameter (f). It is observed that with the present variation in radial surface 

roughness pattern, there is negligible effect on W which also remains same for C = 0. 

However, in the case of Naduvinamani [22], the radial roughness pattern cause decrease 

in W  as compared to smooth case (C=0). Thus, the added advantage of constant 

behaviour of W whether C = 0 or C  0 is obtained as compared to [22].  

            Figure 4.4 shows the variation of  W  as a function of dimensionless rotational 

parameter ( f ) for C=0.004286 when ul  ; that is, when lower plate is  rotated  

faster than upper sphere since ./ ulf   It is observed that W  increases as f  

increases along the positive axis as well as decreases along the negative axis. That is, W  
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increases when the rotation of the lower plate increases counterclockwise or clockwise. 

But the increase rate is more in the case of counterclockwise rotation. Table 4.1 show the 

maximum value of W  for the calculated domain, when lower plate is rotated in different 

directions. 

Thus, it is observed that the increase rate of W is possible more than 186.03% in 

the case of counterclockwise rotation of the lower plate. 

Figure 4.5 shows the variation of W as a function of dimensionless rotational 

parameter( f ) for C=0.004286 when ul   (excluding the case ;0 f  that is, 

0 l ); that is, when upper sphere is rotated faster than lower plate. It is observed that 

W decreases as  f increases along the positive axis as well as decreases along negative 

axis. That is, W increases as the rotation of the upper sphere increases counterclockwise 

as well as clockwise. But as in the case of figure 4.4, the increase rate of W  is more in 

the case of counterclockwise rotation. Table 4.2 show the maximum value of W  for the 

calculated domain, when upper sphere is rotated in different directions.              

Thus, the percentage increase in W is again 186.03% when the upper sphere is 

rotated in counterclockwise direction. This is because the kinematics of rotation remains 

same in both the cases. 

When ;0 f  that is, when there is no rotation of the lower plate irrespective of 

the rotation of the upper sphere, W  is observed to be increases when the rotation of the 

above sphere increases either counterclockwise or clockwise directions as can be seen 

from Table 4.3.  
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            Figure 4.6 shows the variation of W  as a function of dimensionless nominal 

minimum film thickness ( mh ) when C=0.004286 and 1 f . It is observed that W  

increases as mh  increases; that is, W increases as nominal minimum film thickness 

increases. But the increase rate of W  is marginal. Figure 4.7 shows the variation of W as 

a function of dimensionless squeeze velocity parameter (V) when C=0.004288 and 

1 f . It is observed that W decreases as V increases.  Also, it is observed that smaller 

squeeze velocity results into more W  and the best performance of W is obtained when 

025.00  V . For 025.0V , W  decreases slowly. 

                        The present case reduces to the case of Naduvinamani et.al. [22] when there is no 

rotation effect at both (upper and lower) surfaces and FF lubricant is replaced by couple-

stress fluid. The case will further deduce to Lin [56], when there is no surface roughness 

effect in addition. 

4.4   Conclusions 

                        On the basis of ferrohydrodynamic theory and Christensen’s stochastic theory for 

hydrodynamic lubrication of rough surfaces, a water based FF lubricated squeeze-film 

bearing design system formed between a rotating upper sphere and a radially rough lower 

flat plate is analysed for the study of effects of roughness, rotation, width of the nominal 

minimum film thickness and squeeze velocity on dimensionless load-carrying capacity           

(W ). The dimensionless film pressure distribution ( p ) is also discussed with respect to 

radial coordinate. The variable magnetic field oblique to the lower plate is considered 

here for study because during cause of investigation it is observed that uniform magnetic 
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field does not enhance bearing performances (refer equation (4.5)). Moreover, the 

variable magnetic field is important because of its advantage of generating maximum 

magnetic field at the required active contact zone of the bearing design system. The 

analytic model, known as Reynolds equation, is derived using equation of continuity and 

equations from ferrohydrodynamic theory. The following conclusions can be made from 

results and discussion. 

1. The influence of water based FF as lubricant which is controlled by oblique and       

      variable magnetic field gives positive effect on the overall performance of the 

present   sphere-plate system. 

2. p  increases as R decreases; that is, as radius of the sphere a increases.  

3.  W  remains almost constant with the variation of roughness parameter. 

4.  W increases when the rotation of the upper sphere or lower plate increases         

     counterclockwise or clockwise. But the maximum value of W is  obtained  when  

     the  rotation is counterclockwise. Moreover, W  increases even if rotation of the  

      lower   plate is zero irrespective of  the increase of  rotation of the upper sphere. 

5.  W increases with the increase of nominal minimum film thickness but     

      the increase rate  is marginal. 

6.  W increases when squeeze velocity decreases and the better performance is  

      obtained   when 025.00  V . 
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4.5    Tables 

 

  ----------------------------------------------------------------------------   

                                                                    f      W  

                              -----------------------------------------------------------------------------     

Counterclockwise     2.33     15.93 

Clockwise     -2.33      5.55 

------------------------------------------------------------------ 

% increase in W                           187.03 

------------------------------------------------------------------- 

 

Table 4.1   

Values of W  when lower plate is rotated in different directions 

           

 

 

 

 

        - 
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                            ---------------------------------------------------------------------------- 

                                                                         f      W  

                             ---------------------------------------------------------------------------- 

Counterclockwise      0.43       15.93 

Clockwise       -0.43         5.55 

------------------------------------------------------------------ 

% increase in W                       187.03 

------------------------------------------------------------------ 

Table 4.2 

 Values of W  when upper sphere is rotated in different directions 

 

f  30 40 50 60 70 

-30 -40 -50 -60 -70 

W  1.66 2.96 4.63 6.67 9.08 

 

Table 4.3  

Effects on W when the rotation of the lower plate is zero irrespective of the rotation of 

the upper sphere 
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4.6   Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1   
 

Ferrofluid based squeeze-film geometry between a sphere and a 

   radially rough flat plate with oblique and variable magnetic field 
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Figure 4.2  

Variation in dimensionless film pressure p  for different values of dimensionless radial 

co-ordinate R considering C=0.004286, f = 1 and 3)( HO  
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Figure 4.3  

Variation in dimensionless load-carrying capacity W  for different values of radial surface 

roughness parameter C and rotational parameter f  
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Figure 4.4 

Variation in dimensionless load-carrying capacity W  for different values of rotational 

parameter f considering ul   and C=0.004286 
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Figure 4.5  

Variation in dimensionless load-carrying capacity W  for different values of rotational 

parameter f  considering ul   and C=0.004286 
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Figure 4.6 
 

Variation in dimensionless load-carrying capacity W  for different values of 

dimensionless nominal minimum film thickness mh  considering C=0.004286 and 

1 f  
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Figure 4.7  

Variation in dimensionless load-carrying capacity W  for different values of 

dimensionless squeeze velocity parameter V considering C=0.004288 and 1 f  
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